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Exact cross sections for electron-electron collisions and electron-proton collisions in a superstrong 
magnetic field are derived using the QED formalism developed by Melrose and Parle. The 
results are compared with those of Langer who used a different QED formalism. The intended 
application is to collision processes in the accretion columns above neutron stars where magnetic 
fields of order 109 T are thought to be present. The particular case of electrons initially in their 
ground states, with one final electron in an excited state is described in detail; this process is 
thought to be the primary source of photons in X-ray pulsars, through subsequent cyclotron 
emission. 

1. Introduction 

Superstrong magnetic fields, up to of order 109 T, are known to occur on the 
surfaces of some neutron stars (Trumper et al. 1978; Meszaros 1984; Kirk .1984) and 
this has stimulated interest in the effect of such fields on physical processes (Kirk and 
Galloway 1982; Anzer and Borner 1983). The specific processes of electron--electron 
and electron-proton scattering are of particular"interest in models for X-ray pulsars 
(Langer 1981; Langer and Rappaport 1982; Allen et al. 1985). In these models 
the X rays are generated in an accretion column, where the energy supplied in 
the form of kinetic energy of the infalling matter is thermalised by inter-partich: 
collisions. Electron--electron and electron-proton 'collisions' in such a plasma have 
qualitatively different properties than in a plasma with a more modest magnetic field. 
The difference is greatest for collisions involving the electrons because the quantisation 
of the electron motion perpendicular to B leads to energy quanta greater than or 
comparable with the thermal energy. Moreover, gyromagnetic radiation causes rapid 
transitions so that normally one expects all the electrons to be in tbeir ground state 
(the 'lowest Landau orbital') where their motion is one-dimensional along B. 

Scattering from the ground state to the first excited state is of special interest as 
this leads subsequently to emission of a cyclotron quantum; this process is believed 
to be the ultimate source of the cyclotron photons in X-ray pulsars with cyclotron 
lines in emission (Melrose and Kirk 1986). 

In this paper the QED formalism for electron-photon (Melrose and Parle 1983 a, 
1983 b; hereafter MPI and MPHI) and photon.;..photon (Melrose 1983) interactions in 
a superstrong magnetic field is extended to treat electron--electron and electron-proton 
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interactions. In Section 2 this formalism is reviewed briefly, and some changes (to 
the normalisation of the states) and extensions are made. Electron-electron scattering 
is treated in Section 3 and electron-proton scattering in Section 5. In Section 4 the 
formalism used in the present investigation is compared with that used by Langer 
(1981), and the relation between his results and our results is discussed. In Section 6 
we comment on our results. 

2. Review and Extension of the Formalism 

The formalism developed in MPI and MPIII involves solving Dirac's equation for 
the exact wavefunctions in the presence of a magnetic field, second quantising the 
wavefunctions and thereby including the magnetic field exactly in a QED formalism. 
Here, this formalism is reviewed briefly and the changes and extensions being made 
to it are discussed. (Note: Except where otherwise indicated natural units fz = c = 1 
are used throughout.) 

(a) Scattering Operator 

The interaction picture is the most convenient for describing operators and 
wavefunctions when the system consists of several particles interacting with each 
other. The Hamiltonian of the system is decomposed into two parts; H = Ho + Hj 
where Ho is the Hamiltonian of the system without interaction and H j is the 
interaction. Operators in the interaction picture depend on time in the same way 
as the Heisenberg operator of the system in the absence of the interaction, and the 
change with time of the wavefunctions is caused entirely by the interaction, i.e. 

i alfij(t)lat = Hj(t)lfij(t). (1) 

Scattering processes are described by a scattering operator 8. The matrix elements 
of 8 form the scattering matrix which connects the initial state of the system to the 
final state (cf. Berestetskii et al. 1971, §65). If Ii) denotes the initial state, the result 
of the collision can be represented by 

l: 1f)<£18Ii), 
f 

where the summation is taken over the various possible final states If). The coefficients 
Sfi = <£181 i) form the scattering matrix. The squares I Sfi 12 are proportional to the 
probabilities of transitions to particular final states. 

