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Abstract 
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We present new equations describing the Thomson scattering of the o-mode and z-mode in a 
strongly magnetised plasma, valid below the fundamental cyclotron frequency. Scattering by 
nonrelativistic thermal electrons leads to a frequency diffusion equation for the more strongly 
scattered o-mode and this equation is effectively the Kompaneets equation with cross section 
2/ 15th of the Thomson' cross section. Transfer of the photons tends to be dominated by the less 
strongly scattered z-mode; an o-mooe photon is scattered occasionally into a z-mode photon, 
which then diffuses rapidly due to its large mean free path before being scattered back into an 
o-mode photon. Our results should have applications in X-ray pulsars and 'Y-ray burst sources, 
as well as magnetic white dwarfs occurring in cataclysmic variables. 

1. Introduction 

The modification to the spectrum of a source of radiation due to multiple Compton 
scattering in a medium is known as Comptonisation of the radiation. Comptonisation 
is of interest in astrophysical applications as one mechanism for generating thermal 
and non-thermal power-law spectra (Felten and Rees 1972; Katz 1976; Sunyaev and 
Titarchuk 1980). Some areas of interest include active galactic nuclei (AGN) and 
quasars (Brinkmann and Trumper 1984). Comptonisation of soft photons, along with 
synchrotron self-Compton scattering has been used to explain the X-ray emission 
from these sources which have characteristic power-law spectra (Rothschild et al. 
1983; Rees 1980 and references therein). Katz (1976) proposed the now widely 
accepted mechanism of thermal Comptonisation for both the infrared and optical 
spectra of AGN. The X-ray emission from Cyg X-I is also accepted as being due to 
Comptonisation, in this case oflow-frequency photons by hot electrons in an accretion 
disc orbiting a black hole of several solar masses (Shapiro et al. 1976; Eardley et 
al. 1978). Sunyaev and Titarchuk (1980) obtained agreement between the observed 
spectrum of Cyg X-I and a Comptonised spectrum of soft photons in a plasma of 
temperature 27 keV and Thomson optical depth TO = 5. Comptonisation is also 
likely to be important in other compact X-ray sources such as X-ray and gamma-ray 
bursters, and X-ray pulsars, all of which are thought to be accreting neutron stars 
(e.g. Lewin and Van der Heuvel 1983). In particular, the effect of Comptonisation 
on the cyclotron resonance detected in three X-ray pulsars, e.g. Her X-I and a large 
number of gamma-ray bursters, is important in determining whether the line is an 
absorption or emission feature. 
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There is extensive literature on the interaction of radiation with electrons in a strong 
magnetic field. The cross sections and probabilities of elementary processes, such as 
Thomson scattering and free-free scattering, can be greatly modified by the presence 
of the magnetic field; see e.g. Canuto et aZ. (1971), Melrose and Sy (1972), Gnedin and 
Sunyaev (1974), Lodenquai et aZ. (1974), Bomer and Meszaros (1978, 1979), Ventura 
(1979), Kirk and Meszaros (1980). Some authors have emphasised applications of these 
results to radio pulsars (e.g. Blandford and Scharlemann 1976) and others to X-ray 
pulsars (Basko and Sunyaev 1975; Kanno 1980; Meszaros et aZ. 1980; Meszaros and 
Bonazzola 1981; Nagel 1981 amongst others). However, little attention has been given 
to the question of Comptonisation in a magnetic field, although recently Lyubarsky 
(1985,1986) has included such Comptonisation in radiative transfer equations, with 
a view to explaining the radiation spectrum of X-ray pulsars. 

Our purpose in this paper is to extend the theory for Comptonisation of radiation 
to include the effect of a strong magnetic field. The effects of such a field are 
important below about the cyclotron frequency, which is in the hard X-ray range 
for Her X-I and other X-ray sources with observed cyclotron features. Below the 
cyclotron frequency the birefringence of the electron gas cannot be ignored. The two 
wave modes of the medium correspond to the o-mode and z-mode of magnetoionic 
theory, and we adopt these names here. Scatterings can be classified as 0-0, z-z, o-z 
and z-o depending on the modes of the initial and final photons. The scatterings of 
photons in the two modes occur at markedly different rates and this has interesting 
consequences. For example, the shape of the spectrum tends to be determined by the 
more strongly scattered mode, and the transfer of the radiation by the less strongly 
scattered mode. 

In the absence of a magnetic field Comptonisation is usually described using the 
Kompaneets (1956) equation 

-=--x N+N+-, aN 1 a 4( 2 ON) 
ay x2 ax ax 

(1) 

where N is the photon occupation number, x = "wl k ~ is the photon energy in units 
of the thermal energy of the electrons and y = (k Tel me c2)0" T ne c t is a parametrised 
time characterising the number of collisions experienced by a photon, with O"T the 
Thomson cross section and ne the electron density. The terms N, N 2 and aN lax 
are identified as the quantum recoil, induced or stimulated scattering and Doppler 
terms respectively. Analytic solutions to (1) have been obtained in limiting cases, 
the most important being the limit where the induced scattering term is neglected; 
see e.g. Kompaneets (1956), Zeldovich and Sunyaev (1969), Illarionov and Sunyaev 
(1972), Arons (1972) and Sunyaev and Titarchuk (1980). 

Our primary objective here is to derive a pair of coupled equations which replace 
the Kompaneets equation (1) for photons below about the cyclotron frequency. These 
equations are for the occupation numbers No and Nz for the two modes; No evolves 
due to 0-0 and z-o scatterings and Nz evolves due to o-z and z-z scatterings. 

In deriving these equations we assume that the electrons have an isotropic pitch 
angle distribution and a nonrelativistic Maxwellian velocity distribution. Although 
these assumptions are unlikely to be justified in the magnetosphere of a radio pulsar, 
they may be satisfied in the accretion column of a neutron star or white dwarf. 
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Additionally, we ignore thermal corrections to the wave properties; this may not be 
justified for frequencies sufficiently close to the cyclotron frequency. 

Having derived these equations, the only application of them we discuss is that of 
spatial diffusion. Spatial diffusion is relevant only in an inhomogeneous system and 
the left-hand side of (1) needs to be modified to take account of the inhomogeneity. 
We show in detail how this may be done in the unmagnetised case in Appendix 3, 
when we re-derive, and generalise slightly, a result obtained by Blandford and Payne 
(1981). 

In outline, our paper is as follows. In Section 2 the basic equations which describe 
the scattering are written down in semi-classical form. The semi-classical formalism 
allows one to include the first quantum corrections, which are important in (1); 
intrinsically quantum-field effects appear only to second order in Planck's constant 
and are not important here. In Section 3 the relevant wave properties are described. 
The nonrelativistic approximation is made in Section 4 and the particular assumption 
of a Maxwellian electron distribution is made in Section 5. The Kompaneets-like 
equations are derived in Section 6. Spatial diffusion is discussed in Section 7. 

2. Kinetic Equations 

In this section we write down the kinetic equations describing the evolution of the 
photon distribution of a particular mode. Our approach is based on the semi-classical 
formalism (cf. Melrose 1980a; Ch. 5). 

Firstly we consider the scattering of waves from mode (1"' into mode (1" say. Let us 
introduce the electron and photon distribution functions f(P) and N(Ak), respectively, 
where k is the photon wavevector. Also we denote the basic scattering probability 
per unit time by wuu,(p, k, k'), where p is the momentum of the scattering electron 
and k' the wavevector of the scattered photon. The rate of transitions (1"' ~ (1" is 
proportional to 

wuu'(P' k, k')f(P) Nu,(k,) { I+Nu(k)J, 

while the rate of transitions in the opposite direction (1" ~ (1"' is proportional to 

wuu'(P' k, k')f(P+fzk' -fzk) Nu(k) { l+Nu,(k')J. 

The probabilities of the direct and inverse processes are the same, as may be argued 
by appealing to the Einstein relations. The kinetic equations may be written by 
subtracting the rate of transitions (1" ~ (1"' from the rate of transitions (1"' ~ (1" and 
then integrating over all values of the electron momentum and scattered photon 
wavevector. We find in the classical limit 

dNu(k) 

dt f d3k' f 3 ' , 
; (21T)3 d p( wuu.(s, p, k, k )[f(P) { Nu,(k )- Nu(k) J 

+ Nu,(k,) Nu(k) Dsf(P)] + wuu(s, p, k, k')[f(P) { Nu(k')- Nu(k) J 

+ Nu(k') Nu(k) Dsf(P)]) , (2) 

where the operator Ds is defined in (A 7) in Appendix 1. Similarly we can write down 
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a kinetic equation for waves in mode 0-': 

dN,Ak) = -l: I d3k' Id3p(wuu'(S,P' k, k')[f(P)(Nu.(k)-Nu(k')j 
dt s (21T)3 

+ Nu,(k) Nu(k') DJ(P)] + Wu'u'(S' p, k, k') 

x [f(P)( Nu,(k)- Nu.(k')j + Nu.(k) Nu,(k,) DJ(P)]). (3) 

The terms linear in the photon distribution Nu(k) describe the effect of spontaneous 
scattering while those quadratic in Nu(k) represent the effect of induced scattering. 

