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Abstract 

A combination of known methods have been spliced together in order to calculate accurate 
vibrational energies and wavefunctions. The algorithm is based on the Rayleigh-Ritz variational 
procedure in which the trial wavefunction is a linear combination of configuration products of 
one-dimensional basis functions. The Hamiltonian is that due to Carney and Porter (1976). 
The kernel of the algorithm consists o( the one-dimensional basis functions, which are the finite 
element solutions of the associated one-dimensional problems. 

1. Introduction 

There are numerous algorithms (and variants) for solving the one-dimensional 
nuclear SchrOdinger equation, some of which have been compared by Shore (1973a) 
and Malik et al. (1980). Perhaps the best known is that due to Numerov (1933) and 
Cooley (1961). Practical aspects and difficulties associated with this 'shooting' method 
have been discussed in detail by Cashion (1963), Blatt (1967), Kolos and Wolniewicz 
(1966), Wicke and Harris (1976) and Johnson (1977). Wicke and Harris (1976) have 
shown the eigenvalue accuracy to be O(h4 k 6). Furthermore, the Numerov-Cooley 
scheme is limited to the computation of one eigenvalue at a time and, moreover, 
cannot be readily extended to the three-dimensional problem. 

Another scheme has been reported by Gordon (1970), where the one-dimensional 
potential is approximated by a straight line on each interval, thereby yielding analytical 
solutions that are combinations of Airy functions. The accuracy of the eigenvalue 
is of O(h2). Numerical instability limits Gordon's method to the calculation of one 
solution at a time. A variant of this approach is the scheme proposed by Canosa 
and Gomes de Oliveira (1970) in which the potential is approximated by a constant 
function on an interval. Ixaru (1972) showed that the accuracy of the eigenvalues was 
also of O(~). Neither of these methods (which approximate the potential function) 
readily extends to higher dimensions. 

Finite difference methods have a distinct advantage over the previous methods 
in that they can be easily extended to many dimensions. Basically, the method 

* Paper presented (by E.I.N.-F.) at the Specialist Workshop on Excited and Ionised States of 
Atoms and Molecules, Strathgordon, Tasmania, 3-7 February 1986. 

0004-9506/86/050749$02.00 



750 G. Doherty et al. 

approximates the derivatives of the differential operator by difference quotients. Fox 
(1957) has summarized several schemes. Keller (1968) has proved that the accuracy 
of finite difference eigenvalues are to O(Jil k4). Truhlar (1972) has applied the finite 
difference method to one-dimensional vibrational problems, as have Tobin and Hinze 
(1975). The major difficulty of these methods is the effort involved in improving the 
accuracy and in trying to compute a sequence of eigenvalues of similar accuracy. 

Finite element methods have a more recent history in the study of molecular 
vibrations. Askar (1975) gave a brief outline of how to apply the finite element 
method to bound state calculations using linear polynomial basis functions. NClrdholm 
and Bacskay (1976) 'generalised' the method to incorporate a basis of non-overlapping 
and overlapping sine functions. Shore's (1973b) method of cubic splines is a finite 
element method with a basis of cubic B splines which guarantees a continuous 
function, first and second derivative. Birkhoff et al. (1966) have shown that the 
eigenvalues are accurate to O( h6 k 8). 

For the multi-dimensional vibrational problem the two reported numerical 
Rayleigh-Ritz variation algorithms are the finite difference algorithm of Cropek 
and Carney (1984) and the finite element method of Burton et al. (1984a, 1984b, 
1985). Both are ab initio methods and have yielded excellent results for the vibrational 
spacings of small triatomic ions. The present investigation details and extends our 
solution algorithm which we have successfully applied to the investigation of the 
vibrational spacings of small D3h molecular ions (see Burton et al. 1984a, 1984b, 
1985). 