(b) Quantised Particles 

An exact solution of Dirac's equation in the presence of a magnetic field was 
presented by Johnson and Lippmann (1949). Their solution has certain undesirable 
features: the wavefunctions are not eigenvalues of any sensible choice of spin operator, 
and they exhibit no symmetry between electron and positron states. In MPI a general 
solution of Dirac's equation was presented and several specific choices of the spin 
operator and spin eigenfunctions were discussed, with the favoured choice being J.L z 

which is the z component (i.e. the component in the direction of B) of the magnetic 
moment operator (Sokolov and Ternov 1968). The importance of this choice is 
discussed in Section 4. 
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The normalisation of the wavefunctions chosen here is different from that chosen 
in MPI. The wavefunctions lJiq(x, t), where q denotes the wavenumbers collectively, 
are normalised according to 

J v lJi~,(x)lJiix) d3 x = 8q'q' (2) 

where lJid is the hermitian conjugate of lJi. This leads to the density of states factors 
discussed below (cf. equation 12). The normalisation in MPI is given by MPI (20). 
It corresponds to the inclusion of an extra factor of (eB) -~ on the right-hand side of 
(2). 

In a magnetic field the perpendicular momentum of an electron is quantised. An 
electron wavefunction in cartesian coordinates and the Landau gauge is characterised 
by the following quantum numbers: the sign of the energy E, the continuous momentum 
along the field PZ' the principal quantum number labelling the momentum transverse 
to the field n = 0,1,2,3, ... , the spin quantum number s = + 1, and Py- The total 
energy is given by (-II =1= c =1= 1) 

Eq = (m2 c4 + P; c2 +2neB-IIc2)~ . (3) 

Except for the ground state (n = 0), each energy level has a two-fold degeneracy 
with respect to spin. 

When the magnetic field is nonzero, a finite V cannot be easily identified. A 
single particle can be isolated in the y and z directions within an area Ly Lz, but the 
corresponding length Lx is infinite. 

The quantum number Py is interpreted as specifying the x coordinate of the guiding 
centre of motion of the particle and it is desirable to average over this quantum 
number in calculating the transition rate. 

The average over x is performed as follows. With Lx = V / Ly Lz we have 

1 J~Lx 1 J~Lx dpy 
1=- dx=-- -

Lx -lL Lx _lL eB 
2 x 2 x 

_ 27T Lz Ly Joo dpy 

VeB -00 27T 
(4) 

In (4) we have used the result [MPI (63)] 

<x) = J:oo d~ xv~(~) = -EpyieB, (5) 

using the notation of MPI, with ~ = (eB)~(x+EpyieB). 
The normalisation lengths appearing in (2) as 8 q' q are to be interpreted according 

to 

8 q'q = 8E'E 8 s,,(27T/ Lz)8(P~- pz)(27T/ Ly)8(P~-Py)· (6) 
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In the Landau gauge our normalised wavefunction is of the form 

C1 vn-l(~) 

(eB)~ C; vnC~) 
l/J(x,t) = lexp(-iEEqt+iEpyy+iEpzZ) I, (7) 

(Ly L z)2 C; vn~l(~) 

C4 vn(~) 

with 

vn(~) = Hn(~) exp(-H2)(f,2 nn!)i, (8) 

where Hn(~) is a Hermite polynomial, and with 

4 

l: Cr Ci = O€'€ Os's' 
i=l 

(9) 

For the choice I-Lz of spin operator and for E = 1, s = -1, the constants in (7) are 
given by 

C1 pzPn 

C; ! -i E q Aq 

C; (4Eq E~ E q Aq)i -PnEq 
(10) 

C4 ipz Aq 

where 

!=exp!i</>(E,S)}, E q = Eq+E~, A q = E~+m; 

for E = 1, s = 1, the constants are given by 

C1 EqAq 

C; ! -ipzPn 

C3 (4Eq E~ E q Aq)i Aqpz 
(11) 

C4 iEqPn 

where E~ = (m2 +2neB)i and! is an arbitrary phase factor. Equations (10) and 
(11) correct an error in the denominator of MPI (45). 

A consequence of the choice of normalisation made here is that there is no initial 
density of states factor (i.e. Dj = 1) and the final density of states factor is, in place 
of MPI (34a), 

Dr = LzCdp/21T)Ly(dp/21T). (12) 
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The Dirac wavefunctions are second quantised and are written 

{jJ(x) = 1: o~l/J~(x) exp(-ieEq t), 
q.' 

(13) 

~(x) = 1: a~ l/J~(x) exp(i eEq t), 
q.' 

