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Abstract 

The angular distribution of a particles from the reaction 12C(160, a)24Mg was calculated, with 
the help of an a particle model, for the ground state of 24Mg at bombarding energies with 160 of 
15·25,16·48,17·10,17·85,19·30,20·70 and 21·80 MeV. Calculated results were compared 
with experimental data and satisfactory agreement was obtained. 

1. Introduction 

The idea of clustering of nucleons in nuclei was suggested many years ago and 
it is well known that for light nuclei the shell-model wavefunction can be rewritten 
in a cluster form (Phillips and Tombrello 1960). With the availability of heavy ion 
beams of sufficient intensity there has been renewed interest in a cluster models 
because heavy ion reactions are expected to provide new information on the extent of 
clustering of nucleons. 

Let us consider the e60, a) reaction in 12C leading to the ground state of 24Mg. 
The reaction may be assumed to proceed by ejection of an a particle from 160, the 
remainder of the projectile then being coupled to the 12C target nucleus to form 24Mg 
in the ground state. 

Groce and Lawrence (1965) have made measurements in the centre-of-mass energy 
range 6·43-9·64 MeV for the ground state and first six excited states of 24Mg. A more 
extensive investigation of this reaction has been made at higher energies by Halbert 
et al. (1967). In other experimental work (Patterson et al. 1971; Greenwood et al. 
1972; Shapira et al. 1975) the main interest was in the measurement of differential 
excitation functions. 

In an earlier theoretical investigation of the 12Ce60, a)24Mg reaction (Nagorcka 
and Newton 1972), the angular distribution of a particles emerging from this reaction 
was calculated. We have undertaken the present work in an endeavour to establish 
to what extent an a cluster-model calculation can describe the angular distribution 
and differential cross section of this reaction. For simplicity, the problem has been 
treated in terms of the plane-wave Born approximation (PWBA). 
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2. Brief Formulation of the Problem 

The 12C and 160 nuclei may be considered to be composed of three and four 
structureless a particles respectively. Their wavefunctions are taken to be 

1/1 c = Nc exp( - iac i~1 p~), 

1/1 0 = No exp( -iao i~4Pb)' 

Pc; ri-RC; 

Po; ri-RO· 

(1) 

(2) 

Here Nc and No are the normalisation constants, Rc and Ro are the position vectors 
of the centres of mass of 12C and 160 respectively and are given by 

3 

Rc = j l: rj , 
J= 1 

7 

Ro = i l: rj . 
J=4 

(3) 

These types of wavefunctions have been used elsewhere (Thompson and Tang 1968; 
Tang 1969; LeMere et al. 1976). The width parameters ac and a o are chosen to 
yield the experimentally determined values of 2·453 and 2·730 fm for the r.m.s. radii 
(Barrett 1974) of the nucleon distributions in 12C and 160, respectively. In this way 
we obtained a c = 0·16619 fm- 2 and a o = 0·13736 fm-2. 

12c 
160 

r7 

Fig. 1. Schematic diagram of the initial state. The vectors r i (i = 1-'7) are 
position vectors of seven a particles; Rc and Ro are the position vectors of the 
centres of mass of the 12C and 160 nuclei; rco is the vector between the centres 
of mass of the two nuclei. 

The wavefunction for the initial state may be written as 

I/Ij = Nc No exp( - iac i~1 p~) exp( - iao i~4 Pb) exp(i k j • rco), (4) 



12C(160, a)24Mg Reaction 41 

where k j is the initial relative momentum and rco is the vector distance between the 
centres of mass of 12C and 160 and is given by 

rco = -Rc+Ro· (5) 

The initial state is shown schematically in Fig. 1. 
The 24Mg nucleus is considered to be composed of two 12C nuclei where each 

12C nucleus consists of three a particles. Hence the wavefunction for 24Mg may be 
written as 

lJIM = NM exp( -ia~i~/~,) exp ( -ia<~/I.~,)4>(Rl-R2). (6) 

Here Ac = ri-Rl (i = 1-3) and Ac = ri-R2 (i = 4-6); Rl and R2 are the 
centre-of-mass position vectors of th~ first and second 12C 'nucleus' in 24Mg, 
respectively; 4>(R 1-R2) is the relative wavefunction between the two carbon clusters, 
where 

4>(R1-R2) = 4>(R) = exp(-iIJ R2). (7) 

The width parameter IJ is chosen to yield the experimentally determined value 
(Hofstadter 1974) of 2·98 fm for the r.m.s. radius of 24Mg taking ac to be equal to 
ac. In this way we obtained a value for IJ of O· 13097 fm -2. 