2. Vibrational Schrodinger Solution of D3b Triatomic Molecules 

For D3h triatomic molecules, we have adopted the Carney and Porter (1976) 
normal coordinate Hamiltonian which has the form 

3 

H= l: t+ Tt+ Uw + V, 
a=l 

(1) 

where Ta is the kinetic energy operator, Tt the vibrational angular momentum 
operator, Uw the Watson operator and V the total electronic pot~ntialoperator. Our 
adoption of this Hamiltonian [in preference to (Rl' R2 , R3) or (R, (T, 8) representations] 
was due to our initial interest in accurately modelling the low lying vibrational states. 
For these states, the molecular potential would be expected to be 'nearly'harmonic 
and so accurate solutions of equation (1) would be expected for a small configurational 
basis. 

Carney and Porter (1976) gave the following expressions for the kinetic energy and 
vibrational angular momentum operator: 

fi2 ·i 
Ta = - 21-L as~' 

Tt = _ fi2(~ a/aSj -~ a/;~)2, 
2 Izz-1-L(S2+S3) 

(2) 

(3) 

where the Sa are the symmetry coordinates that satisfy the Eckart (1935) conditions 
and I zz is a moment of inertia tensor. 



Numerical Variational Method 751 

As has been pointed out by us elsewhere (see Burton et al. 1984a), there is an 
ellipse of singularities associated with large amplitude of vibrations which manifest 
themselves in the Watson term of the normal coordinate Hamiltonian. By considering 
only small vibrational amplitudes, we have demonstrated that the Watson term can 
be effectively replaced by a third-order perturbation expression (see Burton et al. 
1984a). The expression used for Uw is given by 

(1,3) = fil {_5_(_1 2~ _ 3si 4S~)} 
w 211. 4R2 + R R2 + R3 ,... e e e e 

,,2 (_ 3S~ _ 3S~) fil (12~ S~ 1251 S~) 
+2 R4 R4 +2 R5 + R5 ' P. e e P. e e 

(4) 

where Re is the equilibrium bond length. 
In the two cases Hj and Dj, the potential used in this study is based on the 

energy grid constructed from 78 PNO-CI calculations from which is extracted an 
nth degree Simons-Parr-Finlan force field (see Burton et al. 1985), i.e. 

V(~, 52, 53) - V(Pl' P2' P3) = 1: 
j,j,k 

j+j+k<.n 

. . k 
ajjkpi~P3 , (5) 

where the variables of the power series are P j = (Rj - Re)/ R j. The Rj are the 
instantaneous bond lengths and the ajjk are coefficients. 

Finite difference and finite element methods are capable of directly solving the 
multi-dimensional Schrodinger equation. Unfortunately, even for moderate accuracy, 
a three-dimensional finite element computation would require a mesh size of at least 
20 points in each dimension, which would result in matrices of the order 8000 x 8000. 
To demonstrate the accuracy of such a calculation, the mesh would have to be 
doubled, resulting in matrices well beyond the storage capacity usually av~lable to 
computer users. 

We have followed the usual approach in solving multi-dimensional vibrational 
problems, i.e. we used the Rayleigh-Ritz method in which the vibrational eigenfunctions 
are expanded as a linear combination of a configurational product of one-dimensional 
basis functions. In the case of angular triatomic molecules, the vibrational wave
functions have the form 

\jJ = ~k Cjjkl/Jj(~)l/Jl52)l/Ji53), 
IJ 

(6) 

where the C are the expansion coefficients and the l/J are the one-dimensional 
basis functions dependent on coordinate Sj. The eigenfunctions and eigenvalues are 
determined by applying the variational principle to the undetermined coefficients, 
which leads to the problem of solving the usual secular equation 

IH-ESII CI = O. (7) 



752 G. Doherty et al. 

The simplest approach in constructing the one-dimensional basis functions is to require 
that they be eigenfunctions of associated one-dimensional Schrodinger equations, i.e. 