(14) 

with o~ = at, Oq = ~t creation and annihilation operators respectively for 
electrons and b~ = 0;, b q = a- creation and annihilation operators respectively 
for positrons; the function l/J = l/JiyO. The creation and annihilation operators satisfy 
anticommutation relations 

A. Ad ,.. Ad 
[aq, aq'l+ = [bq, bq'l+ = 8q'q' 

All other anticommutators are zero. 

q3 \ ql 

\ 
\ 

q4 q2 

Fig. 1. Feynman diagram for scattering between two electrons in a magnetic 
field. The set of quantum numbers describing the state of the ith electron is 
denoted by qi' 

3. Electron-Electron Scattering Calculation 

(a) Transition Rate 

(15) 

Electron-electron scattering is represented by the Feynman diagram in Fig. 1. The 
scattering operator for the interaction shown in Fig. I is calculated by constructing 
the single particle Hamiltonian for each of the initial particles interacting with the 
exchanged photon and then contracting over the electromagnetic operators. 

The single particle interaction Hamiltonian density is given in the notation of 
MPHI by 

HI(X) = - e: ~(x)A,.,.(x)y"" {jJ(x):. (16) 

In this expression A,.,.(x) is the operator for the radiation field, y"" is a Dirac matrix 
and the colons indicate that the normal order of the products within is to be taken. 

The terms of relevance in the expansion of the probability amplitude are as follows. 
Electron-electron scattering arises from the second-order term in the scattering 
operator, which can be written 

s = - f d4 Xl d4 X2[ - e: ~(X2)1,.,.cX2)Y"" 

x {jJ(X2) :][ - e: ~(Xl) • .t(Xl)Yv {jJ(Xl): 1, (17) 

where the bar indicates that a contraction over the operators indicated is to be 
performed. 
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The contraction over the electromagnetic field operators 

h f d4 k h AI"(x) = --4 exp( -i kx)AI"(k) 
(27T) 

is related to the photon propagator Dl"v(k) by 

~V(k') = -i(27T)4o\k+ k')DI"V(k). (18) 

If, but only if, the dispersion of the plasma is unimportant then one may choose the 
form 

DI-'v(k) = Eol k- 2gl"v' (19) 

with gl"v = diag(l, -I, -I, -I). (Gauge invariance implies that gl"v could be 
replaced by gl"v - kl" k,,1 k 2 without affecting the physical results.) The effect of a 
medium is neglected in the present paper. 

The details of the calculation of the S-matrix elements are presented in Appendix 1. 
The S-matrix is given by (AS) where the initial electrons are labelled with subscripts 
I and 2 and the final electrons with subscripts 3 and 4. 

The transition rate per particle into a unit final momentum interval is related to 
the matrix element Sfi by 

dWfi = T-li Sfil 2 n Dj n Dr, (20) 

where T represents time, and Dj and Dr are the density of states factors. Equation 
(AS) depends on the initial positions of the two particles through the functions 
d-:;: (k). It is desirable to average over the positions of the initial particles and 
integrate over the positions of the final particles to form d wfi. One has 

d W = T- l L f dpyl L f dpy2 L f dpy3 L f dpY4 
fi Y 27T Y 27T Y 27T Y 27T 

x( 27T )21Sfi12 Lzdpz3 Lzdpz4. 
Ly Lx eB 27T 27T 

(21) 

After performing the integrations one has 

e4 

d wfi = (27T)2 V dPz3 dPz4 O(El + ~ - ~ - E4)o(Pzl + Pz2 - Pz3 - Pz4) 

x {f d4k O(Pzl - Pz3 + kz)o(El - ~ +w) 

x I [r3l (- k)]I"[r42(kW Dl"v(k) 12 

+ f d4 k O(Pz2 - Pz3 + kz)O(~ - ~ +w) 

x I [r32 ( - k)]I"[r4l (kW Dl"v(k) 12 
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- _1_ fd4 k fd4 k' 8(Pz2 - Pz3+ kz)8(~- ~+w) 
27TeB 

X8(Pzl - Pz3 + k~)8(El - ~ +w') 

x (exP{ (if eB)(kx k')z J ([r32 ( - k)]fL[r41 (k)t DfLV(k»)* 

X([r31 ( - k'w[r42(k')]fi Dafi(k'») 

+ exp{ (-if eB)(kx k')zJ([rd - kw[r41 (k)]fi Dafi(k») 
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X([r31 ( - k')]fL[r42(k')t DfLV(k'»)*)} , (22) 

where the integrals extend over all parameter space and the superscripts + +, 
indicating that the r functions are those appropriate for positive energy particles 
(electrons), have been omitted for convenience. 

(b) Specific Results for Neutron Star Environments 

In order to proceed further it is necessary to use explicit expressions for the 
wavefunction appearing in the transition rate. A major simplification occurs if one 
need consider only the lowest Landau orbitals, and this is just the case which is 
relevant for neutron stars. 

