
Quantum Electrodynamics in 
Strong Magnetic Fields. IV 
Electron Self-energy 

A. J. Parle 

Department of Theoretical Physics, University of Sydney, 
Sydney, N.S.W. 2006. 
Present address: Division of Information Technology, CSIRO, 
P.O. Box 1599, North Ryde, N.S.W. 2113. 

Abstract 
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The electron self-energy in a magnetic field is calculated with the effect of the field included 
exactly. A new representation of the wavefunctions and other quantities is defined, in which 
the mass operator has a particularly simple form. After renormalisation, the form of the mass 
operator allows corrections to the Dirac equation, wavefunctions, vertex function and the electron 
propagator close to the mass shell to be calculated to lowest order in the fine structure constant. 
The probability for an electron to change spin while remaining in the same Landau level is 
calculated, and is found to be much less than the probability of cyclotron emission. 

1. Introduction 

The theory of quantum electrodynamics (QED) in a static homogeneous magnetic 
field has been developed in recent papers* with the effect of the magnetic field included 
exactly. Methods were presented for the calculation of amplitudes and transition 
rates for the lowest order Feynman diagrams for a general process. When higher 
order diagrams with radiative corrections are included, however, these methods yield 
divergent results which require renormalisation. 

In this paper the electron self-energy is discussed in terms of the mass operator. The 
motivation for this is twofold: firstly, to renormalise the divergence, and secondly, to 
find a method for including this kind of radiative correction in lower order diagrams. 
Previous treatments (Constantinescu 1972a, 1972b; Ternov et al. 1977, 1978) have 
only considered the self-energy of a free electron and derived corrections to free 
electron motion. In addition, most work on this subject has used an inappropriate 
form of the spin wavefunctions of the electron. 

The system of natural units c = 1, fz = 1 is used, and the charge of the electron 
is taken to be - e. The notation used below is generally the same as in I, II and III, 
with modifications as noted below. One addition to the notation is the convention 
that the quantities EPy = Py (1.6) and s (1.31) will be referred to collectively as 
positional quantum numbers and denoted by g, and the symbol Pz = EPz (the 
unsigned momentum) is introduced. The two sets of solutions to the Dirac equation 
in a magnetic field (1.14) and (1.30) are referred to as the Py and s representations 
of the wavefunction respectively, apart from the normalisation. In this paper, the 

* Melrose and Parle (1983a, 1983b), Melrose (1983); herein referred to as papers I, III and II 
respectively. Equations from these papers are referred to as e.g. (I.6). 
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normalisation of the wavefunctions is determined· by the orthonormality relation 

<q'l q) = J v d3 X tp'~,(x) tp'ix) = 8q'q (1) 

with an appropriate choice of normalisation volume V. This differs from that used in 
(I, II, III) by the factor of { Ly L/( e B)~ j ~ in the Py representation, and (27T L/ e B)~ 
in the s representation. The symbol q refers to the complete set of quantum numbers 
{E, cr, n, Pz' gj; r will in general denote an incomplete set of quantum numbers and 
these will be noted unless it is clear from the context. 

In the remainder of this Section, the self-interaction of the electron is examined in 
general terms and previous work on this subject is reviewed. The spinor representation, 
which will be seen to be appropriate for the mass operator, is introduced in Section 2. 
The mass operator in a magnetic field is discussed in Section 3, and expressions are 
found to first order in the fine structure constant. The divergent terms are identified 
at this point. The renormalisation of the mass operator is performed in Section 4, 
and the modifications to the wavefunctions, vertex functions and electron propagator 
are found. In Section 5, the weak field limit of the renormalised mass operator is 
found, and the modified vertex function is. used to find the transition rate for spin flip 
radiation. 

""'--- ........ ,, 
" '\ + 

... ---... " ... , 
/ '\ 

)(' . 

+ ,/"---"'\, )( ( + 
", ... ----........... 

" \',\ 

Fig.l. Perturbation expansion of the exact self-interaction diagram in powers 
of the magnetic field, to first order. Interactions with the magnetic field are 
represented by a cross. Note that the vertex correction to the field interaction 
appears (last diagram). 

The electron self-interaction is represented by a subdiagram with two or more 
vertices which is connected to the rest of the diagram by only two fermion lines. 
Unless otherwise stated, any such subdiagram referred to below is assumed to be 
compact: that is, it cannot be separated into two or more self-interaction parts. An 
alternative method of calculating the self-interaction of a magnetised electron is to use 
field-free particle electrodynamics and to treat the magnetic field as a perturbation. In 
the weak-field limit, the two treatments (perturbative and exact) should correspond: 
in particular, no new divergences should appear. All physically observable effects 
which arise from the perturbation approach should be retained in the exact treatment, 
although new' effects which depend on the field strength may appear. It should be 
noted that the lowest order self-interaction diagram in the exact approach includes 
the lowest order vertex correction to all orders in the external field strength (see 
Fig. 1). As a consequence, the self-interaction includes the effect of the anomalous 
magnetic moment to all orders in the external field when the field is treated exactly. 

For a free particle, the effect of the self-interaction is to cause a shift in the particle's 
energy which is inherently unobservable, because the particle cannot be examined 
with the interaction turned off. For an electron (or positron) in an unmagnetised 
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vacuum, Lorentz covariance required that the energy shift appears as a correction to 
the rest mass of the particle which is independent of the spin. Similarly, invariance 
under charge conjugation or time reversal requires that the mass correction is the 
same for electrons and posItrons. Hence, the mass shift is dependent only on the type 
of particle (electron, muon, etc.) being considered, and not on any quantum number. 