The probability for Thomson scattering undergoing spiralling motion in an ambient 
magnetic field was derived by Melrose and Sy (1972). Also, we include the effect of 
quantum recoil of the electron in the scattering probability. The quantum recoil is 
equivalent to finding the first quantum correction to the classical energy conservation 
condition and is discussed more fully in Appendix 1. 

The generalisation of Thomson scattering to include a background magnetic field 
leads to 

wuu,(p, k, k') = 21Tq4 Ru(k) Ru,(k,) 00 

E5 m2 wu(k)wu,(k,) n=~oo I auu,(n, k, k'; v)1 2 

x a( wu(k)-wu,(k')- nfl-(k ll - kll)vll 

+ ~ [( wu(k)- wu,(k,) j2 - (k ll - kil)2 e2]) , (4) 
2E 

with 
00 

auu,(n, k, k'; v) = l: e~i(k) eu/k') aij(n- t, k; t, k'; v), (5) 
t=-oo 

ebJ{s'l/I' - sl/J) 
aij(s, k;s', k'; v) = , [wsw~,Jiz)Js'(Z')Tij(Ws) 

'Ywsws' 

+ws Jiz ) Tim(w s) km Vj(s', p, k') +wi Js'(z') V;(s, p, k)k'", T miws) 

+(k/k'",T/m(W S)-ww'le2j V;(s,p,k) Vj(s',p,k')], (6) 

and where 'Y] = ql I q I, 'Y is the particle's Lorentz factor, fl = I q I BI m is the 
gyrofrequency, and v is the particle velocity with components Vi and VII perpendicular 
and parallel to the magnetic field B. The components of k and k' are written as 

k = (ki cos ljJ, ki sin ljJ, k ll ), k' = (k~ cosljJ', k~ sinljJ', kil)' (7) 

and so define the angles ljJ and ljJ'. Also, we have 

Ws = w-sfl - kll VII' , "rl k' w s' w - s JI, - II VII ' (8) 

and where z = kl vll fl, Js is a Bessel function of order s, Ru(k) is the ratio of 
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electric to total energy in waves in mode CT, eu(k) is the polarisation vector ofa wave 
in mode CT, wu(k) is the frequency dispersion of waves in mode CT, and . 

V(s,p, k) = [~vl{ei'l)ljs Js_1(z)+e-i'l)ljs Js+1(z)1 , 

- ~i '1}Vl{ ei'l)ljs Js_1(z)-e-i'l)ljs Js+1(z) I, vII JS<z)]. (9) 

Finally, the quantity Tiw) is generally given by 

w2 ( n2 i'1}n ) T.'(W) = i) .. --b.b.+--E··kbk 
IJ w2 _ n2 IJ w2 I J W lJ ' 

(to) 

where b = B/I BI is a unit vector along B. For the case of the magnetic field along 
the z-axis, so that b = (0,0,1), we can write 

w2 i'1}wn 

w2_n2 w2_n2 
0 

Tij(W) = I i'1}wn w2 I. (11) 

w2_n2 w2_n2 
0 

0 0 

One can show (Appendix 1) that the effect of the quantum recoil in (4) is to 
introduce terms of the type it Nu·(k')+ Nu(k) 1 Dsf(P) into the kinetic equations. 
Hence, we find 

dNu(k) ~J d3k' J 3 ( , [f { , )1 ---=d-t - = ~ -(2'IT-)3 d p wuu·(s,p, k, k) (P) Nu·(k)- Nu(k 

+ { Nu'( k') Nu( k) + ~ Nu'( k') + ~ Nu( k) 1 Dsf(P)] 

+ wuu(s, p, k, k')[f(P){ Nu(k')- Nu(k) 1 + {Nu(k') Nu(k) 

+ ~ Nu(k') + ~ Nu(k) 1 Dsf(P)]) , 

dNu·(k) ~ J d3 k' J 3 ( , { , 1 dt = - ~ (2'IT)3 d p wuu·(s,p, k, k )[f(P) Nu·(k)-Nu(k) 

+ {Nu·(k) Nu(k') +~Nu·(k)+~Nu(k')1 Dsf(P)] 

+ wu·u·(s, p, k, k')[f(P){ Nu·(k)- Nu·(k') 1 

+ {Nu·(k) Nu·(k')+~Nu.(k)+~Nu·(k')1 Dsf(P)]) , 

(12) 

(13) 

The probability wuu.(s, p, k, k') in (12) and (13) is now of the classical form 
without quantum corrections, i.e. the delta function of (4) is replaced by 
i){w-w'-sn-(kll-kll)vll I. 
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3. Properties of Magnetoionic Waves 

In this section we briefly present details of the magnetoionic wave modes of a cold 
magnetised plasma; see e.g. Stix (1962) and Melrose (l980b). There are four branches 
of real magnetoionic modes divided into two classes; the extraordinary and ordinary 
modes. The higher and lower frequency branches of the ordinary mode are called 
the o-mode and whistler mode respectively, while the higher and lower frequency 
branches of the extraordinary mode are called the x-mode and z-mode respectively. 

The frequency cutoffs for the 0, x, and z-modes are W = wP' W = Wx or W = wZ ' 

with wp the plasma frequency and with 

W = lfl+l(fl2+4w2)4 x 2 2 P , W z wx-fl. (14a, b) 

The o-mode exists at frequencies w > wP' the x-mode at frequencies w > Wx and the 

z-mode in the range W z < w ~ (fl;+w~)L 
We find it convenient to introduce two magnetoionic parameters which incorporate 

the plasma frequency and gyrofrequency: 

x = w2/w 2 p , Y = fl/w. (15) 

Since we are interested in the strongly magnetised limit in which w < fl with fl :> wp 

then we can see from (14a) that the cutoff for the x-mode becomes Wx ~ fl. So, in 
the range of interest wp .( w < fl or X .( 1, Y > 1, then the only modes of interest 
will be the o-mode and z-mode; the whistler mode is of no interest. 

With the wave modes denoted a- = 0, z, the wave properties are given by (Melrose 
(l980b, Ch. 12) 

with 

XTfT 
,,2 - 1 _ e' 
r-fT - T - Y cos 

fT 

efT(k) = (afT cos Iji -i sin Iji, afT sin Iji,+i cos Iji, bfT) 

(K~+ T~+ 1)2 

I+K~+ T~ 
RfT(k) = 2(1 + T~)/-LfT u(w/-LfT)luw ' 

afT = KfT sin e + TfT cos e , bfT = KfT cos e - TfT sin e, 

(16) 

(17) 

(18) 

(19) 

KfT 
X YTfT sine 

(1- X)( TfT - Y cos e) , 
Y(I- X) cos e, (20,21) 

TfT = 1 y2 sin2 e+ L1 
2 

L12 = i y4 sin4 e+(I + X)2 y2 cos2 e, (22) 

where the upper (lower) sign refers to a- = 0 (a- = z), /-LfT is the refractive index, 
e the angle between the wavevector k and the magnetic field B, while KfT and TfT 
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correspond to the longitudinal and transverse part of the polarisation vector e(T' and 
T(T is the axial ratio of the polarisation ellipse. 

4. Thomson Scattering by Nonrelativistic Electrons 

If the velocity of the Thomson scattering is nonrelativistic the scattering probability 
is· greatly simplified. One finds that only n = ° (zeroth harmonic scattering) 
contributes, i.e. s = s'. Strictly if v =F ° there is a contribution to the scattering 
probability from n = ± 1; however, the contribution from these levels is of order 
max( vii c2, vfl I c2) smaller than that of n = 0. Hence, on expanding in powers of 
/3 = vic, only s = s' = ° contributes to the order of relevance here. Thus, we are 
only concerned with aiiO, k; 0, k', v) which from (6) becomes 

, 1 { , JQ(z) k *' k') aiO, k;O, k; v) = - JQ(z) JQ(z ) Tij(WO) + -- Tim(WO) m Vj,O,p, 
y Wo 

(23) 

JQ(z') ( , + __ V;(O, p, k)k'", T .(wo) + k k'T (w) Ww) V;(O, p, k) VJ(O, p, k')} 
Wo mJ r s rs 0 - -2 ,-----==-~=-:.---.:. c 2· • 

Wo 

The classical Doppler condition (AI) implies that Ws = w, so that Wo = wo' 
For the present we retain contributions from s =F s' =F ° and write an explicit 

expression for a(T(T.(n, k, k'; v) defined in (5). Let us introduce the quantity 

e(T = (1+ T~+K~)-!. (24) 

Now we need to evaluate the various elements of e~i(k) e(T'ik') ais, k; s', k'; v). If 
we assume for simplicity the magnetic field is along the z-direction and set 1/ = -1, 
i.e. our particles are electrons, then from (16) and (17) we find that 

e~i T iiws) e~j = e(T e~,( 2:; 2 {(a(T a~, + 1) cos(l/J-l/J')+i(a(T + a~,) sin(l/J-l/J') I 
W s l1e 

+ :s l1e2 {i(a(Ta~, + 1) sin(l/J-l/J') + (a(T + a~,)cos(l/J-l/J')l + b(T b~'), (25) 
ws- l1e 

e~iTim(ws)km = e(T( :~Ws 2(a(Tws +l1e)+kll b(T). (26) 
Ws !1e 

Next using (9) we have 

e~i V;(s,p,k) = e(T[vl{a(Tsz-lJs(z)+J~(z)1 + vII b(TJs(z)]., (27) 

and the final result is 

k k ' kl kl. w; ,ikl kl. w s l1e . 'k k' 
r sT rS<w s) = 2_ 2 cos(l/J-l/J) + 2_ 2 Stn(l/J-l/J) + II II' (28) 