24Mg 

c 

Fig. 2. Schematic diagram of the final state. The vectors ri (i = 1-6) are the 
position vectors of six a particles of the 24Mg nucleus and r7 is the position 
vector of the outgoing a particle; Rl and R2 are the position vectors of the 
centres of mass of two 12C clusters inside the 24Mg nucleus; R is the position 
vector of the centre of mass of 24Mg; rf is the relative vector between 24Mg and 
the emitted a particle. 

The wavefunction for the final state becomes 

lJIf = NM exp { - iacC~1 A~j + i~4 A~,)} exp( - i1J R2) exp( -i kfo rf), (8) 
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where kr is the final relative momentum and rr is the vector distance between the 
centres of mass of 24Mg and the a particle. A schematic diagram of the final state is 
shown in Fig. 2. 

The differential cross section is then given by (Goldfinger et al. 1977) 

do-/dil = J-LiJ-Lrkfl TI2/(47T2kf), (9) 

where J-Li and J-Lr are the reduced masses of the initial and final states and kf and kf 
are the centre-of-mass momenta of the initial and final states and T is the transition 
amplitude given by 

T = <I/Irl VCa(rCa)+ Vcc<rcdll/li). (10) 

The two potentials VCa and VCC' arise because we have taken the direct mode: 

12c+e60=aEf)12q -+ e4Mg= 12CEf)12q+a. 

In (10) the vectors are defined as 

rCa = ~(rl+r2+r3)-r7' 

rcC' = R = ~(rl+r2+r3)-~(r4+r5+r6)· 

(II) 

(12) 

For both the carbon-a and carbon-carbon interaction we have used real potentials 
of the form 

V( r) = Woll + Ai r2) exp( - Bi r2), (13) 

where i = I for the carbon-a interaction and i = 2 for the carbon-carbon interaction, 
WOi is the potential depth, Ai and Bi are adjustable parameters as suggested by 
Hussein and Zohni (1976), and r represents rCa and r CC' in the carbon-a and 
carbon-carbon interactions. It is readily shown then that the expressions for rCa and 
rcC' in equations (II) and (12) become 

4 6 
rCa -"7 r CO-"7 rr, 8 2 

r CC' = -"7 r CO + "7 r f . (14a, b) 

Siemssen (1970) suggested that all the real potentials are energy dependent for this 
type of reaction. The energy dependence may be taken into account by using a 
potential depth of the form 

WOi = -( W Oi + Cj TL ), (15) 

where i = 1 for the carbon-a interaction and i = 2 for the carbon-carbon interaction, 
TL is the incident energy of the projectile in the laboratory system and cj is a constant. 
Using equations (4), (8), (14) and (15) the expressionfor the transition amplitude 
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becomes 

T = NMNcNo f exp[-~adA~I+A~2+(AC!+AC2)2 
22' 2 

+AC4+ ACS+(AC4+ ACS) }] 

x exp( -~,8r2) exp( -i k r• rr) 

x[ WOl (1 +AI(~ rCO- ~ Tr)2) expl- BI( - ~ TCO-~ Tr)2) 

+ W02 11 +A2( -~ TCO+~ Tr)2) expl-~( -~ TCO+~ Tri)1 

x exp [- ~aclp~1 +P~2 +(PCI +PC2)2)1 

x exp [- ~aolpb4 +Pbs+Pb6 +(P04 +Pos +P06)2)1 

x exp(i k i • TCO) dA Ci dpCi dTco dTr dR. (16) 

In equation (16) use has been made of the conditions for the centre of mass, for 
example 

ACI +AC2 +Ac3 = 0, 

PC! +PC2+PC3 = 0, 

3. Results and Discussions 

AC4+ACS+AC6 = 0, 

P04+POS+P06+P07 = O. 

(17a,b) 

(17c,d) 

Transition amplitudes have been calculated using equation (16), where all the 
parameters except WOI ' W02' AI' A2, BI and B2, and also CI and C2' are known. 
Values of these parameters which give the best fit to the experimental data are 

WOl = 60·0 MeV, 

Al = 0·12331 fm- 2 , 

BI = 0.22092 fm- 2 , 

W02 = 85·0 MeV, 

A2 = 0·05499 fm- 2 , 

~ = 0.05499 fm- 2 , 

CI = l2 = 1·30. 