If the electron or positron is in a static, homogeneous magnetic field, only Lorentz 
boosts along the field axis (assumed to lie in the z direction) and rotations around this 
axis may be performed without changing the physics of the problem. In particular, 
no rotation around the field axis can change one spin state into the other, and hence 
in principle the measured· energy can be a function of the spin quantum number. 
Translations can be made in any direction without affecting the energy of the particle 
(as the field is homogeneous) and this invariance implies that the energy is independent 
of the positional quantum number. The energy of the particle is thus a function 
only of the quantum numbers n, cr, Pz• The energy is still the time component of a 
4-vector with respect to boosts parallel to the field axis, and so the most general form 
of the energy is 

2 2 1 E(n, cr, Pz) = [{f(n, cr) J + P Z]2 , (2) 

where, if the self-interaction is discounted, one has 

2 1 fo(n, cr) = (mo+2neB)2 . (3) 

These relations assume that the spin operator commutes with the Lorentz transform 
operator, and also that the operator describing the self-interaction is diagonal in the 
chosen representation of spin states. The magnetic moment operator fl z (1.42) satisfies 
the first condition, and it will be shown that its eigenvectors, suitably modified, 
satisfy the second condition. Some previous treatments (Constantinescu 1972b) may 
be criticised because the self-energy has been found using the eigenvectors of an 
inappropriate spin operator s z (1.38), which is neither relativistically covariant nor 
yields a diagonal representation for the spin operator. However, for the special case 
of pz· = 0, the eigenfunctions of the two operators are identical and so the correct 
value for the self-energy may be obtained by transforming according to (2). 

The calculation of f(n, cr) for the electron in the ground state has been performed 
by Demeur (1953) and Jancovici (1969). In this case, the choice of spin operator 
is irrelevant as the ground state is not spin degenerate. A formula for the case of 
general n has been presented by Temov et al. (1977, 1978) with the spin operator left 
indeterminate and the spin dependence of the result in terms of a set of spin coefficients 
obtained by projecting the desired spin wavefunctions onto the s z eigenvectors. 

Anomalous Magnetic Moment 

The Dirac theory of the electron predicted that the electron has a magnetic moment 
of magnitUde gl-'-B s, with the g-factor exactly equal to 2. Refined experiments (Breit 
1947) showed that the measured g-factor for the electron was slightly greater than the 
Dirac value. Schwinger (1948) calculated the first order vertex correction, separated 
the finite part, and demonstrated that it produces an additional 'anomalous' magnetic 
moment which modifies the g-factor by the amount 

!(g-2) = a/21T". (4) 
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Later refinements of the vertex calculations (Lautrup et al. 1972; Calucci 1980a, 
1980b) have extended the theoretical value of !(g-2) to seven significant figures 
and to third order in the fine structure constant a, still in excellent agreement with 
experiment. In most of these calculations, the external field is treated as a first 
order perturbation, and hence the interaction energy is linear in the field strength. 
Perturbative calculations of the anomalous magnetic moment have been extended to 
the second order in the field strength using the proper time method (Newton 1954; 
Tsai and Yildiz 1973; Baier et al. 1974). The method used in this paper includes 
the magnetic field exactly and hence in principle all orders of the field strength are 
included. 

In the standard theory, the anomalous magnetic moment is incorporated in the 
Dirac formalism by an ansatz due to Pauli (1941), who introduced a spin dependent 
term into the Dirac equation in order to describe the large moments of the proton and 
the neutron (which do not originate with the vertex correction) yielding the result 

[i y/La/L + ey/L A/L(x) - m + !i{ !(g-2) 1 /-LB F/Lv y/Ly V ] Ift(x) = O. (5) 

Here, the g-factor is treated as another parameter in the theory, which is determined 
either by experiment or by appealing to Schwinger'S argument (for an electron) that 
part of the vertex correction corresponds to a change in the magnetic moment. 
The Hamiltonian derived from (5) using the Schwinger value (4) for the anomalous 
magnetic moment has eigenvalues (Sokolov and Ternov 1968) 

E = [{(m2+2neB)~ + <T(a/27T)/-LB Bl2 +P;]~, (6) 

where <T is the eigenvalue of the magnetic moment operator. This operator commutes 
with the Hamiltonian, and hence represents a conserved quantity (it is 'stable' in 
the notation of Sokolov and Ternov) when the anomalous magnetic moment of the 
electron is included. 

In the present paper, an entirely different approach is taken. The self-interaction 
is incorporated into the Dirac theory from the beginning and, after renormalisation, 
the Dirac equation takes the form (5) with the quantity !(g-2) already defined. In 
addition, finite corrections to the mass and electric charge are found. 

2. Spinor Representation 

It is convenient at this point to introduce a new representation for the electron 
wavefunctions and the quantities which are derived from them such as the electron 
propagator and the vertex function. The spinor representation is loosely analogous to 
the 'momentum' representation which is used in field-free quantum electrodynamics, 
and is closely related to the' Ep representation' used by Ritus (1970, 1972) and others 
to describe wavefunctions in a crossed field. The spinor representation is related to 
the coordinate representation by 

1ft q(x, t) = V(x; Pz, n, g) u<er(Pz, n) exp( -i E~ q t), (7) 

where U is a column spinor and V a matrix. The elements of u are given by 
the column vector e<er introduced in (1.14) and u is explicitly independent of the 
positional quantum number, the space-time coordinates, and the choice of gauge or 
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representation. The time dependence of the wavefunction has been written separately 
as the free particle energy E ~ q and is replaced by the energy of a virtual particle E 
when the wavefunction is continued analytically away from the mass shell. The matrix 
V is diagonal and is representation and gauge dependent; in the Py representation it 
has the form (adopting the notation of I) 

V(x; Pz' n, Py) = exp(i pyY +i Pz z)[ Ly Lz/(eB)~ }-~ 

x diag{ v n-l (~), V n<~), v n-l (~), V n<~)} , (8a) 

and in the s representation it has the form 

I 

V(x; Pz, n, s) = exp{ i </>(n- s) +i Pz Z }(27T L/ eB)-2 

x diag{exp(-i</»J~_s_l(P), J~_s(P), 

exp( -i </»J~-s-l (P), J~_ s(P)} . (8b) 