Ws l1e Ws l1e 
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Collecting the results gives 

ei(SIj!-s'Ij!') [ ( w 
a(J'(J" = g(J' g~, COS(l/J-lj/) Js(z) Js'(z,) ~ 2 

Y Ws- fle 

I , 'J ki kl [I 1 'J x w.(a(J'a(J',+I)+fle(a(J'+a(J") + 2 2 VI a(J'sz- J.(Z)+J.(Z) 
Ws- fle 

+ VII b(J' J.(z)][ vII a~, S' Z'-l Js'(z,) + J~,(z') J + VII b~, Js'(z')]) 

+i Sin(l/J-l/J')(J.(Z) JAz,) Ws 21 w.(a(J' + a~,)+ fle(a(J' a~, + 1) J 
. w~- fle 

+ fle ki kl 2 [VII a(J' SZ-l J.(Z) + J~(z) J + VII b(J' Js(z)] 
Ws w~-fle 

x[vIla~,s'z'-IJ,,<z')+J~(z')J + VII b~'J~.(Z')]) 

{ "J.(Z)( ki Ws ) k ) + J.(Z) Js'(Z )b(J' b(J" + - 2 2 (a(J' Ws + fle + II b(J' 
Ws Ws- fle 

x [vII a~, S' Z'-l Js'(Z,) + J~,(Z') J + VII b~, Js'(z,)] 

Js'(z')( kl. WS ' k' b')[ I 1 'J +-- 2 /a(J',ws+fle)+ II (J' VI a(J'sz- J.(Z)+J.(Z) 
Ws Ws- fle 

kil kll -Ww'/c2 

+ VII b(J'J.(z)] + 2 [vIIa(J'sz-IJs<z)+J~(z)J 
Ws 

+ VII b(J' J.(z)] [ vII a~, S' Z'-l Js'(z,) + J~,(Z') J + VII b~, Js'(z,)] } ] . (29) 

As usual J~(z) denotes dJ.(z)/dz. Now we can express (29) in the form 

a(J'(J" = ei(SIj!-s'Ij!')g(J'g~'IAss' cos(l/J-l/J') 

+ i Bss' sin( l/J -l/J') + Css' J ' (30) 

which defines Ass" Bss' and Css" 
Suppose that we have a distribution of photons axisymmetric with respect to the 

magnetic field, and average 1 a(J'(J" 12 over the azimuthal angle l/J: 

1 a(J'(J" 12 = g~ g~,( i A;s, + i B;s' + C;s.) . (31) 



Comptonisation of Radiation 969 

If we now set s' = s = 0, as discussed previously, then we have 

.400 = ,!,(JQ(Z)JQ(Z') 2Wo 2{wo(aua~.+1)+!1e(au+a~·)1 
'Y wO-we 

kl kl { J'( 1 { " , , 1) x 2 2 Vi 0 z) + VII bu JQ(z) Vi Jo(z) + VII bu' JQ(z) , (32) 
wo-!1e 

~o = ,!,(JQ(Z)JQ(Z') 2wo 2{wo(au+a~·)+!1e(aua~.+1)1 
'Y wo-!1e 

+!1e :1 k12 { Vi JO(Z) + VII bu JQ(z) 1 { Vi JO(Z') + VII b~. JQ(z') 1), 
Wo wo-!1e 

1 { "JQ(Z)( klWO ) COo = - JQ(z) JQ(z ) bu bu' + -- 2 2 (au Wo + !1e) + kll bu 
'Y Wo wo-!1e 

{ " b' (' 1 JQ(Z') ( kl Wo ( , !1) k' b' ) 
X Vi J O(Z ) + VII u' JQ Z) + -- 2 2 au' Wo + e + II u' 

Wo wo-!1e 

~ki-ww'l2 . 
x { vi JO(Z) + VII bu JQ(z) 1 + 2 { Vi JO(Z) + VII bu JQ(z) 1 

Wo 

x { Vi JO(Z') + VII b~. Jo(z') 1 } . 

5. Maxwellian Electron Distribution 

(33) 

(34) 

To proceed any further with the kinetic equations we need to specify the form of 
the electron distribution function f(P). Here, we assume a nonrelativistic Maxwellian 
distribution of electrons, i.e. 

f ) ne 2 2 
(p = ,_ ,,,., , T7' exp(-v 12Ve), (35) 

with ~ = (kt, Tel me)! and Te is the electron temperature. The normalisation is 
I d3 P f(P) = ne· From (35) and (A7) we have 

n!1e+(kll - kll)vll 
Dnf(P) = T ftf(P) , 

e 

where we have now set the Boltzmann constant to unity. Now using the delta function 
of the unmodified probability, which implies 

n!1e+(kll - kll)vll = w~.-wu' 
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we have 

Dnf(p) = (w~,-wa-)fzf(p)ITe· (36) 

Denoting the average over the distribution function by angle brackets and noting that 

kll = k cos (J = (J-La- wa-I c) cos (J, (37) 

the kinetic equation (12) can be written as 

dNa-(k) _ 4(2 )32 4J d3 k' {Ra-(k)Ra-,(k')<s:,[ (I a s(J) -----'- - 1T ro ne c --3 ,u Wa- - J-La- '" II co 
dt (21T) Wa-Wa-' 

- w~,(1 - J-L~' /3 11 cos (J') J 1 aa-a-' 12>( Na-,(k,)- Na-(k) 

+ fz(w~,-wa-) [Na-.(k') Na-(k) + ~Na-.(k')+~Na-(k)J) 

+ Ra-(k) R~(k') <51 wa-(1-J-La-/3
11 

cos(J) -w~(1-J-L~/311 cos(J')J 1 aa-a-12> 
wa- wa-

x ( Na-( k')- Na-(k) + fz(w:r ~ wa-) [ Na-( k') Na-( k) + ~ Na-( k')+ ~ Na-(k) J ) }. (38) 

A similar form applies for dNa-,(k)/dt. 

In order to generalise the Kompaneets equation we need to expand 1 aa-a-' 12 in 
powers of /3 11 = VII I c, up to first order. To this end we note 

Wo = w( 1 - J-L/3 11 cos (J) , (39) 

so that 

W6- n2 e w2(1-J-L/3 11 cos(J)2~n; :::: w2-n; ~2J-Lw2/311 cos(J 

1 ( 2J-Lw2/3 11 cos (J ) 
:::: 2 1+ 2 + ... , 

w2 - ne w2 - ne 
(40) 

where we have dropped the mode label. 
Also to lowest order the Bessel function Jo(z) and its derivative Jo(z) can be 

written as Jo(z) :::: I, Jo(z) :::: -~z. Hence, we have 

W ( 2J-La- w2/3 11 cos (J) Aoo= 2(1-J-La-/3llcos(J)1+ 2 
w2 - n e w2 - n e 

x [w(I-J-La-/3 11 cos (J)(aa- a~, +1)+ne(aa-+a~,)J, 
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and after some simple algebra we find to lowest order in i3 11 that 

W {' , Am z 2 w(ao- ao-,+l)+fle(ao-+ao-') 
w2 -fle 

a a( 2fl; ( , ) w2+fl;fl( ')} + I-Lo- fJ II COS U 2 W ao- ao-' + 1 + 2 e ao- + ao-') . 
w2-fle w2-fle 

(41) 

Similarly we have 

w { , , ~o = 2 w(ao-+ ao-') + fle(ao- ao-' + 1) 
w2-fle 

a a( 2fl; ( , w2 + fl; ( , )} +l-Lo-fJIICOS U 2 wao-+ ao-')+ 2 fleao- ao-,+1). 
w2-fle w2_ fle 

(42) 

Before we write COo note that 

1 ( kl Wo ) { " , , 1 - 2 (ao- Wo + fle) + kll bo- VI Jo(z ) + VII bo-' .fo(z) 
Wo w2-fle 

z 2.(W21-L0- Si~ 0 (ao- w + fle) +WI-Lo- cos 0 bo-) vII b~,. 
W w2-fle 

Hence, we find 

b ' (WI-L sinO(ao-w +fle) ) , COo Z 0- bo-' + 2 + I-Lbo- cos 0 bo-' i3 11 

w2-fle 

w' (WI-L' sin 0' , , , ') 
+ - 2 (ao-'w +fle) +I-L bo-' cosO i3 11 bo-' 

w w2-fle 

where I-L = I-Lo- and I-L' = I-L~" Using (41), (42) and (43) we can write 

with 

1
2 (0) a A(I) 

1 ao-o-' z Ao-o-' + fJ II 0-0-' , 

A(O) , = w2 2 [(W2+fl;){(ao- a~, +1)2 +(ao-+a~,)21 
0-0- 2(w2 _ fle)2 

+4wfle(ao- a~, + l)(ao-+ a~,)] + bo- bo-" 

(I) , {(WI-Lo- sin 0 a b ) b' Ao-o-' = 2bo- bo-' w2-fl; (ao-w +fle) +I-Lo- cOSu 0- 0-' 

( WI-L~' sinO' , " ')W' bo-
+ 2 (ao-' W + fle) + I-Lo-' cos 0 bo-' --

w2-fle w 

aA(O) } 
-I-Lo- cos 0 w ~ aw . 