( fi2 d2 

- 2J.L dSi + V(S1,O,O))~i = Ai~i' 

( 
",2 d2 ) 

- 2J.L dS~ + V(Re' 52,0) ~j = J.Lj~j' (8) 

( fi2 d2 ) 
- - --2 + V(Re' 0, 53) ~k = Vk~k' 

2J.L dS3 

As a result of such a construction, Burton et af. (1984b) have demonstrated that 
(if the inter-mode coupling terms are small) a configuration list determined from an 
excited-energy criterion yields a more compact wavefunction compared with a basis 
selection criterion based on node counting. Hence, our configuration list is determined 
by the cut-off criterion 

Emax ;> Ai+J.Lj+vk· (9) 

Correct to second order, the Watson term has no inter-mode coupling (see Burton 
et al. 1984a). Its inclusion in equation (8) would only marginally alter the one
dimensional eigenvalues, since for the three-dimensional problem Hi the Watson term 
generally increases the vibrational energy level by 27 ·46 cm- 1. Nevertheless, it would 
introduce a mass-dependent contribution to the one-dimensional potential energy 
terms and so perhaps improve the compactness of the vibrational wavefunctions. This 
has not yet been investigated. 

3. One-dimensional Finite-element Method 

The eigenvalues and eigenfunctions of the one-dimensional problems given by 
equation (8) are the stationary points and values of the Rayleigh quotient. As one 
can choose a linear expansion of the trial function u in terms of some basis functions 
cf>, the Rayleigh quotient can be put into the form 

R(c) = cTAc/cTBc, (10) 

where cT = (c1' 0, ... , CN) are the free parameters and where 

Aij = <cf>;, cf>j)+<cf>i' Vcf>j)' Bij = <cf>i' cf». (11) 

If the basis functions are non-orthogonal then the stationary values of equation (10) 
are given by the generalised eigenvalue problem 

Ac = ABc. (12) 

The Rayleigh-Ritz finite element methods (FEM) are distinctive, because of the 
choice of local basis functions. The local nature of the finite element basis functions 
require the definition of boundaries and corresponding meshes. The FEM basis 
functions are a piecewise approximation to the true eigenfunction and so each finite 
element basis is only non-zero on the few adjacent mesh intervals. As many of the 
overlap integrals over the basis functions are zero, both global matrices A and Bare 
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sparse and banded. The matrix B is not diagonal since the basis functions are not 
orthogonal. An excellent account of FEM and their construction in solving equations 
(such as equation 8) has been given by Strang and Fix (1973). 

Usually in FEM, the basis functions are low degree polynomials. The Hermite cubic 
polynomials have a distinct advantage as basis functions, since they are constructed by 
imposing continuity, not only on uk, but also on its first derivative; i.e. both function 
value v and first derivative value v' are shared by the cubic in the next interval (see 
Strang and Fix 1973). The overall local approximation uh on the interval 0 .;;;; x.;;;; h 
is 

uh(x) = lb <Pt (x) + va <P2(X) + Vh <P3(X) + vi. <P4(X). (13) 

The cubic basis functions are determined by imposing the conditions that each function 
and first derivative values are zero or one at the boundaries, i.e. the Hermite cubics 
have form 

uh = % + at x + ~ x2 + O:l x3, 

<Pt(x) = 2x3/h3 _3x2/~ +1, 

<P3(x) = _2x3/h3 +3~/~, 

<Pix) = X3/~ _2X2/h+x, 

<P4(X) = x3/~ _x2/h. 

Generally, equations (13) and (14) are arranged in the matrix equation form, 

a = bcf>, 

where 
a = (%, at,~, O:ll, cf> = (lb, va, Vh' vi.l, 

0 0 0 

0 0 0 
b =1 

-3/~ -2/h 3/~ -l/h 

2!h3 l/~ -2!h3 l/~ 

(14) 

(15) 

In the one-dimensional problem, the finite elements are just the subintervals 
that divide the domain [a, b]. The wavefunction is approximated on each interval 
hi = xi+ t - Xi by a combination of the Hermite cubics that span that interval. 