Because V is a diagonal matrix, it commutes with the matrix yO, and so the Dirac 
conjugate wavefunction is given by 

tJiq(x, t) = uw'(Pz, n) vt(x; PZ ' n,g) exp(iE~q t). (9) 

Useful properties of u and V include 

u!'u'(Pz, n) u.u(Pz' n) = 8.,. 8u'u' (lOa) 

~ u.u(Pz' n) u!u(Pz' n) = 14 , (lOb) 
.u 

J 3 t.' ". _ 27T '" '''' '" d x V (x, P z' n ,g) V(x, PZ ' n, g) - 14 - u(Pz- P z)u nn' U gg , (lla) 
L z 

J dPz ~ '. t . - ",3 ' Lz - ~ V(x, PZ ' n,g) V (x, PZ ' n,g) - U (x-x), 
27T n,g 

(lIb) 

where 14 is the 4th rank unit matrix. 
The rules for calculating transition amplitudes in the momentum representation 

may be readily generalised to allow one to calculate the amplitUdes using the spinor 
representation of the wavefunctions. A vertex function and propagator can be defined, 
which are matrices rather than scalar functions (as in the coordinate representation), 
while being independent of the spatial coordinates (as in the momentum representation). 
Using the symbols y and i G to indicate the spinor representation, one has 

[Yr,/k)]J.! = J d3 x vt(x; P~, n',g')yJ.! V(x; Pz, n,g) exp(-i k.x) 

~ yO{ u"u'(P~, n')[Yq'ik)]!!u.u(Pz, n)}yO, 
uu' ... (12) 

where rand r' refer to the sets of quantum numbers {n, g, Pz } and {n', g', P~} 
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respectively, while the electron propagator has the form 

. G(A E P ) _ . ~ UEU(PZ ' ·n)uEU(PZ ' n) 
1 'z,n-1~ 

EU E -E(ffq -iO) 

= fdE' LzfdP~ l:fd4xfd4 X' exp{-i(Et-E't'}} 
217" 217" n'd 

x vt(x'; P~, n', g')i G(x', x) V(x; Pz, n, g). (13) 

Inverting the relation (13), the propagator in coordinate space has the form 

iG(x',x) = fdE LzfdPz l:exp{-iE(t'-t)} 
217" 217" ng 

, • A t x V(X; Pz, n, g) 1 G(E, Pz, n) V (x; Pz, n, g), (14) 

where i G(E, Pz' n) has the explicit matrix representation 

. " i.:~ '" 2 A 3 ,.. 
1 G(E, Pz, n) = 2 ff .,(E Y- -Pn V -Pz V + mS) 

E -( q -10) 

m+E 0 -Pz iPn 

0 m+E -iPn Pz 

E2 -(ffq -iO)21 Pz -iPn m-E 0 
(15) 

iPn -Pz 0 m-E 

1 
Pn = (2neB)2 , (16) 

where the Dirac matrices (see Appendix) have been used. Another result used below 
is 

{i y"'a", + ey'" A/x) - m} V(x; Pz' n, g) exp( -i Et) 

= V(x; Pz, n,g) exp(-iEt)(y"'ll",-m), 

where the matrix y"'ll '" is given by 

E 0 -Pz iPn 

A A A I 0 E -iPn Pz 
y'" II = E po - P V3 - P V2 = 

'" z n P -iPn -E 0 z 

iPn -Pz 0 -E 

Hence, in the spinor representation, the Dirac equation has the form 

(y"'ll '" - m) uEU(PZ ' n) = 0 

(17) 

(18) 

(19) 



QED in Strong Magnetic Fields. IV 7 

with the energy in (18) determined by 

E = €'iff q , (20) 

in order that (19) has non-trivial solutions. It may be noted that the spinor 
representation of the propagator satisfies 

(yl-' Ill-' - m) G(E, Pz' n) = 1, (21) 

and hence the electron propagator is equal to 

iG(E, Pz , n) = i(yl-' Ill-' - m)-l, (22) 

which may be verified by inverting (15). 
The method of calculating transition amplitudes using the spinor representation is 

a slight modification of the method used in the momentum representation, as outlined 
in (III). The propagator (13) only requires summation over the Landau quantum 
number n, as the summations over € and (T have already been performed explicitly. 
The contribution of a fermion line is written as a matrix product of vertex functions 
and propagators, with the order of the factors being in the opposite sense to the 
fermion line. This matrix product is reduced to a scalar either by taking the trace (for 
a closed fermion loop) or by pre- and post-multiplying the result by the appropriate 
spinors Ii' and u representing the outgoing and incoming states respectively. 

~ 

X X21;. XI X 

i G(x', x2) 'Q< iG(xl'x) 

-i M(X20 XI) 

Fig. 2. Feynman subdiagram showing the insertion of the mass operator 
representing the (compact) self-interaction into the propagator i G(x', x). The 
phase - i M is determined by the requirement that M represents a positive 
contribution to the observed fermion mass. 

3. Mass Operator 

The mass operator is now introduced as a convenient method of describing the 
effect of the self-interaction in quantum electrodynamics. In coordinate space, the 
modification of the fermion propagator by the (compact) self-interaction to all orders 
in the fine structure constant may be represented by Fig. 2, where the hatched circle 
represents all possible compact self-energy subdiagrams with incoming vertex Xl and 
outgoing vertex x2 • The sum of the amplitude factors due to all these subdiagrams is 
given by the mass operator -i M(-X2, Xl)' The term 'mass operator' is used to refer 
to this amplitude and to the diagram element, in the same manner as the fermion 
propagator refers both to the quantity (13) and the directed line connecting two 
vertices. It has been pointed out that 'self-energy' operator is a more precise term 
in this case, as the operator M contains kinetic as well as mass terms, but 'mass 
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operator' is used here and elsewhere (Ritus 1970) because it corresponds to the mass 
operator in field-free QED. When radiative corrections to the fermion propagator are 
taken into account, the 'bare' propagator is to be replaced by the 'dressed' propagator, 
represented by the double line in Fig. 3. 