In a standard model for an X-ray' pulsar (see e.g. Meszaros 1984) the magnetic 
field near the surface of the neutron star is within an order of magnitude of the critical 
field Be = m2 c21fze = 4·413x109 T. In such a field electrons radiate away any 
perpendicular momentum they acquire very rapidly, so that one expects all electrons 
to be in their ground state. Thus the relevant case for scattering is when both electrons 
are initially in their ground states (n = 0). Here we consider transitions such that 
only one of the final electrons is in an excited state (n =1= 0). Electrons in their ground 
state have spin s = - 1. An electron can undergo a spin flip during the collision so 
that in its final state it has s = 1 or the electron can jump to a higher state with no 
spin flip. The transition rates for both possibilities are derived below. 

An expression for the function r ab(k) appearing in (22) in terms of the constants 
Ci has been given in MPI (50). In deriving the collision cross section we use this 
expression to write r ab(k) in terms of the particles' energies and momenta. 

The transition probability (22) involves integrals of two types. The first type 
of integral appears in the first two terms of (22) involving squares of r function 
products. It is of the form 

fa = f d4 k 8(Pzl - Pz3 - kz)8(El - ~ +w) 

x(E6 k4)-1(KI)n exp(-2KI)(1ln!) , 

where Ki = ki12eB, which may be reduced to 

2 fOO xn exp( - 2x) 
fa = (27T/Eo n!4eB) dx 22' 

o (x+ Q ) 
where 

Q2 = (l/2eB){(pzI-Pz3i-(~-EliJ. 

(23) 

(24) 

(25) 
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The integral la has been discussed by Langer (1981) (see his equation 18) and by 
Robinson (1986), who expressed it in terms of generalised Dnestrovskii functions 
Fq,r(z) (Dnestrovskii et af. 1964). After some minor manipulation Robinson's equation 
(85) can be written (for q = n+ 1, r = 1) 

In = - r(n+ I)Fn+ I,I(z)21- n 

= J: dx xn exp(-2x)(x+!z)-2,· (26) 

where r( n) is the gamma function. Thus the integral becomes 

I - , F ( )21- n. n - - n. n+ 1,1 Z , (27) 

for z = 2Q2 this is of the form la' Discussions on and graphs of Fq,r(z) were 
presented by Dnestrovskii et af. (1964) and Bomatici et al. (1983). 

The second type of integral appears in the crossed term in (22) and is of the form 

Ib = J J d4kd4k' eXP(e~(kXk')z) exp{-in(ljJ'-ljJ)J 

(K'2)nI2 
x(KI)nI2 exp( - KI) ,;, ,~ exp( - K?) 

x8(pZI - Pz4 - kz)8(pzI - Pz3 - k~)8(~ - ~ +w)8(EI - ~ +w'). (28) 

The angle ljJ specifies the relative direction of k and the magnetic field B; 

ljJ = tan-I(kylkx ) , k = (k1 cos ljJ, kl sin ljJ, kz). 

Using 

exp{ (i/ eB)(kx k') z J = exp{ (i/ e B) kl k~ sin(ljJ' -ljJ) J (29) 

and (Gradshteyn and Ryzhik 1980; 8.411.1) 

J n(x) = _1 J7T exp( -i ne +i zsin e) de, 
271' -7T 

(30) 

(28) becomes 

Ib = 71' J dx J dy J n(2(xy)t)(xy)nI2 exp( -x-y)(x+ Q2)-I(y+ Q'2)-I, (31) 

with 

Q'2 = (PzI-PZ4i-(~_~)2 
2eB 

The solution to this integral was discussed by Langer (1981) [cf. his equation (CIO)]. 



Collisions in Strong Magnetic Fields 97 

(c) Collision Cross Section 

A collision cross section is usually defined as the transition rate divided by the 
incident flux of particles. Here we define the cross section in terms of a uniform 
beam of incident particles, with the uniform beam formed by averaging over the x 
coordinate of the guiding centre positions of the initial particles. This average has 
already been performed to obtain (22) above. Then, with both incident electrons in 
their ground states and with the particle normalisation adopted above of one particle 
present in a box of volume V, one has 

incident flux of particles = ~/ V, 

where ~ = Pzl/ El - Pz2/ ~ is the relative velocity of approach of the incident 
electrons (Bjorken and Drell 1964; §7.4). So one obtains the result that the cross 
section is given by 

do-fi = dWfi V/~. (32) 

A problem arises in defining the flux when the particles are not in their ground 
states. Classically, the perpendicular component of momentum of individually 
spiralling particles in a uniform beam does not cause any perpendicular component 
of the momentum or velocity of the beam. Consequently, it is desirable to continue 
to define the cross section in terms of the relative velocities in the z directions, as for 
the case n = O. 