The integrals of the global matrices A and B are computed by means of element 
K t (stiff) and Ko (mass) matrices respectively, where (see Strang and Fix 1973) 

J:(Uhli = cf>TK t cf>, J:(Uhi = cf>TKocf>· (16) 

The element matrices are generated in terms of the interval length and their values 
are incorporated into the global matrices A and B by overlapping the Vh and vi. 
contributions of one interval with the lb and va of the next. The boundary conditions 
u(a) = u(b) = 0 are imposed on the trial solution resulting in the deletion of the 
two basis functions from the expansion set, so that the first and last blocks are of 
order 3x3. 
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The contributions to the potential function integrals of the A matrix are evaluated 
by Gaussian quadrature on each interval, i.e. 

fh n 

cf>i(X) V(x)cf>ix) dx = Dij = ~ wkcf>i(Xk)cf>ixk) V(xk)' ° k=1 

(17) 

where a six-point quadrature scheme is employed on each interval. 
The element matrix Ko is positive definite which results in a global positive definite 

B matrix; B is by definition symmetric. The KI element matrix is indefinite leading 
to an indefinite A matrix, which is symmetric because the Hamiltonian is hermitian. 
Both A and B are large (typically of order 200x2(0) but they are also sparse since 
only elements (1', i) to (1', i+3) need to be computed. To take advantage of the 
sparse nature of the matrices, a solution of the generalised eigenvalue problem has 
been developed by Doherty (1981) called the incomplete Choleski conjugate gradient 
(ICCG) method. The B matrix is iteratively factored into LLT by a Cholesky 
elimination and the eigenvalues of L -I A(L -I) T are computed using the QR algorithm 
(see Francis 1961). The sequence of conjugate gradient reduction steps reorient the 
initial random orthogonal vectors to the minimising direction and so hasten their 
convergence. The advantage of the ICCG method is that the sparseness of the A and 
B matrices is retained in the L matrices because of the use of the iterative Choleski 
factorisation technique of Meijerink and Van Der Vorst (1977). Hence, the computer 
storage capacity required is very much reduced. 

It is a well-known feature of Rayleigh-Ritz numerical calculations that the higher 
eigenvalues become increasingly inaccurate. It has been shown by Birkoff et al. 
(1966) that the finite element eigenvalues t.. k are accurate to O( h6 k 8) and that the 
eigenfunctions are correct to O(h4- s k4) in the s derivative. Clearly there is a strong 
dependence on k. 

Many methods have been discussed to improve the accuracy of the higher 
eigenvalues. For example, Paine (1979) proved that in a finite difference approximation, 
the usual finite difference estimates of eigenvalues to O(Jz2 k4) can be improved to at 
least a uniform O(h2 k) by simple kinetic energy corrections. The method of Paine et 
al. (1981) is in fact useful in FEM as is demonstrated below. 

To more clearly demonstrate the problem at hand, let us consider the simplest 
one-dimensional problem in which the potential is zero on the interval [0,1] and the 
eigenfunctions are subject to the usual boundary conditions, i.e. u(O) = u(1) = O. 
The exact solutions to this problem are well known and are given by 

t..k = (k1r)2, Uk(X) = (2)°·5 sin k1rx. (18) 

Table 1 contains the error of the finite element approximations using a coarse mesh 
of eight equal finite elements and a six-point quadrature scheme. Table 1 clearly 
indicates that the error in the eigenvalue rapidly escalates. In fact, this error may be 
viewed as a kinetic energy correction; that is, if the zero potential is replaced by a 
harmonic box potential [i.e. V(x) = t..-x2 within 0 to 1], then the addition of the 
correction term to the eigenvalues of the latter problem yields solutions which are 
more in keeping with a much finer grid. This is also clearly demonstrated in Table 1 
where the difference between the corrected eigenvalues and those of the refined grid 
is less than 0·04 for k = 15. In fact, it can be demonstrated that the eigenvalues 
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Table 1. Eigenvalue FEM solutions to one-dimensional problems 

k Zero potentialA Harmonic box potentialB 

(A FEM-A EXACf) FEM' (n = 8) FEM (n = 80) 

1 0·00000113 10·15116404 10·15116403 
2 0·00025070 39·79939302 39·79939300 
3 0·00521909 89·15434203 89·15434246 
4 0·04115627 158·24395807 158·24396178 
5 0·19280393 247·07148059 247·07150069 
6 0·65904492 355·63763624 355·63774578 
7 1·83540261 483·94186153 483·94296510 
8 8·34531833 631·98728454 631· 98727697 
9 10·31309209 799·77196216 799·77074085 

10 21· 8031644 987·29362633 987·29340236 
11 44·37983578 1194·55551205 1194·55530601 
12 86·79137032 1421· 55698659 1421·55650745 
13 159·37394846 1668·29871549 1668·29708348 
14 257·96868640 1934·78390444 1934·77714250 
15 314·75074476 2221·03891373 2220·99683625 

A The exact solutions are given by equation (18). The number of finite 
elements defined on the domain is n = 8. 
B The FEM represents the finite element eigenvalues without any correction, 
whereas FEM' represents the finite element solution with the correction of 
note A added to the respective eigenvalues. The number of finite elements 
defined on the domain is given in parentheses. The potential is harmonic only 
on the interval [0,1]. 