(18a, b) 

(18c, d) 

(18e, f) 

(18g) 

Our value of Al is slightly different from that of Hussein and Zohni (1976) but our 
value of B I is approximately the same as that calculated by them. The parameters 
A2 and B2 are chosen in such a way that when they are used in equation (13) a 
potential of the shape similar to that given by the real part of the Woods-Saxon type 
of potential (Michaud and Vogt 1972) is generated. From the transition amplitude the 
differential cross sections at seven different energies of the projectile were calculated. 
The results of the present analysis together with experimental data (Treu et ai. 1978) 
are shown in Fig. 3. It can be seen from Fig. 3 that for the energies investigated 
agreement between the present calculations and experimental results is satisfactory. 



1
0

-
1 

T
L

 =
 

15
·2

5 
M

eV
 

1
O
-
2
~
 

• 
! 

\ 
t 

.\
 

/ 

1
O
-
3
~
 

\ 
I 

,....
, 

1 ... '" or>
 5 

1
0

-4
1 

I 
I 

c:::
 

10
 

30
 

60
 

90
 

12
0 

15
0 

18
0 

~ 
~ 

h
=

 1
7

·1
0

 M
eV

 
"t

l 

1
0

-1
 

1
0

-2
 

1
0

-3
1 

I 
I 

I 
I 

o 
30

 
60

 
90

 
12

0 
15

0 
18

0 
8 c

m
 (

de
gr

ee
s)

 

T
L

 =
 

16
·4

8 
M

eV
 

.::
:' 

1
0

-
1 

1 ... '" or>
 5 c:::
 

"t
l "- il 

1
0

-2
 

1
0

-3
 0 

30
 

60
 

90
 

12
0 

15
0 

8 c
m

 
(d

eg
re

es
) 

F
ig

. 
3.

 
P

lo
ts

 o
f 

di
ff

er
en

ti
al

 c
ro

ss
 s

ec
ti

on
s 

fo
r 

th
e 

re
ac

ti
on

 1
2C

(1
6 0

, a
)2

4M
g 

at
 e

ne
rg

ie
s 

T
 L

. 
So

lid
 c

ur
ve

s 
ar

e 
re

su
lt

s 
o

f 
pr

es
en

t 
ca

lc
ul

at
io

ns
 

by
 u

si
ng

 t
he

 p
ar

am
et

er
s 

in
 (

18
).

 
C

ir
cl

es
 a

re
 

ex
pe

ri
m

en
ta

l 
da

ta
 f

ro
m

 T
re

u 
et

 a
l.

 (
19

78
).

 

18
0 

~
 

~
 ~ p:: ~ '" ~ ~
 

I:>
 .... 



h
=

 1
7·

85
 M

eV
 

h
=

 1
9·

30
 M

eV
 

1
0

-1
 

1
0

-1
 

1
0

-2
 

'""
' 

'""
' 

I 
1

0
-2

 
... '" 

I ... '" 
~
 -5. 

0 
c: "t

:)
 

"- b "t
:)

 

18
0 

h 
=

 2
0·

70
 M

eV
 

~
 -5.
 1

0
-3

 
I 

I 
I 

I 
I 

c: 
0 

30
 

60
 

90
 

12
0 

15
0 

18
0 

~
 

h
=

2
1

.8
0

 M
eV

 
b "t
:)

 
.. 

. .
 

\ 
1

0
-

1 
1

0
-1

 

1
0

-2
 

1
0

-2
 

1
0
-
3
~
L
-
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
 

. 
0 

30
 

60
 

90
 

12
0 

15
0 

18
0 

1O
-3

~L
-'

--
-,

,,
,~

'-
-i

;;
--

'-
--

'~
"'

~~
;;

-'
--

--
--

'-
~;

;-
"-

--
--

'-
~ 

o 
30

 
60

 
90

 
12

0 
15

0 
18

0 

8
em

 (
de

gr
ee

s)
 

8
em

 (
de

gr
ee

s)
 



46 M. H. Ahsan et al. 

We have shown here that by using a simple a particle model and a simple 
potential-namely the real part of a modified gaussian type potential and a PWBA 
calculation-it is possible to obtain surprisingly good agreement with experimental 
data in both the small and large angle region. Gross features of the experimental 
differential cross section are reproduced by this simplistic model calculation. Obviously 
this calculation cannot explain any fine structure and hence cannot account for some 
of the discrepancies at intermediate angles. The agreement at these angles could 
possibly be improved by using distorted waves rather than plane waves for the 
initial and final relative motions. This would probably cause the direct 12C transfer 
angular distribution to be considerably damped at large angles. The large cross 
sections at backward angles would then have to be interpreted in terms of an exchange 
mechanism. Taking both the direct and exchange mechanisms into account and adding 
their amplitudes coherently may give rise to interference effects which can account 
for the more complex structure observed in the experimental angular distributions. 
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