( +~ 

+ ~+ ... 

( .+~ 
Fig. 3. Expansion of the 'dressed' propagator (left-hand side) in terms of the 
'bare' propagator and the mass operator. 

(a) " .. ----....... 
"" """, 

/.' / \./ , , , 
x x 

(b) o 
I 

: x" 
I 
I 
I 

/ ! / " x ---------.,. 

Fig. 4. Subdiagrams contributing to the lowest order mass operator. 

To lowest order in the fine structure constant, the mass operator in the coordinate 
representation is given by (Ritus 1970, 1972) 

-i M(x', x) = - e2yll G(x', x)yV Dllv(x' - x) 

+ e2a4(x_ x') I d4 x" yll Dllv(x- x") Trl yV G(x", x"»), (23) 

where the two terms refer to the subdiagrams of Figs 4a and 4b, respectively. Now 
Fig. 4b is the tadpole diagram which in a vacuum or a homogeneous medium makes 
a zero contribution to the amplitude when the operator representing the interaction 
of the fermion with the radiation field is normally ordered. This subdiagram may 
thus be ignored and only Fig. 4a and the corresponding term of (23) is considered 
further. In the spinor representation, this term of the mass operator has the form 

-iMr'r(E',E) = I d4 xd4 x' expl- i(Et-E't'») 

x vt(x'; P~, n', g') l-i M(x', x») V(x; Pz , n, g), (24) 
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where r = ! Pz' n, g) and so on. This form is particularly useful because of the 
diagonality properties of the mass operator described below. 

A free electron or positron in a magnetic field may be described by the quantum 
numbers E, cr, n, Pz ' g. For a particle in a virtual state, another quantum number E 
is required, denoting the energy of the virtual state (which is in general not equal to 
E 'iff q)' The diagonality properties of the mass operator, which is in principle a function 
of the two sets of quantum numbers associated with the incoming and outgoing 
fermion edges, are given by the following theorem: 

Theorem. The mass operator in a homogeneous, uniformly magnetised medium 
is diagonal with respect to the quantum numbers n, Pz' 9 and E, to all orders in the 
fine structure constant. 

Corollary. The mass operator in the spinor representation may be written in 
terms of a reduced mass operator 

-i Mr'r(E', E) = -i M(E, Pz' n)271'0(E - E')(271'/ Lz)o(Pz- P~)onn' Ogg" (25) 

The only non-trivial part of this theorem is diagonality with respect to n. This 
is proven by separating out that part of the mass operator in the momentum 
representation which depends on the azimuthal angles of the virtual photons and 
appealing to rotational invariance around the axis of the magnetic field. This yields 
a factor of the form 

exp! -i(n' - n) W) , (26) 

and the required result follows when one integrates over the azimuthal angle of the 
photon. 

As the mass operator is diagonal in E, Pz , nand 9 while being ·otherwise 
independent of the positional quantum number, only the reduced mass operator 
(defined by 25) is of further interest. The spinor representation is thus particularly 
appropriate because it is explicitly a function only of the first three parameters. Unless 
otherwise specified, from this point it is assumed that the mass operator is in the 
reduced form. 

Modification to the Propagator 

As noted above, in the spinor representation a fermion edge connecting two vertices 
of a Feynman diagram contributes a factor of i G(E, Pz, n) to the amplitude, where 
E and Pz are the energy and parallel momentum of the virtual state and one sums 
over the Landau quantum number n. When the self-interaction is to be included (cf. 
Fig. 2 and Fig. 3), the propagator is modified to become 

i (i'(E, Pz' n) = i G(E, Pz, n) +i G(E, Pz' n)! -i M(E, Pz, n)) i G(E, Pz, n) 

+i G(E, Pz' n) ! -i M(E, Pz, n)) i G(E, Pz , n) 

x! -i M(E, Pz' n)) i G(E, Pz' n) + ... 

= [{ i G(E, Pz' n) )-1 +i M(E, Pz, n)]-1 , (27) 

where the result of the last line is exact. On substituting (22) into the last line, one 
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obtains the modified exact electron propagator in the spinor representation 

i (;'(E, PZ ' n) = i[ y'" n," - m - M(E, PZ ' n) I ~I . (28) 

The 'dressed' propagator is thus in the same form as the 'bare' propagator, with an 
additional term which corresponds to a mass correction. It would appear that the 
'dressed' wavefunction should satisfy a Dirac equation of the form 

[y'" n," - m - M(E, Pz , n) I w.a-(Pz ' n) = 0, (29) 

where E = Elf'; is the modified energy, but in fact w.a- does not represent a 
wavefunction. It will be seen in Section 3 how a further transformation is required 
to obtain the correct wavefunction with the self-interaction included exactly. 

Evaluation of the Mass Operator 

The results derived up to this point are valid, not only in a vacuum, but also in 
homogeneous media. From this point, the effect of the medium is neglected. On 
performing the explicit calculation for conditions in a vacuum, the mass operator in 
the spinor representation is found to have the general form 

M(E, Pz, n) = (a/27TH mS1I + Pn V212 +(Pz V3 - E 0)13 

+ m tI2 14 -(Pz AO - EA3)15 I , (30) 

where the coefficients 1m are scalar functions only of n and of the Lorentz invariant 
distance between the particle energy and the mass shell E2 - If' ~. The first four terms 
in (30) contain the same Dirac matrices which appear in the electron propagator (18), 
while the last three terms involve the matrices 

m tI2 = (m/2 Ut)P,"v t'"v, (31a) 