Table 2. One-dimensional eigenvalues (in a.u.) for normal modes of Hi 
The potential used is the fifth order Simon-Parr-Finlan fit (see Burton et al. 1985) yielding 

Vmin = -1· 34286 a.u. All results have been computed using a six-point quadrature scheme 

k 

2 

3 
4 

5 
6 
7 
8 
9 

10 

FEM 

-1·33404 
-1·31873 
-1·30387 
-1·28946 
-1·27548 
-1·26192 
-1·24875 
-1·23598 
-1·22358 
-1·21154 

SlA 
Extrap.D FEM 

-1·33404 -1·33566 
-1·31873 -1· 32351 
-1·30387 -1·31186 
-1·28946 -1·30091 
-1·27548 -1·29098 
-1·26192 -1·28260 
-1·24876 -1·27645 
-1·23599 -1·27143 
-1·22360 -1·26600 
-1·21157 -1·25988 

SiB 
Extrap.D FEM 

~c 
Extrap.D 

-1·33566 -1·33556 -1·33556 
-1·32351 -1·32283 -1·32283 
-1·31186 -1·30991 -1·30991 
-1·30091 -1·29683 -1·29683 
-1·29098 -1·28363 -1·28363 
-1·28260 -1·27034 -1·27034 
-1·27646 -1·25697 -1·25697 
-1·27143 -1·24356 -1·24358 
-1·26608 -1·23013 -1·23017 
-1·26039 -1·21675 -1·21679 

A Interval over the range [-1,2] with the mesh over 28 intervals: 4*0.125, 16*0 ·0625,4*0.125, 
4*0·25. 
B Interval over the range [ - 1, 3] with the mesh over 28 intervals: 4*0.125, 16*0·0625, 4*0.125, 
3*0·25,1·25. 
C Interval over the range [ - 1· 5, 1· 5] with the mesh over 28 intervals: 3*0·25,0·125, 20*0 ·0625, 
0·125, 3*0·25. 
D Richardson extrapolation based on doubling the mesh size to 56 intervals. 
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with the kinetic energy correction are more in keeping to an accuracy of O(h6 k6) 
(see Hamilton 1983). The above study not only suggests where the major error in 
the FEM procedure occurs, but also suggests an alternative avenue in securing more 
accurate high energy eigenvalues. 

In order to construct the basis functions for the Ht and Dt vibrational problem, 
the use of the kinetic energy correction was deemed not to be the preferable route, 
since there was no clear connection to a corresponding accuracy of the eigenfunctions. 
Hence, the route taken was to focus on refining the grid. 

The choice of endpoints requires careful consideration as the eigenfunctions are 
forced to zero at the endpoints. Moreover, if the endpoints are chosen far beyond 
the region in which the wavefunction has converged then it will not only significantly 
increase the computation time but also it might produce a three-dimensional domain 
which goes beyond the realistic behaviour of physical motion of the molecule. For 
example, typical ranges for St, 52 and 53 are [-1,2], [-1,3] and [-1. 5,1· 5] 
respectively (see Hamilton 1983). To determine the mesh, the range was subdivided 
into a coarse mesh with constant spacing and then selectively refined over each 
subinterval to ensure that the highest eigenvalue required had converged to some 
tolerance. Table 2 gives a mesh for each coordinate and the corresponding eigenvalues 
of the respective one-dimensional problems (see equation 8). Table 2 also gives the 
Richardson extrapolated results, which further demonstrates that for such a mesh the 
basis functions have converged. 