Using (22), (24) and (31) one can derive the following expression for the cross 
section (note that a = e2/41TEo in the units used here): 

a221T 
do-fi = -- dPz3 dPz4 8(El + ~ - ~ - E4)8(Pzl + Pz2 - Pz3 - Pz4) 

~eB 

E1+m ~+m (~+E~)(E~+m) E4+m 1 
x---- ---

2El 2~ 4~ E~ 2E4 n! 

x(fOO dx xn exp(-2x) [R f foo dx xn exp(-2x) [R]2 
o (x+ Q2)2 a + 0 (x+ Q'2)2 b 

-2 foo dx foo dy (xy)"i n e2xp( - X~y) J n(2(xy)~)[Ra Rb]); (33) 
o 0 (x+ Q )(y+ Q' ) 

Ra = P31 P42 - 031 °42 , 

P qq, = l+(Pzq pzq./Eq Eq')' 

Rb = P32 P41 - 032 041 ; 

Oqq' = pzq/ E q + pzq./ E q' . 

(34a, b) 

(34c, d) 

Equations (34a, b) apply when there is no spin flip during the interaction. For the 
case when a spin flip occurs, they are replaced by 

I 

(2neB)"i (0 P - P31 °42), R - 31 42 a - A3 

I 
(2neB)"i 

Rb = (032 P41 - P32 041 ), (35a, b) 
A3 
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4. Comparison with Previously Published Results 

An expression for the electron-electron cross section has been derived previously 
by Langer (1981). Referring to the equations in Langer's paper, the cross section is 
given by (C8), using (C4) and (C5). We note that Langer quotes the cross section 
integrated over the z momenta of the final particles. There are differences between 
the results of Langer and the present results brought about by a difference in the 
choice of the spin operator. 

Langer used the wavefunctions of Johnson and Lippmann (1949) which are given 
by (7) with, for an electron with 'spin down', 

C1 0 

c; Eq+m 

C:J {2E/Eq+m)J~ -iPn 
(36) 

C4 -pz 

and, for 'spin up', 

C1 
rEq;m 

c; 

C3 {2Eq(Eq+ m)J~ I Pz 

C4 iPn 

(37) 

For an electron in the ground state (n = 0, S = -1) equations (36) and (10) are 
identical if the arbitrary phase factor is chosen to be f = i, consistent with the 
earlier assertion that all spin operators yield the same expression for the ground-state 
wavefunction. 

On using the Johnson and Lippmann wavefunctions defined by (7), (36) and (37) 
and our method of treating the interaction, the cross section derived by Langer (1981; 
equation C8) may be rederived. 

The Johnson and Lippmann electron wavefunctions have certain undesirable 
properties. In particular there is no symmetry between electron and positron 
wavefunctions, and the spin operator does not commute with the Hamiltonian 
when the self-energy interaction is included. A further disadvantage is that these 
wavefunctions are not covariant under Lorentz boosts parallel to the magnetic field 
and so the spin of a particle is not the same when measured in different reference frames 
(A. J. Parle, personal communication). The wavefunctions used in the calculations 
in the present paper are not subject to these limitations. Indeed, only for the spin 
eigenfunctions chosen here are the spin eigenvalues independent of time (Sokolov and 
Temov 1968). 

However, a meaningful comparison between the results of Langer and the present 
results can be made if we sum over the two possible spin states of the final n =1= 0 
electron. The total cross section 

da-T = da-fi(s= -1)+da-fi(s= + 1) 
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is the same irrespective of the choice of spin operator as any choice of wavefunction 
must lead to equivalent results when one sums over all spin states. In particular, the 
sum of the cross sections derived using the Johnson and Lippmann eigenfunctions 
should be identical to the sum of the cross sections derived here. 

Specifically, the quantity 

F = 1: [r q'ikw'[rr'r(k)]*v 
s,s' 

(38) 

has the same form irrespective of the choice of spin eigenfunctions. Using the results 
derived above, dUT can be written as sums of products of r functions for ground 
state particles and terms of the form (38). The details of the expansion are outlined 
in Appendix 2. 