(43) 

(44) 

(45) 

(46) 
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Our next step is to expand N(k'), rewritten as N(k', ()'), in a Taylor series in 
k'-k: 

N(k', ()') ::::: (1 +(k' - k)~ + ~(k' - k)2 L)N(k, (),), (47) 
ak ak2 

where we use 

k' _ k = J.L' w' - J.Lw = J.L' - J.L w J.L' (w' -w). 
c c c 

Also, the delta function implies that 

and thus 

, 1 - J.L.B II cos () 
w = w , 

1- J.L'.B II cos ()' 

w' - w ::::: .B II (J.L' cos ()' - J.L cos ()(1 + J.L'.B II cos ()'). 
w 

So, in (48), we have 

(48) 

(49) 

k'-k J.L'-J.L .BIIJ.L'" " -- ::::: -- + --(J.L cos () - J.L cos ()(1 + J.L .B II cos () ). (50) 
k J.L J.L 

Next we perform the integration over the delta function and the associated expansion 
in .B II and (w' -w)/w in (38). Note that 

f d3 k' Rcr,(k,) ,,' . 
--3 olw (1-J.Lcr,.B 11 COS() )-w(I-J.Lcr.B11 cos()J (217') ,.,' 

f d2n' f dW ' a(w'J.L;",) (w'J.L;"'? ___ _ 

= (217')3 ~ aw' c2w' ~;,(1 + T;,) 

x o(w' -w') ,(51) 
2J.L;",a(w'J.L;,.vaw' 11-la(w'J.L;,.vaw'J.B11 cos ()' I 

where we have changed the variable of integration from k' to w', used the result (18) 
for Rcr,( k') and made use of 

o(y- .Yo) 
olg(y)- YoJ = dg(y)/dy' 

where .Yo is the value of y which satisfies g(y) = Yo' Hence, in (51) (i)' is the value 
of w' which satisfies 

w'(1-J.L;",.B 11 cos() = w(I-J.Lcr .B 11 cos(). 

Performing the integral over w' in (51) and replacing (i)' by w' the right-hand side 
of (51) becomes 

f d2 n' J.L;'" w' 1 1 

(217')3 2C3 ~;,(1 + T;,) 11 -I a(w'J.L;,.vaw'J.B11 cos()'1 . 
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Then, using 

JJ,~' w' " JJ,~' W' r-cr W -
JJ,cr W 

we obtain 

:::: JJ,cr W( 1 + JJ,~~~JJ,cr ) {1 +(JJ,~' cos 0' - JJ,cr cos 0),811) , (52) 

J d3k' Rcr,(k,) 8[w'(1-JJ,~,,811 cosO')-w(l-JJ,cr,811 cosO») 
(27T)3 w' 

J d2fl' JJ,cr W 1 (1 + JJ,~'-JJ,cr) 
:::: (27T)3 2c3 ~;;,(1 + T;;,) JJ,cr 

( " a(w'JJ,~') ') 
x 1 + (JJ,cr' cosO -JJ,cr cos 0),811 + aw' ,811 cosO , (53) 

where we ignore any change in ~;;, and (1 + T;;,) over the range w' -w in (53). 
Before we derive the frequency diffusion equation for o-mode and z-mode photons 
we need one more result, the Thomson scattering probability for magnetoionic waves 
by stationary electrons. For stationary electrons (14) implies 

1
2 A(O) 

I Qua-' = (jU' , 

and then (4) and (45) imply 

(27T)3 ( e2 )2 
wcrcr,(p=O,k,k,) = -2-2 -- gcrcr,(w,0,0')8(w'-w), 

me w 47TEO 
(54) 

with 

gcrcr'(w, 0, 0') = ((1+ T~)(1+ T;;,)JJ,~' a(w'JJ,~.) JJ, a(wJJ,cr»)-l 
aw' cr aw 

x ( w
2 

2 [(w2+ fl;)[ (acr a~, + 1i+(acr+ a~l) 
2(w2- fle)2 

+2wfle(acr a~, + l)(acr+ a~,)] + b~ b;;). (55) 

Here, primed quantities are evaluated at 0' rather than 0. For the frequency domain 
of interest, wp .( w < fl e, the refractive indices are close to unity, as may be shown 
using (16), (20) and (21), so that JJ,cr :::: 1. Also, Kcr is negligible and we have 

T fle sin2 0 
0=- Tz :::: --;- cosO 

So using (19) we find that 

ao :::: - Y sin2 0 , az :::: cos2 0/ Y sin 0, 

bo :::: tan 0 ao ' bz :::: - tan 0 az • 

(56) 

(57) 

(58) 
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We define 
, ,o(w'JL~') o(WJLcr) (0 0') 

fa.cr'(w, 0, 0) = JLcr' JLcr 9crcr' W,' , 
ow' ow 

(59) 

and expand it to lowest order in y-I: 

100' :::: sin2 0 sin2 0' , hz' :::: 1/2 y2 , (60a, b) 

1 ( 2 y2 sin2 0 ) 
Ioz' :::: 2 y2 cos2 0 + r 2 tan2 0' ' (60c) 

,- -- cos2 0' + -- --- . 1 ( 2 r 2 sin2 0') 
ho - 2 r 2 y2 tan20 (60d) 

These results indicate that 0-0 scattering is anisotropic and is of order 2 y2 faster than 
the scattering of z-mode photons and that of mode conversion z ~ 0 and 0 ~ z. 

We consider the expansion (47) in (38); ignoring the difference of the refractive 
index from unity and the induced and quantum terms. Using the results (60) the 
leading terms in (38) give 

- = 27T r6 ne c d(cos 0') d (No(k' 0») II 
dt Nz(k,O) -I 

x (100'( No(k, O?-No(k, O)J + Ioz'( Nz(k, 0:>- No(k, O)J) 
ho'( No(k, 0 )-Nz(k, O)J + hz' ( Nz(k, 0 )-Nz(k, O)J 

= 27TroneC d(cosO') -27TroneC, 2 II (100' Ioz') (No(k' 0'») 2 (Fo No(k, 0») 
-I ho'hz' Nz(k,O') Fz Nz(k,O) 

with 

= d(cosO') = - . ( FO) II (100' + Ioz') 2 ( sin2 0 ) 
Fz -I ho' + hz' 3 1/ y2 sin2 0 

In (63) we have assumed that 0,0' > y-i. 

6. Frequency Diffusion Equation 

Returning to the kinetic equation (38) let us re-express it in the form 

dNcr(k) = [dNcr(k) ](S) + [dNcr(k) ] (D) + [dNcr(k) ](Q) 
dt dt dt dt 

[ dNcr(k)](I) [dNcr(k)](J.!) 
+ dt + dt ' 

(61) 

(62) 

(63) 

(64) 

where S refers to spatial scattering which is discussed in more detail in Section 7, D 
the effect of the Doppler shifts, Q the effect of quantum recoil, I the effect of induced 
scattering and JL the changes in the refractive index. 
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The J.L-dependent terms include a term which is simply a correction in (53) and 
terms in (47) which rely on expanding N(k') in k' - k rather than w' -w. Since our 
studies are motivated by the theory of X-ray pulsars, we ignore these terms as they 
are small in such applications. 

We first consider the Doppler terms. These arise from the expansion (47) for the 
term NeAk') in the kinetic equation, and thus we obtain 

[ dNu(W,O)](D) =4(21T)3r2n C4J d3k' {Ru(k)ReAk')<~ 
dt 0 e (21T)3 ww' uu 

<;:'1' , (3 fl') ( {3 fl } (k' k aNu,(k,O') x UI w (1 -J.Lu' II cOSu -w 1 -J.Lu II COSu) > ( - ) ----.:::.....:a~k~ 

+ i(k' - k)2 a2 
Nu.(k, 0'») + Ru(k) Ru(k') <I auu 128( w'(1 - J.L~ (311 cos 0') 

ak2 ww' 

-w(1 -J.Lu (311 cos O)} (k' _ k) aNu(k, 0') + l(k' _ ki a2 
Nu(k, O'»)} 

ak 2 ak2 

= 1T ro ne C d(cos 0') J.Lu' _ 2 2 Jl [' 1 
(1 + T~) a(WJ.Lu)!aW -1 J.Lu 1 + T~, 

x (1 + auu' {3 II )( A~~, + (311 A~~,) 

{3 J.L~'(, fl' fl)(' ,aN ,(k 0') x II - J.Lu' cos u - J.Lu cos u 1 + J.Lu' (311 cos 0 )k _U_' 
J.Lu ak 

, 2 

+i{311 _J.L_U'(J.L~' cosO' -J.Lu cosO)k2 a Nu,(k,O'»)+ J.L~ ---
J.Lu a k2 J.Lu 1 + T~ 

x (1 +auu{3II)(A~~ +{311 A~~){311 J.L~ 
J.Lu 

x (J.L~ cosO' -J.Lu cos 0)((1 +J.L~{311 cosO')k 

aNu(k,O') 1{3 J.L~(, fl' fl)k2 a2 Nu(k, 0'»)] x +2 II - J.Lu cOSu -J.Lu cosu , 
ak J.Lu a~ 

(65) 

where we have used (50) and (53) and neglected the term (J.L~' - J.Lu)lJ.Lu' and where 