P AO _ EA3 = (1/2 Ui)F t,"V(E 0 - P V3) 
Z }-LV z' (31b) 

which are Lorentz invariant under boosts parallel to the magnetic field. In (31), U 
is the Lorentz invariant describing the field strength B2 - E2. It seems likely that if 
higher order terms in the fine structure constant are included in the mass operator, 
then (30) would be modified only by changes to the coefficients 1m' but this has not 
yet been proven. To lowest order in the fine structure constant, however, the problem 
of calculating the mass operator reduces to finding the coefficients 1m' 

The mass operator is now calculated using the electron propagator in the Geheniau~ 
Demeur form (1.82). The (unreduced) mass operator is given by 

Mr'r(E', E) = -i e2 J d4 xd4 x' exp[ -i(Et- E' t') I D,"v(x' - x) 

x vt(x'; P~, n', g')y'" G(x', x)yV V(x; Pz , n, g). (32) 

The photon propagator is chosen in the form 

DAV(X) = - ~ Joo dp. exp( - ii p.x2). 
87T2EO 0 

(33) 
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By writing 
L = eB/m2 (34) 

as the ratio of the field strength to the critical field, and changing the variables of 
integration to 

w = m2/2A, u = /-L/(/-L+A), (35a, b) 

where w is assumed to have a small negative imaginary part in order that the integral 
converges, i.e. w = I wl(1 -iO), the space-time integrations in (32) can be performed. 
The coefficients defining the mass operator are given by 

IOO II I 1m = L dw du exp[ -i w{ u-(I- u)(E2-~~)/m2J]-2--2 
o 0 a +b 

( a-ib )n 
X a +i b exp{2i Lw(I- u)J Km; 

KI = 2a, K2 = b sec Lwcosec Lw, 

K3 = (1- u)(a - b tan Lw), 

K4 = 2ib, Ks = i(l-u)(b+atanLw), 

with 
a = u tan Lw +Lw(I- u), 

b = Lw(I-u)tanLw. 

(36) 

(37a, b) 

(37c) 

(37d, e) 

(38a) 

(38b) 

This form of the mass operator, when written in the momentum representation, 
generalises the result of Constantinescu (1972b), who derived the matrix element of 
the operator for the special case E' = E, E = ~ q' using the Johnson-Lippmann spin 
wavefunctions for (T = (T'. As these wavefunctions are the same as the magnetic 
moment wavefunctions only in the frame Pz = 0, (36) reproduces Constantinescu's 
result only in the rest frame. 

The convergence or otherwise of the integrals in equation (36) has been examined 
by Constantinescu (1972b). In his analysis, the integrand is expanded in powers of u 
and w, so the mass operator coefficients may be written in the form 

1m = ~ ~ du - uX(i w)Y exp(-i uw)I":;,Y. (39) 00 00 II Ioo dw 
x=o y=max[O,x-Ij 0 0 W 

There are three distinct classes of terms: 

(i) Terms with y = 0 which lead to a divergent integral in w, and require 
renormalisation. These are the 'zero field' terms in the notation of 
Constantinescu. 

(ii) Terms with x-y> 0, with y =1= 0, giving a finite contribution to the mass 
operator. 

(iii) Terms with x- y < o. Members of this class have infrared divergences when 
integrated with respect to u. These divergences are not a characteristic of the 
mass operator, but of the method of expansion in powers of u and w. For a 
fixed order of u, the sum of all orders of w leads to a finite result. 
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Hence only terms of class (i), with y = 0, lead to real divergences. [A referee has 
suggested that this is a special case of the general result proved by 't Hooft (1971).] 

Classical Limit 

In the classical limit the perpendicular momentum PI = (2neB)~ is kept constant 
and the limit as n ~ 00 is taken. The coefficients are found to first order in L. All 
divergent terms of class (i) are retained by this procedure, as they are of zero order in 
L. This is termed the classical limit because it is under the conditions of weak fields 
and large n that classical physics may be expected to remain a valid approximation. 
The result is 

1m = L f: dw f>u exp[-iwlu-(1-u)(E2-f,'~)/m2}]K;"; (40) 

K;=2, K;=(1-u), K~=(l-u), (4 1 a-c) 

K~ = 2i Lw(I- u), K~ = iLw(2-u). (41d, e) 

By inspection K; 2 3 belong to class (i), while K~ s belong to classes (ii) and (iii). 
Hence to first orde'r in the fine structure constant,' terms in S, po, V2 and V3 are 
divergent, while the terms in 1'12, A3 and AO are finite once the infrared divergences 
are regularised. The renormalisation of the former terms and the interpretation and 
regularisation of the latter is discussed in Section· 4. 

Momentum Representation of the Mass Operator 

The mass operator in the m6mentum representation is related to the spinor 
representation by 

-i Mq'q(E', E) = u<'(AP~, n') I-i Mr'r(E', E)l uEU(PZ ' n). (42) 

Using (25), (36) and (37), the reduced form is found to be 

~'u'.Eu(E, Pz' n) = u<,u'(Pz' n) M(E, Pz, n) uEU(PZ ' n) 

a 1« 022 2 = - --. -0 8EE, 8uu' E[f,' q 1 m 11 + Pn 12 +(P z-EEf,' q)I3l 
27T f,' f,' 

q q 

+ mO"l (f,'~)214 +(P;-EEg' q)Is)] 

+8u- u , EO" iPn Pi'fi' q-EE)Is) 

+8<_A8uu' Pz[mf,'~(Is-I4) 

+0"1 ('fi'~i 13 - m2I1 - p~ I2)] 

+8u_u,iPnIEE'fi'~ Is -m(I1- I2)})), 

(43) 

where It'~ = (m2+2neB)L Now let us consider the effect of the self-interaction on 
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a free particle. In this case, which is also the one considered almost exclusively by 
other authors, we have E' = E, E = E'l? q' The amplitude for the self-energy diagram, 
which is just the matrix element of the mass operator to within a phase factor, is then 

a E . 
( CP P n) - - - 8 uu' ~u',u E0 q' z' - 27T 'l? 

q 

x Im2(I1-/3)+p~(I2-/3)+(Tm'l?~(I4-15)1. (44) 

We note that the amplitude for the particle to change from one spin state to another 
is zero. This property is unique to the magnetic moment eigenfunctions, and was 
used by Herold et al. (1982) to derive these wavefunctions independently of the 
operator. Even for applications where the self-interaction is only of passing interest, 
the magnetic moment spin wavefunctions are the most appropriate ones to use. In 
the following section, a more sophisticated treatment is presented which incorporates 
into the theory all terms of the mass operator, including the 8,_" terms in (43) which 
have not yet been dealt with. 