Thus it is shown that the sum of the cross sections derived by Langer using 
the Johnson and Lippmann eigenfunctions is equal to the sum of the cross sections 
derived above. Of course, it is also possible to derive this particular result by explicitly 
summing the cross sections derived by Langer and those derived in the present work 
"and comparing the results. A lengthy and tedious calculation leads to the same 
conclusion as drawn above. 

5. Electron-Proton Scattering 

(a) Introduction 

In the nonrelativistic limit, the splitting between the proton energy levels 
corresponding to transverse momentum is smaller than the electron energy level 
splitting fzlle by the electron-to-proton mass ratio m/ M. In an accretion column 
above a highly magnetised neutron star the proton gas can have a significant component 
of perpendicular momentum-the average value of n can be several hundred. In spite 
of the high n values, the proton is treated quantum mechanically in the following 
calculation. 

The cross section is calculated for a collision where the electron remains in the 
ground state and the proton makes a transition upon scattering from n to n'. (We 
note that if the final electron energy is less than the binding energy of hydrogen in 
a magnetic field, then the theory is not valid as the final particles may not be free 
particles. ) 

(b) Scattering Equations 

The S-matrix equation is calculated from the interaction Hamiltonian in a similar 
manner to that used for electron-electron scattering. One has 

s = - J d4 -X2 J d4xl[-e:~(-X2).l,,(-X2)'Y" 
x {jJ(-X2):][e: ~p(xl)A~(Xl)'Yv {jJp(Xl):]' (39) 

where the subscript p will be used to indicate a proton wavefunction or other function 
constructed from proton wavefunctions. The expansion of this function is outlined in 
Appendix 1. We label the initial and final protons with subscripts 2 and 4 respectively 
and the initial and final electrons with the subscripts I and 3. Using the results 
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where 

.I~ = Pn' (P31 R~2 - ~1 P~2)' 
A4 
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.I; = Pn (- P31 0~2 + ~1 P~2); (49a, b) 
A2 

( ... ) d - ( 1 ) e4 1 1 dPz3 dP E' A fCO 1 
1lI (T fi oS2 = + ,S4 = + 1 = - 2" - - z4 LI dx -- 2 2 

~ EO 167T eB 0 (x+ Q" ) 

x {Jg(x)J~,-=-1n(x).It +Jg(x)J~,_ ix).I;' J 2, (50) 

where 

.I~' = P31 P~2 - 0 31 ~2' 

6. Discussion 

'C'''' Pn' Pn (P pP rl_ OP) 
~2 = -- 31 42 -'"'31 42' 

A4 A 2 
(51a, b) 

We have presented calculations for the transition rates or cross sections for Coulomb 
interactions between electrons and electrons and between electrons and protons in 
a superstrong magnetic field. The effect of the magnetic field is taken into account 
exactly, through the use of solutions of the Dirac equation which include the magnetic 
field. 

The results presented above extend the earlier work on electron-proton scattering 
by Ventura (1973) and Pavlov and Yakovlev (1976). The electron-proton cross 
section calculated by Ventura (1973) only applies for nonrelativistic velocities and 
a stationary proton. Pavlov and Yakovlev (1976) included proton motion only in 
the nonrelativistic limit. Langer (1981) calculated fully relativistic cross sections 
for both electron-electron and electron-proton Coulomb interactions and our results 
are compared with those of Langer in Section 4. Our results differ from those 
of Langer due to our choice of spin eigenfunctions. We choose eigenfunctions of 
the z component of the magnetic moment operator, called 'transverse polarisation' 
by Sokolov and Ternov (1968), whereas Langer (1981) used the wavefunctions of 
Johnson and Lippmann (1949). The advantages of our choice of spin eigenfunctions 
are discussed in Section 4. On summing over spin states, where appropriate, our 
expressions and those of Langer give equivalent results. 

Our interest is in processes in accretion columns above strongly magnetised neutron 
stars. One then expects most of the electrons to be in their ground state, and we have 
considered only processes in which the electrons are initially in their ground state. 
For electron-electron interactions, if the relative velocity is below the threshold for 
excitation of one of the electrons to the first excited state then, due to the constraint 
of the motion to one dimension, the electrons can only either retain or exchange 
their momenta. In this case electron-electron interactions do not allow the electron 
distribution to relax, and one can say the electron-electron collisions are strongly 
suppressed compared with the non-magnetised or weakly magnetised cases. Coulomb 
interactions with excited electrons are of particular importance in the generation 
of radiation: a collisionally excited electron has a high probability of relaxing to 
its ground state through emission of a cyclotron photon. The importance of this 
two-stage process in generating photons has been emphasised by Melrose and Kirk 
(1986). 
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The spacing between energy levels for a proton is less by a factor of m/ M than 
for an electron, and in accretion columns protons are expected to be in moderately 
high (n = a few hundred) states. Although one could treat such protons classically 
for many purposes, in this work general results are presented in which the protons 