" a(w'J.L' ,) 
auu' = J.Lu' cos 0 - J.Lu cos 0 + u cos 0' aw ' (66) 

with A~~ and A~~, defined in (45) and (46). Also the large square brackets implicitly 
include the average over the Maxwellian distribution. 
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In performing the average over the Maxwellian we use 

(1l 11 > = 0, (1l1l> = j(1l2> = Te/ me c2 , 

so that we need to keep terms up to 1l1l when multiplying out terms in (65). We find 
that 

[ dN(T(W,O)](D) = 21Tr~ ne c ~ J1 d(COSO'){(JL~·)2 __ ~ 
dt (1+ T~) o(wJL(T)/ow me c2 -1 JL(T 1+ T~. 

x (JL~' cosO' -JL(T COSO)(A~~. a(T(T' +A(l) .)k oN(T.(k,O') 
(T(T ok 

+ A~~. JL~' cos 0' k oN(T.(k, 0') 
ok 

, 2 

+ 2" (T(T' -(JL(T' cos 0 - JL(T cos 0) k2 (T' + JL(T -1 A(O) JL(T'" a N .(k 0'») ( ')2 1 
JL(T ok2 JL(T 1 + T'j: 

x (JL~ cos 0' - JL cos O)(A(O) a + A(l) ) k oN(T( k, 0') 
(j UO" (TO" (TO" --

ok 

+A~~ JL~ cos 0' k oN(T(k, 0') 
ok 

, 2 

+!A~~ JL(T(JL~ cosO' -JL(T cosO)k2 a N(T(k,O'»)} 
~ o~ . 

Let us consider A~~. and A~~. in more detail. We may write from (45) 

A~~. = "". 1 "<TM [(1 + y2)[ (a(T a~. + Ii + (a(T+ a~.)2 J 

+4 Y(a(T a~. + 1)(a(T a~.)]+ b~ b~ .. 

(67) 

(68) 

There are a number of contributions to A~~., and one such arises from the Y 
dependence in A~~.. This dependence stems from (39): 

f1e/WO:::: Y(1 +JL(T1l1l cosO). 

Making the replacement W a/ow __ - Y % Y gives 

OA~~. JL(T Ilil cos 0 2 2 ' 2 
JL(T1l 1l cosO Y~ = " ..,?" [Y (3+Y )[(a(Ta(T.+l) 

+(a(T+ a~.)2J +(1 +3 y2)2 Y(a(T a~. + l)(a(T+ a~.)]. (69) 



Comptonisation of Radiation 977 

Another contribution arises from the first term in (43) which we express in the form 

Ll C60 = 2 ba- b~, /3 11 (_1_2 {IJ-a- sin O( aa- + Y) b~, 
1- Y 

+ IJ-~' sin O'(a~, + Y)ba- J + ba- b~'(IJ-a- cos 0 + IJ-~' cos 0')). (70) 

Finally, there is an additional term due to the fact that T~" a~, and b~, all depend 
on w' = w+Llw: 

o a-a-' ( 
A(O) ) 

(1 + T~,)(w' -w) ow' 1 + T~, . (71) 

Thus, if we write (59) as 

f,. ( , 1 (1 2' 2 
a-a-' W,W, Y) = (1+ T~)(1+ T~,) 2(1- Y2)2[(I+ Y ){(aa- aa-' +1) 

then we have 

+(aa-+ a~,iJ +4 Y(aa- a~, + 1)(aa-+ a~,)]+ b~ b~), (72) 

1(0) - I" ( 'Y) 
(jU' - Juu' 00, l.t) , , 

/3 1(1) (/3 il 0 " 0 ) II a-a-' = IJ-a- II cos u Y - + /3 11 (IJ-a-' cos 0 -IJ-a- cos O)w -
o Y ow' 

LlC60 
x I~~,(w, w', Y) + (1 + T~)(1 + T~--:) , (73) 

where use has been made of (49) with 1 + IJ-~' /3 11 cos 0' z 1 in the second term of 
(73), which corresponds to (71). Also note that %w' operates on T~" a~, and b~,. 

Consistent with our earlier neglect of the IJ--dependence, we now set IJ-a- = IJ-~' = 1 
so that (67) reduces to 

[ dNa-(W,O)](D) = 2'ITr6 ne2CTe JI d(cosO')(cosO'-cosO) 
dt mec_l 

x {( {(3 cos 0' - cos O)/~~, 

1(1) J o Na-'(w, 0') 1/(0) (il' il) 2 02 Na-'(w, 0')) 
+ a-a-' W + "2 a-a-' cos u - cos u W 

ow OW2 

+ ({ (3 cos 0' - cos O)/~~ + I~~ J w _oN_a-_(_w_, 0....:.') 

+ i/~~(cos 0' _ cos 0)w2 0
2 

Na-(w, O'))} 
OW2 • 

(74) 
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To simplify the remaining calculations we now assume that the distribution of 
photons is isotropic and write 

( F ') II II (cos2 
()) ~(]' = t d(cos () d(cos ()') 2' f~~" 

F (]'(]" - I - I cos () 
(75) 

F~~, = t II d(cos () II d(cos ()')(cos ()' - cos ()f~~,. 
-I -I 

(76) 

Then (74) yields after a short amount of algebra 

[ dN(]'(W)](D) = 47Tr6neCTe{(3F' ,+F ,+F(I),)w aN(],,(w) 
d t me c2 (]'(]' (]'(]' (]'(]' aw 

2 

+ !(F~(]', + F(]'(]'.)w2 a N(]'.(w) + (4F + F(I) )w aN(]'(w) 
aw2 (]'(]' (]'(]' aw 

2 

+ F(]'(]' w2 a N(W»)} 
aw2 • 

(77) 

We have noted that F~(]' = F(]'(]' and the assumption of an isotropic distribution of 
photons allows one to remove terms aN(],law outside the integra1. 

The quantum recoil and induced scattering terms, which involve N(]'(k) N(],,(k,) 
and ! N(]'( k) + ! N(]'.( k') respectively, may be treated in an analogous manner and 
reduce to a form similar to (77). All three terms combine into 

dN(],(w) = 47Tr6 ne CTe([(3F' ,+F ,+F(I) ,)(w aN(],,(w) 
d t me c2 (]'(]' (]'(]' (]'(]' aw 

liw I 1)1' + - (N(],,(w) N(]'(w) + 2'N(],,(w)+ 2'N(],(w) + 2'(F (]'(]"+ F(],(],,) 
~ 

{ 
2 i N(],,(w) IiW( N () aN(],,(w) aN(]'.(W»)}] x w + - 2 (]' w w +w -=---

aw2 Te aw aw 

{
(I) ( aN(]'(w) liw 2 ) + (4F(]'(]'+F(]'(]') w + -(N(]'(w)+N(]'(w)} 

aw Te 

( 2 2 )}) 
2 a N(]'(w) liw a 2 

+F(]'(]' w + - -(N(]'(w)+N(]'(w)} . 
aw Te aw 

(78) 

In the evaluation of the f~~ term we can see from (76) and (70) that the 
contribution from ~ C60 in (78) will be zero. Thus, inserting (73) and (76) and using 
(75) we find that 

F(I) = - y aF(],(]" + w _a_( F~(]', + F(],(],,) . 
(]'(]' a yaw' 

(79) 
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Recall that wa/aw' involves derivatives with respect to T~" a~, and b~,. In view 
of the fact that for X -< 1, i.e. wp « w, F~er' and Ferer, depend on w' only through 
Y' = fJe/w', then we have 

(1) aFerer, y'2 a (F' F) F ,- - Y-- - - - erer'+ erer' . 
erer - ay Y ar (80) 

As we have indicated in equations (60) the 0-0' scattering process is faster than that 
of z-z' and o-z' and z-o' scattering by a factor :::::2 y2, and hence the leading term in 
(78) is that due to 0-0' scattering. In this case using (60) we have t<~, ::::: sin2 (J sin2 (J', 

and hence F~o' = Foo = i x is and F~J ::::: o. Thus (78) implies 

dN°(w) 2 Te ( a ) ----=-...:.. = 15 O"T ne C --2 W 4 + -
dt me C aw 

x (aN0(W) +..! N0(W)[l+~(W)I)' 
aw 1'e 

(81) 

where the mode is now indicated by a superscript and O"T the Thomson cross section 
is defined by O"T = ~1T r~. [LyubarSky (1986) has derived an equation equivalent to 
(81) for the diffusion of o-mode photons in frequency.] 

Notice that in dimensionless form the frequency diffusion equation is the same as 
the Kompaneets equation (1) except for the factor of 2/15, so effectively we have a 
smaller cross section 0" = (2/15)O"T in the strongly magnetised limit. 

Since, the scattering of o-mode photons is on a timescale :::::2 y2 faster than that 
of z-mode scattering it is of no use to derive a frequency diffusion equation for the 
scattering of z-mode photons. Also, such an equation would be rather tedious as we 
would have to include the contributions from z-z, z-o and o-z scattering. 