4. Renormalisation 

In this section, the renormalisation of the mass operator is considered, and the 
Dirac equation including the mass operator is written down in a form which is free of 
ultraviolet divergences. This leads to finite corrections to the mass and perpendicular 
momentum of the magnetised electron, and to modifications to the wavefunctions, 
propagator and the vertex function. The dressed forms of these quantities are derived 
in terms of the coefficients 1m which were defined in the previous section. 

'Bare' quantum electrodynamics is based on the Dirac equation. When the mass 
operator is included, one obtains a Dirac-like relation given by (29) in the spinor 
representation. Substituting the momentum operator (18) and using the general form 
for the mass operator in a magnetic field (30), one obtains the result 

{ NJ ~3 ( a13 ) d all) ~2( a/2 ) (E" - Pz V) 1 + 27T - m,-,\ 1 + 27T - Pn V 1 + 27T 

- m 1'12 ~; -(EA3 - Pz AO) ~:: } w,u(Pz, n) = O. (45) 

Let us consider the terms 11,/2,/3, which are the only ones containing ultraviolet 
divergences. These divergences may be removed by renormalisation of the electron 
mass, the electronic charge, and the normalisation of the electron wavefunction 
respectively. The divergent parts are present in the zero field limit, and using the 
expansion (39) have y = 0, which means that the renormalised quantities are the same 
in the magnetised and unmagnetised vacuum. This procedure is thus equivalent to 
the more familiar zero field renormalisation, and the divergent terms may be dropped 
and the field-free 'dressed' values for the mass and charge should be substituted. 

Once the divergent parts are removed, / 1,2,3 contain finite parts (denoted by 1;,2,3) 
which are zero in the limit of zero field. According to equation (40), these parts 
are at least second order in the magnetic field parameter L, and they represent finite 
corrections to the measured electron mass, charge and wavefunction. The terms 
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14,5' on the other hand, represent finite corrections to the Dirac equation which are 
first order in L. Using the renormalised mass and charge, the relation (45) may be 
rewritten in the form 

;'70 A3 A A2 
[E y- -Pz V - mfi S-Pnfi V 

+(FfLV 1'fLv /2 Ut)1 (E VO - Pz V3)fs - mS.t.; J]wfU(PZ ' n) 

= XWfU(PZ ' n) = 0, (46) 
where 

1 +a/i/27T 
fi,2 = 1 +aI3/27T ' 

a/4,s/27T 
.4.s = 1 +aI3/27T 

(47a, b) 

Now equation (46) is manifestly covariant under Lorentz boosts parallel to the field 
axis, but is not in the form of a Dirac equation because the energy appears in the 
additional term. This can be corrected by writing 

z u~u(Pz' n) = 0 (48) 

as the modified Dirac equation, with 

z= YXY, , A 1 
UfU(PZ ' n) = y- WfU(PZ ' n), (49a, b) 

'" I I 1 1 
Y = diagl (1 + fs)-' , (1- fs)-' , (1 + fs)-2 , (1- fs)-' J . (50) 

Then the matrix Z has the form 

Z= EVO -p V3 -m'S-p' V2 _..::11'12 z n , (51) 

with the new parameters given by 

m' = !m(fi+.t.; +fi-.t.;), 
l+fs I-fs 

(52) 

..::1 = ! m(fi +.t.; _ fi - .t.;) , 
l+fs I-fs 

(53) 

p~ = Pnfi(1-f;)-t . (54) 

In the limit where the self-interaction is zero, this reproduces the normal Dirac 
equation. For the modified Dirac equation (48) to have non-trivial solutions, one 
requires det Z = 0, i.e. 

I E2_p;-p;_(m' +..::1)2J I E2_p;_p;_(m' -..::1)2J _4p;..::12 = O. (55) 

The solutions for the free particle energy may then be written in the form 

E = E~~, 

a:>'O _ a:> + A 
0q - ° n-"-i, 

~~ = 1(~~O)2+p;Jt; 

~n = (m'2+p;)t. 

(56a, b) 

(56c, d) 
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We note that the particle energy satisfies the relation (2), as required by relativistic 
covariance. The connection between the sign of ..d and the spin quantum number (j' 

has not yet been established, and this will be performed below. 

Wave/unctions 

The four independent solutions of (48) are non-degenerate as there are four 
different energies (56). Hence the solutions of the modified Dirac equation and 
the eigenfunctions of the corresponding Hamiltonian are completely specified. The 
Hamiltonian operator corresponding to (48) is given by 

A 0 A 

H= E-y Z, (57) 

which determines the SchrOdinger equation· 

II u~cr(Pz' n) = E~ ~ u~cr(Pz' n). (58) 

As the theory is covariant under Lorentz boosts parallel to the magnetic field, it is 
convenient to first seek solutions in the frame Pz = 0, and then Lorentz transform to 
generate the general solutions. Writing u~ for the elements of u~cr(Pz' n), (48) yields 
the relations 

{+(E-..d)- m'J Ui,4 +ip~ U~,l = 0, 

{±(E +..d)- m'J U~,3 -ip~ U~,2 = O. 