. are treated quantum mechanically. 
As electron-proton interactions are not as suppressed by the magnetic field as 

electron-electron interactions, electron-proton interactions dominate in tending to 
. thermalise electron and proton distributions. Close to the threshold required for 
excitation, the electron-electron cross section is suppressed compared with the 
electron-proton cross section which is relatively flat near threshold. Mathematically, 
this is due to the 'crossed' terms appearing in (22). 

The wavefunction for two electrons must be completely antisymmetric under 
interchange of the electrons. Suppose the electron spins are parallel, so that the 
spin wavefunction is symmetric and the space wavefunction is antisymmetric. We let 
ljJl (xl) and ljJix2) be the individual wavefunctions. The total wavefunction for the 
two-electron system is ljJ = ljJl (xl)ljJ2(x2)-ljJl (x2)ljJ2(xl)' The Coulomb potential for 
the two-electron system is given by 

e 2 2 2 J . 
V ="2 dXl dX2[lljJl(xl)ljJ2(x2) 1 + 1 ljJl(X2)ljJ2(xl) 1 

-lljJl (xl)ljJf(X2)ljJ2(X2)ljJ1(Xl) + complex: conjugate 1 ]/(4'7TEO 1 Xl 21), 

where xl,2 = xl - x2' The final two 'crossed' terms inside the square brackets (called 
interference terms) provide a negative contribution to the potential. The reduction 
in the Coulomb potential between the two electrons from what it would be in the 
absence of interference is sometimes ascribed to a repulsive 'exchange force'. 

We have considered transitions with and without a spin flip. For both electron
electron and electron-proton interactions, transitions without a spin flip are more 
important than those with a spin flip. 

One notable limitation on our results is that the use of plane wavefunctions means 
that our results are invalid at sufficiently low relative velocities. (The cross sections 
diverge as the relative velocity Vr approaches zero.) Electrons and protons tend to 
form hydrogen when the relative velocity implies an energy comparable with the 
binding energy of hydrogen. 

We have also neglected 'shielding' effects in the plasma due to our use of the 
vacuum form of the photon propagator. It is known in the classical case that the 
effect of the 'shielding' is to cut off the effect of the Coulomb interactions for impact 
parameters greater than about one Debye length. It is reasonable to suppose that 
the effect of 'shielding' is similar in the quantum case, but this point has yet to be 
examined in detail. 
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Appendix 1. Calculation of the S-matrix 

In the QED formalism developed in MPI and MPHI a vertex function was 
introduced as follows. Equation (17) involves products of the form: {b(x)yJl. ~(x): . 
From (13) and (14) we have 

: {b(x)yJl. ~(x): = ~ exp(i EEq t-i EEq, t): a~ a~ : 
q,E 
q',E' 

x[IjJ~(x)yJl. tjJ~(x)]. (AI) 

The vertex function y~~(k), defined by 

, 1 J 3 - , [y~,~(k)]f1 = V d x exp( -i k. x)tjJi(x)yJl. tjJ~(x) 

[cf. MPI (46)] is used to write 

-, J ~k , tjJ~,(x)yf1 tjJ~(x) = --3 exp(i k. x) V[y~,~(k)]Jl. , 
(21T) 

where V is the volume of the system. 
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The vertex function was shown in MPI to be proportional to a gauge independent 
quantity r;~(k), given by [cf. MPI (50)] 

['Y~~(k)]11 = d~~(k)[r;~(k)]I1, 

with d~,~(k) given by, with the present wavefunction normalisation, 

dE'E (k) _ I (i kiEP +E'P'») q'q - exp y y 
VLzLy 2eB 

X 21T8(Epy -E' P~- ky )21T8(Epz-E' p~- kz)· (A2) 

Then using 

exp{ -i t(EEq-E' Eq')} = f dw 21T8(EEq-E' Eq'-w) exp(-iwt) , (A3) 
211' 

one obtains [cf. MPIII (11)] 

"A f d4 k : ljJ(x)'Yl1ljJ(x): = ~ --4 exp( -i kx) 
q E (211') 
q'E' 

~E' AE dE' E 1:>( , )[ ...e' E (k)]11 X V: aq' aq: q'ik)21TU EEq-E Eq' -w .I q'q . 

