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Abstract 

We present results of a study of the polariton modes, retarded or non-retarded, in superlattices 
consisting of alternating layers of uniaxial crystalline and isotropic materials. Novel features not 
existing in superlattices consisting solely of isotropic materials are predicted. 

1. Introduction 

The advent of artificial superlattices and their promlsmg future as new device 
materials has stimulated interest in the study of polariton modes in layered media 
(Camley et al. 1983; Grunberg and Mika 1983; Camley and Mills 1984; Shi and 
Tsai 1984, 1985; Wen et al. 1985). Until now, only superlattice media consisting of 
isotropic materials have been treated theoretically, ~hile experimentally, more often 
studied are superlattices consisting of anisotropic materials. We give, in the present 
article, calculations on polariton modes in a structure of alternating layers of uniaxial 
crystalline and isotropic materials. We assume the modulation wavelength to be much 
larger than the lattice parameters, so that the continuum approximation applies. In 
the following, we give firstly a general discussion (Section 2), then results in cases 
of special crystal axis orientations (Section 3), and thirdly non-retarded solutions 
(Section 4). We also predict possibilities for new experimental observations. 

2. General Discussion 

We consider a superlattice consisting of alternating layers of uniaxial and isotropic 
media of thicknesses d a and db respectively. Without loss of generality, the crystal 
axis c of the uniaxial layers may be assumed to lie in the xz plane at an angle () 
to the z-axis which is in the direction of superlattice modulation (see Fig. 1). The 
dielectric tensor of the b-layers (i.e. the uniaxial) can then be written as 

Exx o Exz 

Eb = I 0 Eyy o (1) 

Ezx o E zz 
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Fig. 1. Superlattice composed of 
isotropic layers a and uniaxial 
crystalline layers b of thicknesses d a 
and db respectively. In the general 
case, the crystal axis c of the b-layers 
is at an angle e with respect to the 
direction of superlattice modulation. 
The x-axis is chosen to lie in the plane 
fixed by z and c. 

. 20 20 Ezz=Elsm +EllcOS , 

Exz = Ezx = (EII-El)COSO sinO, (2) 

with E II and E 1 being the dielectric constants in the directions parallel and perpendicular 
respectively to the crystal axis c. We consider both kinds of layers to be nonmagnetic 
with permeabilities I-t a = I-t b = l. 

Two types of electromagnetic wave are allowed to propagate in an uniaxial solid, 
namely ordinary waves (O-waves) with the electric field perpendicular to the plane 
containing the crystal axis c and the wavevector k, and extraordinary waves (E-waves) 
with the electric field lying in that plane. Their wavevectors satisfy, respectively, the 
equations 

k 2 + k2 + k 2 = C- 2W 2E (0) x y z l' (3a) 

E1I(kx sin 0 + kz cos 0)2 +E~ I(kxcos 0 - kz sin oi 

+E~I k; = C- 2w2 (E) . (3b) 

Writing i kz = ±aO,E' equations (3) imply that 

ao = (k2 -El C-2( 2)! , (4a) 

_ +. _ -I -I ! 2 2 _ -2 2 ! a E - _I( Ezz Exz kx)+ IEzzi El! Ell kx +Eziky Ell c w)J , (4b) 

with k 2 = k;,+ k~. Writing the interface modes with fields confined in the immediate 
neighbourhoods of the interfaces in the form 

E(x, y, z, t) = E(z) exp!i(kx x + kyy-wt)J, (5) 
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then in the b-Iayers 

Eb(z) = E~+ exp(aoz)+E~_ exp(-aoz) 

+{E~+ exp(a~z)+EL exp(-a~z)Jexp(ia~). (6) 

The term aE = a~ ±i a~ for the electric field in the b-Iayers is, in general, a 
superposition of both 0 and E fields. Since E~± is parallel to k X c, one can write 

E~± = ~~(ky cos e, - kx cos e +i ao sin e, - ky sin e). (7) 