(59a) 

(59b) 

Substituting for the energy (56), one may write down the relations between the u~ for 
E = ±1 as 

U~,l 
ip~ , 

~tO+ ,- A Ul,4' 
q m +41 

. , 
-lP , 

, - n U2,3' 
U3,2 - ~'O + m' + ..d 

q 

(60a, b) 

In order to determine the spin of the wavefunctions, we recall that in the limit of the 
self-interaction tending to zero, the magnetic moment eigenfunctions (1.45) should 
be reproduced. In particular, the ground state should have (j' = - 1. The spinors 
u~cr(O, n) then have the form 

~'o+m'_..d 
q 0 

0 
u~_ :::::: 

-ip~ 
, -I u++ _ 

0 
(61a, b) 

ip~ 0 

r 
ip~ 0 

0 -ip~ 
, - 0 u~+ :::::: 1 ~'o+ m'-..d u~~ -IW:'+m'+LI q 

0 

(61c, d) 
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Substituting (61) into (48) and using the expressions (56) for the energy ofthe particle, 
one obtains the relation 

'1!;0 = '1!n+ u..1 . (62) 

The spinors (61) may now be Lorentz transformed in order to obtain the solutions 
of (48) for arbitrary parallel momentum. Writing the results in terms of the signed 
momentum pz = EPz which is in the same sense as the velocity, the elements of 
U~CT(EPz' n) are 

('1! ; + '1! ;0)( '1! n + m ') 

U' W'_! ++ q 2 

-ip~pz 

U~+ 

pi'1! n+ m') 

i p~('1! ; + '1! ;0) 

pz('1! n + m') 

. '('1!' '1! '0) 
,-! I -lPn q+ q 

W 2 

q ('1!;+'1!;o)('1!n+ m ') 

ip~pz 

-ip~pz 

, ,_! I ('1!; + '1! ;0)('1! n + m') 
U = W 2 
+ - q _., ('1!' '1! '0) 

IPn q+ q 

- pi'1! n + m') 

(63a, b) 

. '('1!' '1!,0) IPn q+ q 

, w~-!I - pi'1! n + m') 
U 

ip~pz 

('1!; + '1! ;0)('1! n + m') 

(63c, d) 

w~ = 4'1!; '1! i'1!;+ '1! ;0)('1! n+ m'). (63e) 

In the weak field limit, when the effect of the self-interaction tends to zero, these 
yield the magnetic moment spin wavefunctions. The spin operator is obtained from 
the magnetic moment operator by making the substitutions m -+ m', Pn -+ p~ into 
the defining relation (1.42) 

flz = .Iz+(l/m,)p2(.Ixll,)z· (64) 

Electron Propagator 

When the self-interaction is neglected, the electron propagator may be calculated 
from the Dirac equation in the spinor representation using the relation (21). If the 
self-interaction is included, this relation takes the form 

Z G'(E, Pz, n) = (yll n~ - m' -.I z ..1) G'(E, Pz, n) = 1, (65) 

where the replacement Pn -+ p~ has been made in the construction of nil. Inverting 
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the operator t, and writing I&' ~ = /ff ;,u, one obtains 

G'(E, Pz' n) = (E2 - /ff;~+ +iO)-1(E2 - /ff;,2_ +iO)-l 

A++ -B -c+ D--

B A-+ D+- c-
x I 

c+ D-+ A+- -B 

D++ -c- B A--

Aob = (E2_p;+~2_/ff;)m'+a~(E2_~_~2+/ff;) 

+ bE(E2 - P;_ ~2 - Iff; +2a~m'), 
B = -ip~ Pz2~, 

co = P (E2_p2_~2_/ff2+2a~m') 
z z n ' 

D ob = ip~[2~E+ab(E2-p;+~2-E~»), 
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(66) 

(67a) 

(67b) 

(67c) 

(67d) 

where the imaginary part of the denominator is determined by Feynman's rule for 
avoiding the poles. The result (66) may also be obtained by using the result (13) with 
the modified wavefunctions: 

Vertex Function 

G'(E, Pz, n) = ~ u~u(Pz' n)u~u(Pz' n) 
EU E -e(/ff' -iO) . r,u 

(68) 

The vertex function is unaltered by the self-interaction in the spinor representation. 
In the momentum representation, the modified vertex function may be found by 
substituting the elements of u~u into (1.46). Expanding the vertex function in terms 
of the basis vectors 

TI" = (1,0,0,0), BI" = (0, 0, 0, 1), E~ = (0,1, +i,O)exp(+i</», (69) 

the modified vertex function is given by 

, I" _ (/ff~+I&'~O) (/ffn+m') (/ff~,+/ff:/) (I&'n,+m'»)4[i ex (i</»)-A 
[r r'r(k)] - 2/ff' 21&' 21&" 2/ff , p 

q n q' n 

x (8uu'[[ 8EE,( Tl"a+ +eBI" b+)-CT8E _ E,(e TI" b- - Bl"a-) )(J~ +PnPn' J~+U) 

+(-e8EE, a- +CT8E _ E, b+)(E~Pn,J~+u +E~uPnJ~~';)] 

-i 8u- u'[[ 8EE,( TI" b+ +eBl"a+)-o-8E _ E,(e Tl"a- - BI" b-») 

x (PnJ~+u -Pn,J~)+( -e8EE, b- +CT8E _ E, a+) 

x (E~J~+u -E~uPnPn,J~~';)]); (70) 
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11.= n'-n, 1 = n~i(o-+l), (71a, b) 

± = 1 + Pz P~ 
a - (if' if'o) (if' if '0) , q+ q q'+ q' 

(71c) 

b± = P~ + Pz 

(if~,+if:) - (if~+if~o)' 
(71d) 

P~ 
Pn = ifn+m' 

P~' 
Pn' = ifn,+m' 

(71e, f) 

where the argument of all the J functions is kI/2eB. Transition amplitudes taking 
the self-interaction into account can be calculated in the momentum representation 
by using the rules given in (III) with the following modifications: 

(i) The modified vertex function [r~ ~ (k)]1'- given by (70) is to be used instead of 
2 I 

the 'bare' vertex function (1.57). 