Thus the scattering operator S is given by 

A • 2(~ f d4 k A' A s= Ie ~ -- : liE aE:V 
Eq (211')4 q' q 

E' q' 

x d~~( - k)8(EEq-E' Eq'+w)[r;~( - k)]I1) 

X(E~' : li~:, O~': V d~:,~,(k)21T 
E'II tf" 

X8(E" Eq',-E'" Eq',,-w)[r~:,~,(knv )<211')4 Dl1ik). (A4) 

Labelling the initial electrons with subscripts I and 2 and the final electrons with 
subscripts 3 and 4, the annihilation and creation operator product required to calculate 
the scattering matrix element is 

(01 lit. ,.. ~E' AE ~E'" "E" Ad Ad 1 
a3 a4 : aq' aq:: aq'".aq": al a2 0) = 

(010304: (O~+ bq')(Oq+ b:):: (O~"+ bq''')(oq'' + b~,): ot O~ 10). 
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The contractions which give a nonzero contribution to the scattering operator are 
, . ,.--"\. 

<0 I A A Ad Ad Ad A Ad Ad 10) a3 a4 : aq", aq" : : aq, aq: al a2 
'-----' • J 

, .~ 

<0 I A A Ad A Ad A Ad Ad 10) - a3 a4: aq", aq" : : aq' aq: al a2 . 
~. J 

These nonzero contractions result in the scattering matrix element 

. 2(J d4k ++ 53412 = Ie --4 V d32 (- k)27T 
, (27T) 

x8(F; - ~ +w)[rj;+( - k)]J! V dt.+(k)27T 

x8(EI-E4 -w)[rt.+(kW(27T)4 DJ!v(k) 

J d4 k + + [ + + J! 
- --4 Vd31 (-k)27T8(EI-~+w) r 31 (-k)] 

(27T) 

x V dt2+(k)27T8(F; - E4 -w)[rt2+(kW DJ!v(k)(27T)4). (A5) 

This result has also been derived by A. J. Parle (personal communication). When 
one of the incident particles is a proton the scattering operator has the form (39). 
Labelling the initial and final protons with subscripts 2 and 4 respectively and the 
initial and final electrons with the subscripts 1 and 3 respectively, the annihilation 
and creation operator products required to calculate the scattering matrix are 

where 

A A Ad A A Ad Ad A A Ad Ad Ad <01 a3 d4 : (d q' + 9q')(dq+ 9 q):: (a q,,, + bq,,,)(aq" + bq,,): d 2 aIIO), 

a~ = d t = proton creation operator, 

a q = at = proton annihilation operator, 

9~ = d; = antiproton creation operator, 

9q = J; = antiproton annihilation operator. 

The contractions which give a nonzero contribution to the scattering operator result 
in the term in the S-matrix 

~\. d 'A d 
<01 03 d4 : cf!. dq:: Oq''' 0q" : ~ 0110). 

l ~. I 

This result gives the expression for the transition probability given by (40). 

Appendix 2. Spin-dependence of dUT 

The cross section (33) can be separated into three terms, proportional to R:, R~ 
and Ra R b, respectively. Thus dUT also separates into three terms. The factor of the 
first term of dUT that depends on the choice of spin eigenfunction is given by 

C = I rg l r~2.- r~1 r!21~=1 + I rg l r~2 -r~1 r!21~=_I' (A6) 



Collisions in Strong Magnetic Fields 107 

where the argument of the r functions has been omitted for convenience. Equation 
(A6) reduces to 

c = (r~2i[(r~li+(r~1)2] 

2ro r3 [rOU r 3u rOd r 3d] - 42 42 31 31 + 31 31 

+(r~2)2[(r~li +(r~1)2], (A7) 

where 

r~l = [r31(k)]~=1' r~1 = [r31(k)]~=_1' etc.; 

r~2 and r~2 are independent of the choice of spin eigenfunction as particles 1, 2 and 
4 are in the ground state. The terms in square brackets in (A 7) are all of the form 
(38) and therefore are independent of the choice of spin operator. The result for the 
second term in the cross section follows easily from the above equations and it is also 
independent of the choice of spin eigenfunction. The third term in the cross section 
equation, of the form 

([rd - k)]I![r41(k)t DI!Jk)*([r31 ( - k'w[r42(k')]fi Da/3(k') , 

when summed over the spin of the final excited electron, can also be reduced to a sum 
of terms containing products of r functions for ground state particles and expressions 
of the form (38). Thus do-T is independent of the choice of spin operator. 
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