On the other hand, since E~± lie in the plane containing k and c, the condition for 
a plane wave D. k = 0 together with D = E. E implies that 

E~± = ~;(kx,8± -c-1w sine, ky ,8±, _c-1w sine+(a~ +ia~),8±), (8a) 

,8± = (C-1WE1)-1{ kx sine +(a~ +ia~)coseJ. (8b) 

In the isotropic layers, Eo may lie in any direction. The condition '\l. Eo = 0 
gives the relation among its components 

Eo±z = +ia;;-l(kxEo±x+kyEo±y), 

where 
a o = (t2 -Eo C- 2w2)!. 

Superlattice periodicity in the z direction demands 

E(z+ nd) = E(z) exp(i qnd), 
where 

E(z) = Eo_ exp(-aoz)+Eo+ exp(aoz), 

= E~+ exp(ao z)+ E~_ exp( -ao z) 

+ {E~+ exp(a~ z)+ EL exp( -a~ z) J exp(i a~ z), 

= [Eo_ exp{ -ao(z+d)J +Eo+ exp{ao(z+d)J] 

x exp( -i qd), 

with the corresponding magnetic field given by 

H(z) = H 0- exp( -ao z) + H 0+ exp(ao z), 

= H~+ exp(ao z) +H~_ exp( -ao z) 

+{H~+ exp(a~z)+HL exp(-a~z)J exp(ia~z), 

= [Ho_ exp{ -aa<z+d)J +Ho+ exp{ao(z+d)J] 

x exp( -i qd), 

(9) 

(10) 

(11) 

0< z < do 

- db < z < 0 (12) 

-d < z < -db' 

0< z < do 

- db < z < 0 (13) 

-d < z < -db' 
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One has with aid of Maxwell's equations 

H~± +(waa)-ii c{ kx ky Ea±x +(k;-a!)Ea±y, (a!- k;)Ea±x - kx ky Ea±y' 

+iaaCky Ea±x - kx Ea±y)} ' 

H~± = w- i c~~ {(a~- k;)sinO +i kxao cosO, kikx sinO +iao cosO), 

- e cos 0 +i a o kx sin O} , 

H~± = ~;{ - ky cosO, kx cosO -(a~ +iaE)sinO, ky sinO). 

(14) 

(15) 

(16) 

It is easy to see that HE and H O are perpendicular and parallel to the plane containing 
k and c respectively. 

Continuity of the tangential components of E and H at z = ° and - db gives 
eight equations for the eight unknowns: ~~±, ~~±, Ea±x and Ea±y. After eliminating 
Ea±x and Ea±y' we are left with the following four equations: 

~~ { - ky cos 0 exp( -ao db +i qd) + A+} +~~ { - ky cos 0 exp(a o db +i qd) + At} 

+~! { -(kxf3+ - c-iw sin 0) exp( -ia~ db -aE db +i qd) + Bt} 

+~~ {-(kx f3_- c-iw sinO) exp( -ia~ db +aE db +i qd) +B+} = 0, 

~~ { - ky cos 0 exp( -i qd) + A= exp( -ao db)} 

+~~ { ~ ky cos 0 exp( -i qd) -A~ exp(ao db)} 

+~! { -(kxf3+ - c-iw sin 0) exp( -i qd) +B~ exp( -ia~ db -aE db)} 

+~~ { -(kx f3_ - c-iw sin 0) exp( -i qd) + B= exp( -ia~ db +aE db)} = 0, 

~~ {(kx cos 0 +i a o sin 0) exp( -ao db +i qd) + ct} 

+~~ {(kx cosO -i a o sin 0) exp(ao db +i qd) + C+} 

+~! {- kyf3+ exp( -ia~ db -aE db +i qd) +Dt} 

+~~{-kyf3_ exp(-ia~db-aEdb+iqd)+D+} = 0, 

~~ {(kx cos 0 +i ao sin 0) exp( -i qd) + C~ exp( -ao db)} 

+~~ {(kx cosO -iao sin 0) exp( -i qd) + C= exp(ao db)} 

+~! { - kyf3+ exp( -i qd) + D~ exp( -i a~ db -aE db)} 

+~~ {- kyf3_ exp( -i qd)+D= exp( -ia~ db +aE db)} = 0, (17) 