7. Spatial Diffusion 

In this section we consider spatial diffusion equations for the scattering of o-mode 
and z-mode photons. As discussed in Appendix 2 we assume that the distribution 
of o-mode photons is weakly inhomogeneous and that there is an associated weak 
anisotropy. We now denote the mode by a superscript (0 or z) with SUbscripts 
I = 0,1,2, ... available to describe terms in the Legendre expansion. We may now 
write for the o-mode in particular 

dNa aND aND 
--=--+CK.--. 
dt at ax (82) 

Here, we are assuming the refractive index of the plasma differs little from unity 
and that there is no bulk motion of the plasma [this could be easily incorporated 
by adding a term jJ. aND lap to (82)]. The K is a unit vector in the direction of k. 
If we denote by N the isotropic part of N and let Nt be a weakly anisotropic part 
associated with a gradient in the z-direction, then since we can write 

N° ::::: JV<> +N\ cos(J + ... , (83) 
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[ PI (cos 0) = cos 0] equation (83) implies that 

aN° aN° 
-- +c<coS2 0) __ 1 = 0, 

at az 

aN° 
c< cos2 0) -- = - 0" T ne c< sin2 0 cos2 0) Ni ' 

az 

(84) 

(85) 

where in both (84) and (85) we have used (A18), as well as assumed N'2 ::::: ° and 
neglected aNi/at in obtaining (85). The angle brackets denote integration over cos O. 

If on the other hand the anisotropy and gradient were along the x-axis then we 
would expand N° in spherical harmonics rather than Legendre polynomials, and 
proceed in an analogous manner. Then, an average over angles, e.g. <cos2 0) = 1/3, 
gives the final result 

or 

a N° 5 C (i N° a2 N0) 5 C a2 N° 
--at = 12 O"T ne ax2 + ay2 + (5O"T ne --a;z' 

aN° 1 a (aNO) i N° --=D1-- 7- +Dz --
at 7 a7 a7 az2 

for the case of anisotropy and gradients in all directions, where 

5 C 

Dl = 12 O"T ne ' 
5 C 

Dz = (5 O"T ne . 

(86) 

(87) 

(88) 

In deriving (86) we have neglected the contribution from the z-mode. We find 
from (61) with (60) that, in fact, (84) has the non-vanishing right-hand side 

-0 II II aN I aN~ 2 'I 1 
-- +"3 C -- = 27T 70 ne C d(cos 0) d(cos 0 )2 --2 

at az -I -I 2 Y 

X (cos2 0 + 2 sin2 O)(NZ _ N0) 
tan2 0' 

2 1 2 II , ( 4COS2 0') >TZ J\TO = 27T70 ne c--2 "3 d(cosO) 1 + . 2 (N -lY ). 

2Y -I SIn 0' 

(89) 

We must cutoff the divergent integral at I cos 0' I = 1 - 1/2 Y which corresponds to 
a breakdown of the condition Y sin2 0' > 1 (cf. equation 57). Thus, we obtain 

d(cosO') ~ = In(2/..:1 -1)-(2-2..:1) II-.:I os2 0' 

-1+.:1 SIn 0 

::::: In 4Y -2; ..:1=1/2Y-<:I, 
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so that (89) becomes 

aN° 1 aN~ 11m llTO 
- +3e- = "4uT ne e-2 (21n 4Y -3)(N -lV ). (90) 

at at Y 

When considering the diffusion of t~e z-mode photons there is an analogous term 
in afilZ lat. So, let us write (90) and the''analogous term for the z-mode as 

" ..; 

afVO _ 'uT ne e (filZ _ fVO), 
-- y2 at 

aNZ 
_ 'UT ne e (N0 _ filZ), 

-- y2 at 
(91a, b) 

where, = -1(21n 4 Y -3) is of order unity. 
The diffusion of z-mode photons is isotropic with a cross section smaller than the 

Thomson cross section by a factor! y2 (cf. equation 60). Hence, we have 

afilZ _ 2 y2 e \12 filZ 
---at - 3UT ne . 

(92) 

The diffusion approximation (92) applies for a source thickness L, such that 

UT ne LI y2 :> 1, (93) 

i.e. the source has to be optically thick to Thomson scattering of z-mode photons. 
If, however, the inequality is reversed, i.e. u T ne LI y2 .( 1 but with uT ne L :> 1, 
so that the source is optically thi~ to Thomson scattering of z-mode photons but 
optically thick to Thomson scattering of o-mode photons, i.e. they will diffuse, then 
we need to supplement (89) and (91) by 

aNZ efilZ 
at -T' (94) 

rather than (92), i.e. corresponding to free escape of z-mode photons. So, if we 
ignore diffusion in frequency, then a reasonable set of equations describing the spatial 
scattering of o-mode and z-mode photons is 

aN° e {5 1 a (aNO) 5 a2 fVO} 
--at = uT ne 12 -; ar r a; + 6 az2 

+ 'UT ne e (filZ- fVO) _ eN° 
y2 L ' 

(95) 

afilZ = 2 y2 e \12 filZ + 'UT ~e e (N0 _ filZ) _ efilZ . 
at 3uT ne Y L 

(96) 

This neglects photons in the range sin2 () ~ 1/ Y where they are nearly circularly 
polarised. 
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Our final set of scattering equations for o-mode and z-mode photons, including 
both spatial and frequency diffusion, may then be written as 

-=- w4+- --+- +N) aN° 2uT ne cTe ( a)(aN> fzN>(1 -0) 
at 15 me c2 aw aw Te 

c {5 1 a (aN» 5 a2 N0} 
+ U T ne 12 -;. ar r a;:- + 6 ~ 

cN° 
'UT ne c (i/Z- N» - L' + y2 

ai/Z = 2 y2 C \12 i/Z + 'UT ;e C (N0 _ i/Z) _ ci/Z . 
at 3UT ne Y L 

8. Conclusions 

(97) 

(98) 

In this paper we have presented new equations describing how the distribution 
of o-mode and z-mode photons evolve due to Thomson scattering in a strongly 
magnetised plasma. Our procedure is based on semi-classical kinetic equations 
describing the scattering process which include the first quantum correction, allowing 
for the effects of recoil of the electron due to emission of a photon. 

We have considered two aspects of the scattering: diffusion in frequency due to 
scattering by nonrelativistic thermal electrons, and spatial diffusion. In analysing 
the diffusion in frequency we find that for nonrelativistic velocities only zeroth order 
harmonic scattering contributes. The contribution from first harmonic scattering is 
of order - max( vii c2 , v~ 12) smaller, and this allow'S one to expand the scattering 
probability in powers of /3 11 . It is found in the limit of stationary electrons that the 
scattering cross section for 0-0 scattering is anisotropic, with wuu' ex: sin2 0 sin2 0', 
while z-z scattering is isotropic. Also 0-0 scattering occurs on a timescale - 2( f1 el w i 
faster than that of z-z, z-o or o-z scattering. This means only a frequency diffusion 
equation for the o-mode is obtained, which turns out to be effectively the Kompaneets 
equation with cross section smaller than the classical Thomson cross section, i.e. 
U = 2uT/1S. This in effect means a photon undergoes a smaller number of scatterings 
before escaping in a magnetised plasma than in the corresponding unmagnetised case. 

In the presence of spatial gradients in the plasma both the o-mode and z-mode 
diffuse in space. Diffusion of the o-mode photons is anisotropic with Dl = ! Dz , 

while diffusion of the z-mode photons is nearly isotropic. Our diffusion equations also 
include the contribution from mode conversion z ---+- 0 and 0 ---+- z as well as a term 
(cf. equation 94), allowing for the free escape of photons. One limitation is that we 
need to restrict photons to angles 0 > (wi f1e)!; photons with 0 < (wi f1e)! are nearly 
circularly polarised. The mean free path for the z-mode photons is much greater 
than that for o-mode photons, which implies that the spatial transfer is dominated by 
z-mode photons. 

In summary, in a strongly magnetised plasma, photons below the cyclotron 
frequency are affected by Compton scattering in three important ways. First, o-mode 
photons are scattered relatively efficiently, and their spectrum evolves in the same 
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manner as in the unmagnetised case, i.e. as described by the Kompaneets equation with 
a reduced cross section. Second, less frequent scattering events can convert o-mode 
photons into z-mode photons and vice versa, and locally a secondary distribution of 
z-mode photons results from these less frequent scattering events. Third, because the 
z-mode photons are relatively weakly scattered, they can propagate relatively large 
distances between each scattering event. This allows transfer of radiant energy, and 
is the dominant transfer mechanism. Thus the spectrum of o-mode photons in one 
localised region is coupled to the spectrum of o-mode photons in another localised 
region by o-z scatterings plus spatial diffusion of the z-mode photons and then z-o 
scatterings. 

We have also presented an extension of the Kompaneets equation in an unmagnetised 
plasma to include both anisotropies (again due to spatial gradients in the plasma) 
and bulk motions of the plasma which could be non-uniform, i.e. corresponding to 
converging fluid flow. Our result reproduces that by Blandford and Payne (1981) 
who employed a covariant, radiative transfer equation in their derivation. 