(ii) The energy if ~ including the self-energy is to be used in the denominator of 
the electron propagator and in the energy conservation relation for each open 
fermion line. 

We note that the vertex function will be further modified by the inclusion of the 
radiative vertex correction. This correction in a magnetic field has not yet been 
calculated. 

5. Weak Field Limit 

Some useful results may be obtained by retaining only those terms in the mass 
operator which are linear in the external field strength L. According to the analysis 
in the previous section, one has 

fi.2 ::::: 1 +0(L2) , f4.5 ::::: O(L) , (72a, b) 

and hence to first order in L the quantities derived above are given by 

m' ::::: m, P~::::: Pn , ..::1 ::::: (am/27T)(I4-15)' (73a--c) 

if n ::::: ifg, if ~o ::::: ifg + 0-..::1, if ~ ::::: if q+ 0-..::1(f#'g/f#' q)' (73d-f) 

and hence all corrections to the wavefunctions, propagators, and so on may be 
expressed in terms of the parameter..::1. In particular, the finite self-interaction 
correction to the electron rest mass and perpendicular momentum are second order 
in L, which is important as any first order corrections would be large enough to be 
detectable experimentally (yet they have not been detected). In this approximation, 
..::1 is given by 

am II Ioo am an ..::1 = i-L du dw exp(-iuw)u(l-u) = -L = __ c, 

27T ° ° 47T 47T 
(74) 
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where nc is the cyclotron frequency. We note that to first order in L, ..1 is independent 
of the Landau quantum number n. If this value of ..1 is inserted into the expression 
(56) for the energy of a free electron, the value (6) for the energy found by Sokolov 
and Ternov (1968) is reproduced. Then ..1 represents an 'anomalous' correction to 
the magnetic moment of 

p,' = p'+p'anom = (e/2m)(1 +a/2l7) , (75) 

which agrees with the accepted value. 

Spin Flip Radiation 

In almost all cases, the .self-interaction modification makes only small corrections to 
the calculated amplitude. One process which is allowed only when the self-interaction 
is included involves an electron changing its spin while remaining in the same Landau 
level, accompanied by the emission or absorption of a photon. It is instructive to 
consider this process in detail. 

Suppose the electron is in an initial state with quantum numbers n, Pz = 0, 
cr = + 1. In principle, by the emission of a photon, the electron can change to a 
final state with n' = n, cr = - 1. Owing to the anomalous magnetic moment, the 
final state has a lower energy. Calculating the rate of transition using the modified 
vertex function, one obtains 

Wfi = fd 3 k dp~ ~ ~ 8(Ec- E)8(kz - p~)1 [r~r(k)]"[ell(k)],.12 
M 217W 

f If' If' + If '0 1 
= a W dw d(cosO) q' q' q' -{r-1(12/2eB)}2 

co' _ . 20 21f' 4co2 1 1 
(1}q wsm q' (1}n 

X (w2 sin4 0 _ 4w2 1f n cos2 0 sin2 0 
co ' co '0 

. (1) q'+(1) q' 

4w2 ) + -0 (If; cos4 0 + m'2 cos2 0) 8( w - wo) , 
(If if + If q' )2 

where 

Wo = (1/ sin2 O)[1f ~o - {(If ~0)2 -41f n ..1 sin2 0 J] 

(76) 

(77) 

is the frequency of the emitted radiation. Now Wo varies from 2..1(1- ..1/1f ~o) at 
o = 0,17 to 2..1 at 0 = !17, and so may be approximated by the latter value throughout 
the range of emission values. Thus the spin flip photon is emitted at a frequency of 
around 10-3 nco The recoil of the electron may be neglected and the J function is 
evaluated at the limit of small argument. One obtains the result 

a6 ( B)3 p~ - - 1_- -- m-2 , 
wspin flip - 8 (217)5 Bcrit If q 

(78) 

which is very small. For comparison, the rate of the cyclotron transition from the 



20 A J. Parle 

state n = 1, (J" = + 1 to the ground state is approximately 

WI--+O,fiip::::: O.6a(B/Bcrit )3 m , (79) 

which is larger by a factor of > 1015. Thus the spin flip transition at constant n, 
although allowed, does not occur before the electron radiates away its energy via the 
usual cyclotron process. 

In conclusion, the purpose of this paper has been to extend the theory of QED 
in magnetic fields presented in papers (I, II, III) to include the electron self-energy 
radiative correction to lowest order in the fine structure constant. The mass operator 
was renormalised and the remaining finite corrections to the properties of electrons 
and positrons were incorporated into the propagator and vertex functions. This 
reproduced the standard lowest order correction to the magnetic moment of the 
electron, and also allowed the calculation of the transition rate for the spin flip 
transition, which could not be performed using the original version of the theory. 
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Appendix. Dirac Matrices 

The 16 Dirac matricesyA are a complete set of independent 4x4 matrices derived 
from the yll matrices. They are: 

S = -4 which is a Lorentz scalar; 

i7"- = yll which form a 4-vector; 

tllv = ~i[yll, yV] which form an anti-symmetric 4-tensor; 

All = y5y ll which form an axial 4-vector; 

P = y5 which is a Lorentz pseudo-scalar, with 

y5 = i yOy1y2y 3 . (AI) 

The standard representation of the Dirac matrices may be written in terms of the 
2x2 Pauli matrices and the 2x2 unit (I') and zero (0') matrices in the following way: 

A _ [I' 0'] A _ [0' I'] (A2a, b) s- , p- , 0' I' I' 0' 
po = [I' 0' ], Ai _ [0' u] (A2c,d) v- , 0' -I' -Ui 0' 

jlJj = [0' i U j ] .. [Uk 0'] (A2e,t) Til = e"k , 
iUj 0' ' IJ 0' uk 

AO [0' -I'] , [-U. 0'] A = Ai = I • (A2g,h) I' 0' 0' ui 
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