Polariton Modes 197 

where 

A;t = ky cosOcosh(aa da) ±[i C21L1-2(E aa a)-lsinh(aa da) 

x {kx kiat-a;)sinO+i kyao(k2-a;)cosOJ], 

A± = ky cos 0 cosh(aa da)±[i C21L1-2(E aa a)-lsinh(aa da) 

2 2 .. 2 2 
X {kx kiao-aa)sinO-ikyao(k -aa)cosOJ], 

B;t = (kxf3+ - C-11Ll sin O)cosh(aa da)±[i c(lLIEa a a)-lsinh(aa da) 

x {(a;-k;)(a~ -ia~)sinO-kya; cosOll, 

B± = (kx f3_ - C-11Ll sinO)cosh(aa da)+[i c(lLIEaa a)-lsinh(aa da) 

x {(a;-k;)(a~ +ia~)sinO-kya; cosOJ], 

c;t = -(kx cos (J +i ao sin O)cosh(aa da)+[i(Ea aa)-lsinh(aa da) 

X {(-Eaat +Ea k;-El k;) sin 0 +i kxEaaO cosOll, 

c± = -(kx cos 0 -'-i ao sin O)cosh(aa da)+[i(Eaaa)-lsinh(aa da) 

x {( -Eaat +Ea k;-El k;) sin 0 -i kxEaaO cos OJ], 

D;t = kyf3+cosh(aa da)+[i C-11Ll(Eaaa)-lsinh(aa da) 

x {kx kia~ -ia~)sin (J- kya; cos OJ], 

D± = kyf3_ cosh(aa da)+[i C-11Ll(Eaaa)-lsinh(aa da) 

x {kx kia~ +ia~)sinO- kya; cos OJ]. (18) 

The condition for the existence of a nontrtvial solution of equations (17) yields an 
implicit dispersion relation of polaritons with k parallel to the interfaces. It is, in 
general, very complicated and at an arbitrary orientation ofthe crystal axis, so that there 
no longer exists pure transverse magnetic (TM) and/or transverse electric (TE) modes. 

3. Certain Special Cases 

Let us consider now three specieal cases: 

(1) 0 = 0 (c perpendicular to the interfaces). Without loss of generality one may 
set ky = 0, then 

a~ 0 , I (/)! k2 -2 2 1 aE = El Ell 2( -Ell C 1LI)1:, (19a) 

Q _. -l( )!(k2 -2 2)! 
I-'± = +1 ClLI Ell El 2 -Ell C 1LI 2. (19b) 
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TM modes: For such modes, E~ = ~~(o, - kx' 0) and ~~ = o. The first two 
equations of (17) yield with the aid of (19) 

{ - kx .8+ exp( -a~ db +i qd)+ Bt JI- kx .8_ exp(i qd) + B= exp(a~ db) J 

- {- kx .8_ exp(a~ db +i qd) +B:;:: j{ - kx .8+ exp( -i qd) 

+B~ exp(-a~ db)J = 0, (20) 
where 

B;l; = kx .8+ cosh(a o do) ±i c(W€o)-l ao kxsinh(ao do), (2Ia) 

B± = kx .8_ cosh(ao do) ±i c(W€o)-l ao kxsinh(ao do). (2Ib) 

The last two equations of (17) become identities in this case. Substitution of equations 
(21) into (20) leads to the dispersion relation 

cos(qd) = cosh(a o do)cosh(a~ db) 

+(2ao a~ €o €1)-1(€~ a~ +€~ ai) sinh(a o do)sinh(a~ db). (22) 

Equation (22) is similar to the dispersion relation of TM waves in a superlattice with 
isotropic b-Iayers of dielectric constant €1 (Shi and Tsai 1984, 1985). 