As yet we have not used our result in any astrophysical applications; however, 
we were motivated by problems associated with the formation of spectra in the 
accretion columns of X-ray pulsars, where magnetic fields:::' 108 T (i.e. :::, 1012 G) are 
encountered. This is also true of y-ray burst sources and probably X-ray bursters. 
Even magnetic white dwarfs in cataclysmic variables have fields up to _104-105 T. 
These should be the principal astrophysical applications, but any situation under 
which the condition wp -( w < fle holds would be available to our results. 
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Appendix 1: First Quantum Correction 

Here we derive the first quantum correction appearing in the scattering probability 
(4) and indicate how it may be transferred from the delta function to the integrand 
of (2) and (3). The delta function appearing in (4) ensures conservation of energy in 
the scattering event. The purely classical energy conservation law for scattering of 
photons by spiralling electrons is 

w-w'-sfl-(kll-kll)VII = 0; s = 0,±I,±2, ... , (AI) 

where v II is the component of the electron velocity along the magnetic field and 
k II is the component of the photon wavevector along the magnetic field. Condition 
(AI) is called the Doppler or gyro-resonance condition. To obtain the first quantum 
correction to (AI) we proceed as follows. An electron in a magnetic field has energy 
eigenvalues E(PII' n) given by solving the Dirac equation in the relativistic quantum 
case: the eigenvalues are given by 

E(PII' n) = (m; c4 +2nefzB + P~ c2)t, (A2) 

where PII = m VII and n is an integer quantum number labelling the Landau level of 
the electron. [We ignore the spin of the electron in (A2) since we ultimately take the 
classical limit.] Suppose an electron (E,PII' n) is scattered by a photon (w', k') and 
emits a photon (w, k) so that its final state is (E', PII' n'). The final state must satisfy 

'(' ') (2 4 2' -JJ.B '2 2)1 E P II' n = me c + n t:Tt + P II c 2, (A3) 

with conservation of energy and momentum requiring that 

E' = E+fzw' -fzw, PII = PII-fz(kll- kll)' n' = n-s;;' O. (A4) 

Only parallel momentum is conserved, and n' can only differ from n by an integer. 
For Ifz(kll - kll)1 < PII and lsi < n, then (A4) in (A3) along with (A2) leads to, after 
expanding in powers of s/n and fz( kll - k ll )/ PII' 

, A 1 ~ 
E = (I-DS+"21F,+ ... )E, (A5) 
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with 
~ a , a 

Ds = s- +il(kll - k ll )-· 
an apil 

(A6) 

In the classical limit we have il ~ 0, n ~ 00 such that iln ~ PI/2eR. Hence, (A6) 
becomes 

( sn a , a) 
Ds=il--+(kll-kll)- . 

vII apl ap 
(A7) 

To lowest order in il equation (AS) implies the Doppler condition (AI) while the 
second derivative in (AS) leads to the first quantum correction 

il 
2e I (w - W ')2 - (k ll - kil)2 e2l , (A8) 

which describes the effect of recoil of the electron due to emission of the photon. 
Next we show that the first quantum correction leads to an extra term 

iIN(k,)+N(k)lDJ(P) in the kinetic equations (2) and (3). For simplicity we 
derive the result for the unmagnetised case, but the derivation is the same in the 
magnetised limit. Let us write 

wuu'(P' k, k') = wuu'(P' k, k')o(e-e' -ilw+ilw') , (A9) 

and consider 

f d3 p wuu'(p, k, k')o(e-e' -ilw+ilw')[f(P) 11 + Nu(k) 1 Nu,(k,) 

- flp-il(k- k') 1 Nu(k) I I + Nu,(k,) II 

= f d3 P wuu'(P' k, k') o(ilw' -ilw+ ffe) 

x [f(P)II + Nu(k) 1 Nu,(k')-(1- D)f(P) Nu(k) I I + Nu,(k,) lL (A 10) 

where D = il(k- k'). a/ap and in expanding f(P+ilk' -ilk) we have only gone to 
first order. Next we make use of the identity 

f dxo(x-41- L1)F(x) = f dxo(x-41)F(x+L1) 

= f dx O(X-41)(1 +..1 a:)F(X) 

and, hence, in effect we have 

o(x- 41- ..1) ~ o(x- 41)( I + ..1 a:)' (All) 
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So, using this result in (AlO) we have 

J d3 p wuu,(p, k, k') 6(fzw' -fzw + ik. - DIlt:.)ff(p) [ 1+ Nu( k) J Nu'( k') 

-(I-iJ}f(P) Nu(k) [ 1+ Nu,(k')J] 

= J d3p w~u,(p, k, k')(1 +iiJ}ff(P)[1 + Nu(k)J Nu,(k,) 

-(1- iJ}f(p) Nu(k) [ 1+ Nu,(k,) J] 

= J d3 P w~u,(p, k, k')U 1+ Nu(k) J Nu,(k,)(1 + iD)f(P) 

-(I + iD)f(p) Nu(k) [1 + Nu,(k,) J + Df(P) Nu(k) [1 + Nu,(k')J] (AI2) 

= J d3 P w~u,(p, k, k')U Nu.(k')- Nu(k) Jf(p) + Nu,(k,) Nu(k)Df(P) 

+ i [ Nu,(k,)+ Nu(k) J Df(P)] , (A 13) 

where 
W~u'(P' k, k') = wuu'(P' k, k') 6(fzw' -fzw+ ik.) (AI4) 

is the scattering probability with the classical delta function and Ilt:. = i ik.. So we 
can see from (A13) that the effect of the first quantum correction is to introduce the 
terms i [ Nu,(k,)+ Nu(k) J Df(P) into the kinetic equation. 

Appendix 2: Generalisation to Weakly Anisotropic Photon Distribution 

We derive the kinetic equation for the case of a weakly anisotropic distribution 
of photons (though still possessing azimuthal symmetry) such as could arise if the 
scattering plasma undergoes bulk motions. Suppose that the photon distribution 
for o-mode photons is weakly dependent on angle, and let us expand in Legendre 
polynomials: 

'" 
N°(k,O) = ~ N'/(k)P[(cosO). 

[=0 
(AIS) 

This assumes a gradient in the z-direction. As far as the kinetic equation (38) is 
concerned we consider only the leading terms, which by virtue of (47) correspond to 
N( k, 0') - N( k, 0), and ignore corrections of order ,811' The generalisation to include 
all terms is straightforward but tedious, and has been performed in the unmagnetised 
case, the results of which are presented in Appendix 3. 

Now using (60a) we may write 

dN°(k,O) ::::: 21Tr~ ne cJI d(cosO') sin20 sin2 0'[N°(k,0,)-N°(k,0)J, (AI6) 
dt -I 
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and using the results 

sin2 0 = jl1-P2(COSO)}, (AI7a) 

f1 28 
d(cosO) p/(cosO) PI'(cosO) = -III' , 

-1 2 +1 
(AI7b) 

we may express (AI6) as 

dN°(k,O) 2 f1 , 4 { } { , } --- z 217ro ne c d(cosO) 9 I-P2(cosO) I-P2(cosO) 
dt -1 

x {N°(k, 0')- N°(k, O)} 

= 217 r~ ne C! {1- P2(cos O)} { Ng(k)- ~ N'2(k)- N°(k, O)}. (AI8) 

Next we make use of the recursion relation 

2P+21-1 j { 1- P2(cos O)} p/(cos 0) = -(1-1)1 p/ 2(COS 0) + p/(cos 0) 
- (21-1)(21+3) 

(1+ 1)(1+2) P 0 
- (21+ 1)(21+3) /+2(COS ) 

(AI9) 

in the following equation: 

dN7(k) = 21+1 f1 d(cosO) p/(cosO) dN°(k,O) 
dt 2 -1 dt 

817 2 21+1 f1 2 = - rO ne c-- d(cosO) p/(cosO)J{ I-P2(cosO)} 
3 2_1 

X (Ng(k) -~N'2(k) - /~o N7-(k) PI'(COSO»). (A20) 

Hence, we get 

dNg(k) _ n c1. f1 d(cosO) ~3{I-P2(cosO)} --'--- - O'T e 2 
dt -1 

x (Ng(k)-~N'2(k)- /~o N7-(k)PI'(COSO») = 0, (A21) 

dN~(k) 5 f1 (2 11 3x4 ) -....!:..:....:.. = O'T ne c2 d(cos 8) - - + - P2(cos 0) - - P4(cos 0) 
dt -1 3x5 3x7 5x7 

x ( Ng(k) -~N2(k) - /~o N7.(k) PI'(COSO») 

= O',!,,,n: c {41N'2(k)-20N~(k)}. (A22) 
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More generally we have 

JI ( (/ - 1) 1 p (cos 0) dN,(k) = O"T;e c (2/+1) _ld(cosO) - (2/+1)(2/-1) /-2 
dt 

+ ,_2/2+.2/~1_. p/(cosO) _ ,~~:~~~:;2~, p/+ 2(COSO») 

x ( Ng(k) -~N~(k) - /~o N,,(k) PI'(COSO») 

O"T ne c(2/+1)( ,_. (/.~,~).I .. _2,~, __ :(k~ ,_2./2+.2!~1_. 2!!,(k) 

or finally 

(/+ 1)(/+2) 2N,+z(k») 

+ (2/+1)(2/+3) 2(/+2)+1 ' 

dN,(k) ((/-I)INLz(k) (2/2+2/-1)N,(k) 
dt =(2/+1)O"T ne c .. 

for 1 odd or 1 ;;. 4 and even. 