4. Integral Evaluation for the Three-dimensional Problem 

There are basically only three types of integrals that need to be evaluated in 
the three-dimensional vibrational problem spanned by a FEM basis set: integrals 
involving the position operator (or dot products thereot), integrals involving a first 
derivative operator (or dot products therefore), and integrals involving the potential 
energy operator. The second derivative of the kinetic energy operator reduces to a dot 
product of first derivatives, because by using integration by parts on the interval, the 
boundary conditions ensure that the function is zero at the endpoints of the interval. 
Hence, we have 

<tfJt' 1;, tfJ) = -(fz2/2/L)<tfJ;, tfJj>· (19) 

In the case of global basis functions it does not matter if one performs the integration 
by parts since the functions themselves have sufficient continuity. However, in the 
case of piecewise or local basis functions, using integration by parts lifts the condition 
of the continuity of the second derivative at the nodes. [The latter is satisfied using 
cubic B splines (see Strang and Fix 1973).] 

The evaluation of these integrals is based on the element stiff matrix (see equation 
16). Hence, the global integrals are evaluated by assembling a similar matrix to A 
(i.e. A') and then performing the usual matrix multiplication cT A' c. 

An examination of integrals involving the Watson operator (see equation 4) reveals 
that they reduced to one-dimensional integrals which involve the position operator 
(or dot products thereot). Those integrals involving the T[ operator (see equation 3) 
reduced to one-dimensional integrals involving the first derivative operator, position 
operator or dot products thereof. All the integrals involving the 1;" T[ and ffJ) 
operators are evaluated using a six-point Gauss-Legendre quadrature scheme. When 
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spanned by a configurational basis, the integrals are weighted by the appropriate 
one-dimensional Kronecker deltas (see the Appendix). 

The potential energy integrals have the form, 

S dz lJi k lJi k' 0 S dy lJij lJij' 0 S dx lJi ilJi i' 0 V(x, y, z), (20) 

where x, y, z are equivalent to SI'~' 53 for the Hi problem. In order to evaluate 
this integral, a numerical quadrature scheme is required to replace the integral by 
a discrete sum over particular quadrature points. A Gauss-Legendre quadrature 
scheme using six points along each coordinate becomes computationally intractable 
for even a small configuration list. Furthermore, such a scheme samples the potential 
function in the classically forbidden regions where the one-dimensional eigenfunctions 
should be very close to zero, but are not, due to the imperfections of the FEM 
method. This results in a divergent integral. 

Even though a promising optimised quadrature scheme for matrix eigenfunctions 
of general anharmonic potentials has recently come to our attention (see Schwenke 
and Truhlar 1984), we have adopted the Harris, Engerholm and Gwinn (HEG) 
(1965) integration scheme to evaluate the three-dimensional potential integrals over 
the finite element basis. The HEG scheme requires the computation of an X matrix, 
the elements of which have the form 

Xij= S:lJilX)oxolJi/X)dX. (21) 

For the finite element method, these integrals may be computed exactly over each 
element using the methods described above. A typical integral on the interval 
o ..;; x ..;; h over the finite basis <P i( i = 1,4) of equation (14) is 

S: <Pi(X) 0 x 0 <p/x) dx = cpT (K2 + ah Ko)cp, (22) 

where <P is defined in equation (15), Ko is the element matrix defined by equation (16) 
and 

/-1 

ah = a + 1: h· 
i=1 I 

is the left end of the I interval position in the total range [a, b) with unequal mesh 
spacings h/ (/ = 1, ... , L). The element matrix K2 is given by 

K2 = h2 

3/35 

h/60 

h/60 

h2/280 

9/140 

h/60 

-h/70 

- h2/280 

9/140 h/60 . 2/7 - h/28 

- h170 - h2/280 - h/28 h2/168 

(23) 

The 4x4 element matrix resulting from equation (22) is combined into a large K 
matrix (2Lx2L) from which the X matrix of equation (21) is computed as 

Xij = \fiT K\fIj' (24) 

where \fI i are the coefficients of the ith eigenfunction. 
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The HEG method is readily extended to many dimensions (see Endres 1967). For 
the three-dimensional problem, three matrices are diagonalised in order to enable the 
potential integral to be evaluated. The three-dimensional potential integral matrix is 
then given by 

V(X, Y, Z) = Cz Cy Cx V(A, n, nC~ C~ C~ 

L M N 

= ~ CklCk'l ~ SmS'm ~ CinCi'n V(I\nn"Wmm"vII')' (25) 
1=1 m=1 n=1 

where, for example, Cx is determined from the matrix equation C~ X Cx = A (see 
Hamilton 1983). 