(/+ 1)(/+2)N'+2(k) ) 

+ (2/+1)(21+3)(2/+5) , 
(A23) 

The general result shows that odd and even 1 are uncoupled; for example, (A23) 
implies that for the two lowest order odd terms 

dNI'(k) = O"T ne c1-*NI'(k)+isN~(k)J, 
dt 

dN~(k) = O"T ne c! ~Nl(k)- ~~ N~(k)+ ~ N~(k)J ' 
dt 

while for 1 = 4 we obtain 

dN~(k) _,.. n cl .!IN°(k)- 39 N~(k)+ 134°3 N~(k)J . --'--- - v T e t 35 2 77 
dt 

(A24) 

(A25) 

(A26) 

We see that the scattered o-mode photons approach isotropy on a timescale of order 
;:::::2/O"T ne c. The scattering of z-mode photons is isotropic (60) and the distribution 
of z-mode photons becomes isotropic on a timescale of order y2 larger than do the 
o-mode photons. The o-z and z-o scatterings occur on the same timescale as that 
for z-z and hence complete isotropy is approached only on the longer timescale of 
;:::::2 y2/O"T ne c. 



Comptonisation of Radiation 989 

Appendix 3: Extension of the Kompaneets Equation to Weak Anisotropies 

Here we present the results of calculations to generalise the Kompaneets equation 
for unmagnetised scattering media to include a weak anisotropy due to spatial 
gradients. These gradients could, for example, arise from a bulk motion of the 
scattering media. Such results could be of relevance in problems of accretion onto 
black holes, where the magnetic fields are thought to be relatively weak, or to any 
problem involving a streaming motion of the scattering media. We also reproduce a 
result by Blandford and Payne (1981) who took a somewhat different approach. 

The approach outlined here is similar to that in Appendix 2 with the difference 
that we now include all terms in the kinetic equation. The relevant kinetic equation 
with the effects of quantum recoil included is for unmagnetised media 

dNO"(k) = I d3 k' Id3p W .(p, k, k')(l NO".(k')- NO"(k)}f(P) 
(27T)3 0"0" 

+ NO".(k') NO"(k)fl(k- k'). af(p) + i {NO".(k')+ NO"(k) }fl(k- k'). af(P»),. (A27) 
ap ap 

where wO"O"'(P' k, k') is the scattering probability and for the case of Thomson 
scattering of transverse waves may be expressed as 

, _ (27T)3(~)2 laO"O".(k, ~'; v)1 2 8{w(1-K.J3)-w'(I-K' .J3)} , 
wO"O"'(P' k, k ) - m2 47TE ww (A28) e 0 , 

\;..':>". .... 

with 

I aO"O".(k, k';v)1 2 = i(1-J32){I+(1 _ (1-J32)(1-K.K') )2} 
(I-K.J3)(I-K'.13) , 

(A29) 

K = kllkl, K' = k'/l k'l, J3 = vic. 

If we assume that N(k) is only weakly dependent on angle 0 we can write, as in 
Appendix 2, 

aJ 

N( k, 0) = l: N/( k) P1( cos 0) . 
1=0 

(A30) 

The usual form of the Kompaneets equation (1) applies for Nt(k) = 0 (/ > 1), 
and we write down equations which include terms to ~(k). We should note that 
N1(k) =1= 0 corresponds to a net streaming speed u of the photons with 

I1 / I1 c N,(k) u = c d(cosO) cosO N(k, 0) d(cosO) N(k,O) = - ~(k . (A31) 
-1 . -1 3 No ) 

If we again assume a nonrelativistic .electron distribution and expand 
I aO"O".(k, k'; v)1 2 in powers of J3 up to second order, we obtain after a simple 
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but lengthy calculation the result 

dN(w,O) _ 3cr n c[irMo(W)-N(W,O)J+fs~(W)P2(COSO) dt - 4 T e 3 l 

Te r 6 6 
- --2 [6 l No(w)- N(w, O)J -sNI(w) PI(COSO)-s~(w) Picos O) 

mec 

2 
8 4Te { a I 2 a +EN3(w)P3(COSO)] + --2 w- +4W -2 

mec aw aw 

fiw I ( I a)} 4 8 + -I N (w'O)+2"J 1 +2"W- 1 "3No(w)-TINi(w) PI (cos 0) 
Te aw 

2 2 8 fiw ] + TI N2(W) P2(cos 0)- EM(w) P3(cos 0) J +"3 --2 N(w,O) . 
mec 

Next if we calculate the quantity 

dN,(w) _ 2/+1 JI d( Ll) dN(w,O) P( Ll) -- - -- cos v ,cosu , 
dt 2 -I dt 

we obtain 

dNo(w) = crTneCTew(4+W~)(aNo(W) +~[No(w)11+No(w)J 
dt mec2 aw aw Te 

- 125 N i(w)+ 5~N~(w)- 4~oN~(W)])' 

dNI(w) II.T()( 1 4~ 2fiW) crT ne cTe ----''-'-'- = crT ne CHI W - + -- + -- + --'-----'-_=___" 

d t me c2 me c2 me c2 

{( 
2 a I 2 a fi I A 8 

X w- +4w - + -INo(W)+2"JD)1 -sNI(w)J 
aw aw2 Te 

(A32) 

(A33) 

fiw A A 2 A 6 
+ -1 NI(w) D4No(w) - NI(w)D s a 112 ~(w) -~(w)DTIa123 M(w) 

Te 

A 8 A 2 } - ~(w)D sa 112 NI (w) + N3(w)D sa123 ~(w) J ' (A34) 

where 
A I 

D = 1 + 2"W a/aw, 

allm = ~ J~I d(cosO) PI(cosO)P,(cosO)Pm(cosO). (A35) 

We can see for the case of very weak anisotropies N, -< No (/ > 1) that (A33) reduces 
to the standard Kompaneets equation, while (A34) implies that any streaming motion 
dies away on a timescale of order - crT ne c. 
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Next we derive an equation describing how the isotropic part of the photon 
distribution NQ(w) changes when we include the effects of non-uniform fluid flow of 
characteristic speed u. Since we are only considering weak anisotropies, then basically 
this is a problem of geometric optics in which we are considering the propagation 
of radiation through a slowly varying medium. The problem may be formulated by 
applying mechanical concepts to a system of photons. If we regard the dispersion 
relation w ,,;, Woo as a function of position and time so that w = woo(k; x, t), we 
can take woo(k; x, t) as the Hamiltonian of the system of photons. Also, regarding 
the photon distribution Noo( k) as a function of position and time and making the 
identification 

do. 0 . 0 
-_-+x.-+k.-, 
dt ot ox ok 

(A36) 

we obtain as our equation for the photon distribution 

oN(w,O) • oN(w,O) k· oN(w,O) [dN(W, 0)] 
--'---'- +x. + . = , 

ot ax ak dt R 
(A37) 

where 
.f = ow(k; x, t)lok, ic = ow(k; x, t)lox. (A38) 

and [dN Idt]R indicates the right-hand side of (A32). 
Let us suppose the plasma has velocity u = u(x) and that the photons have a 

frequency w in the frame moving with the plasma and that they have wavevector k. 
Since we are interested in the spectrum of radiation emerging from the plasma, the 
frequency of radiation as seen in a frame which is at rest with respect to the plasma 
flow is simply given by the Doppler formula 

w' = 1(w+k. u), (A39) 

where 1 = (1 - u21 c2)-( 

For simplicity we assume that the plasma is moving at nonrelativistic speeds and 
take 1:::: 1, so that w' :::: w+k. u. Using this result in (A38) we find that 

.f = vg+u, 
• I ~ 

k = ..... k • \l u- k X (v X u), 
I 

(A40) 

where Vg is the group velocity. Next, assuming that the photon distribution is 
axisymmetric and weakly anisotropic, so that 

N(w,O) :::: NQ(w) + Ni(w) cosO, 

then (A40) and (A41) in (A37) gives 

oN(w,O) ( ) oN(w,O) -(k ~ k ~ ) oN(CIJ,O) _ [dN] + vg+ u • • v u+ X v Xu. - . 
at ox ok dt R 

(A41) 

(A42) 

Now, if we average (A42) over all angles the right-hand side simply becomes the 
right-hand side of the Kompaneets equation, In addition if we note that NQ(w) is 
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isotropic and assuming that w is only a function of I k I, we find on performing the 
averages over angles that (A42) yields 

aNa(w) + u. \1 No(w) + t aw aNi (w) = t(\1. u)k aNo(w) = [dNa] . (A43) 
at ak az ak dt KOM 

Next multiplying (A42) by cos () and averaging over all directions of k, we obtain 

aNJ(w) aw aNo(w) --+ u. \1 NJ(w) + - --- = -O"T ne cNJ(w). at ak az 
(A44) 

We neglect the convective derivative of NJ(w) and substitute (A44) in (A43). Also 
our analysis has been for an axisymmetric distribution of photons; for a general 
distribution we make the replacement a2/az2 ---+- \12• Hence our final result for the 
scattering of the isotropic component of the photon distribution in a non-uniform 
plasma flow is 

DNo(w) = 1 aw \12 Na(w) _ 1(\1. u)w aw aNa(w) + [dNa] , 
Dt 30"T ne c ak 3 ak aw dt KOM 

(A45) 

with DID t the convective derivative. Equation (A45) is basically the same as that 
derived by Blandford and Payne (1981) in their equation (18), except that we have 
allowed for the possibility that the refractive index of the plasma may not be unity, 
whereas they have a frequency-dependent cross section O"(w) instead of the classical 
Thomson cross section O"T. 
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