Table 3. Eigenvalues (in cm - 1) from a 2 x 2 x 2 calculation using the HEG 
quadrature scheme 

The notation 2 x 2 x 2 means that the lowest two one-dimensional eigenfunctions 
along each coordinate were selected to form the CI list. The notation nx nx n 

for the quadrature gives the number of points along each coordinate 

5x5x5 quad. lOx lOx 10 quad. 20x20x20 quad. 

4418·21 4418·38 4418·38 
7003·28 7005·21 7005·22 
7005·39 7005·59 7005·59 
7899·79 7903·71 7903·74 
9782·47 9784·17 9784·18 

10760·22 10765·13 10765·17 
10816·37 10824·34 10824·41 
14441·18 14451·32 14451·44 

In this scheme it is difficult to anticipate how many one-dimensional functions to 
include since they define the maximum number of quadrature points at which the 
potential integrals are evaluated. Table 3 shows the eigenvalues obtained from a 
2x2x2 calculation for 5, 10 and 20 quadrature points per dimension. It would appear 
that the low lying eigenvalues have converged for 10 quadrature points per dimension 
for matrix elements involving the first two eigenfunctions in each dimension. However, 
for high energy vibrational eigenfunctions a 20 point quadrature scheme is required 
(see Burton et af. 1984a, 1984b, 1985). This is consistent with the analysis of Cropek 
and Carney (1984). 

5. Conclusions 

For the triatomic hydrogen cation, the accuracy of the above multi-dimensional 
vibrational method has been demonstrated in a number of investigations (see Burton 
et al. 1984a, 1984b, 1985). In particular, it has been demonstrated that the bottleneck 
in accuracy of the lowest lying vibrational intervals is not due to the imperfections 
of the algorithm, but due to the inaccuracy of the force fields (see Burton et af. 
1985). It is hoped that with the new generation of CI potential surfaces (see Burton 
1980; Dykstra 1984) the emphasis will once again focus on the vibrational/rotational 
algorithms. 
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Appendix 

We present the one-dimensional integrals to be evaluated in the three-dimensional 
problem, where the suffixes i,j, k indicate a sole dependence on the St, 52, ~ 
coordinates respectively: 
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~ integrals-basic form: 

A f.P f H 

<\)1, T;,\)1) = - 2/-L 8jj'8 kk, \)1i\)1i; (AI) 

Tf integrals 

A fz2 \)1 .\)1 ., 2 
<\)1, Tf \)1) = - 2 f (R I + ~ )21 f \)1j S2\)1j' f \)1 k \)1~, 

/-L /-L e I 

+ f \)1 k S~ \)1 k' f \)1j \)1)' -8 kk' f \)1j Sz \)1j, -2 f \)1j Sz \)1j, f \)1 k S:J \)1~, 

- 8 jj' f \)1 k S:J \)1~, I ; (A2) 

Uw integrals 

N3) {5fz2 ( 2S1 3si 4Si)} 
<\)1, u'w \)1) = 8jj' 8 kk, f \)1i 8 R2 -1 + R - R2 + R3 \)1i' 

/-L e e e e 

3fz2 3fz2 
-8 i i'8 kk, 2 R4 f \)1jS~\)1j' -8 i i' 2 R4 f \)1kS~\)1k' 

/-L e /-L e 

6f.P f 2 6f.P f f 2 + 8 jj' -5 (f \)1 i SI \)1 i' \)1 k S 3\)1 k') + 8 kk' -5 ( \)1 i SI \)1 i' \)1j S2\)1j')' 
/-LRe /-LRe 

(A3) 

Note that for the ~ and Tf integrals all second derivatives are reduced to first 
derivatives by using integration by parts. 
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