TE modes: In contrast to the TM case, ~~ = 0 and the last two equations of 
(17) lead to 

cos(qd) = cosh(a o do)cosh(ao db) 

+ i(ao 1 a o +a;;-1 ao)sinh(a o do)sinh(ao db). (23) 

This is identical to the dispersion relation of TE modes if the b-Iayers were isotropic 
with dielectric constant € 1. 

(2) (J = i7T and k parallel to the crystal axis (the x-axis). We have, in this case, 

a~ 0, 
, 1 2 -2 2 1 

a E = (€II/€1)2(k -€1 C W)2, .8 ± = .8 = (W€ 1) -1 C kx . (24) 

TM modes: ~~ = 0 and from the last two equations of (17) and equations (24) 
we have 

cos(qd) = cosh(a o do)cosh(a~ db) 

+(2€o€11 aoa~)-I(€~ai +€~ a~)sinh(ao do)sinh(a~ db). (25) 

TE modes: ~~ = 0 and the resulting dispersion relation is 

cos( qd) = cosh(ao do) cosh(ao db) 

+ i(ao 1 a o +a;;-1 ao) sinh(a o do) sinh(ao db). (26) 

The same comment concerning equation (23) applies here. 

(3) (J = i7T and k perpendicular to the crystal axis (kx = 0). We now have 

" 0 '(k 2 -2 2)1 a E = , .aE = -€II C W 2, .8± = O. (27) 
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TM modes: ~;, = 0 in the present configuration, and the dispersion relation has 
the form 

cos(qd) = cosh(aa da)cosh(ao db) 

+(2ao aa El Ea)-I(E~ at +EI a~) sinh(aa da) sinh(ao db). (28) 

TE modes: ~~ = 0 and the dispersion relation is 

cos( qd) = cosh(aa da) cosh(a~ db) 

+!(a~-I aa +a;;1 a~)sinh(aa da)sinh(a~ db). (29) 

The above results can be incorporated into the following unified equations: 
TM modes: 

cos(qd) = cosh(aa da)cosh(adb) 

+(2EaaaEa)-I(E~a2 +E2a~)sinh(aa da) sinh(adb) , (30) 

where a = a~ in cases (1) and (2), and a = a o in case (3), while E = El in cases 
(1) and (3), and E = Ell in case (2). 

TE modes: 

cos( qd) = cosh(aa da) cosh(adb) 

+!(a -I aa +a;; la) sinh(aa da) sinh(adb) , (31) 

where a = a o in cases (1) and (2), and a = a~ in case (3). 
It can be seen from equation (30), in the case of TM modes, that for aa and a 

to be both positive, Ea and E must differ in sign. We assume Ea > 0 in the following 
discussion, so that E has to be negative. In the case of TE modes, no solutions exist 
with both aa and a positive. Only layer localised waves, i.e. TE waves l~calised in 
one sort oflayer with either aa or a imaginary are allowed (Shi and Tsai 1984, 1985). 
Needless to say, the TM waves may also be localised in one kind of layer. 

Let us assume that the b-Iayers are made of polar semiconductors, so that 

E1.II(W) = E1.II(00)(W~ 1, lI-(2)-I(wL, II- (2), (32) 

where wT and wL are the TO and LO phonon frequencies respectively, with the 
SUbscripts II and 1 being used to distinguish frequencies of phonons propagating along 
and transverse to the crystal axis, and with E 1, II ( 00) the high frequency dielectric 
constants. We assume that wT11 < WT 1 < WLI! < wLl which is, for example, the case 
for CdS. A numerical evaluation of the dispersion curves has been performed. From 
equation (30), we can see that in order to derive a solution Eland E II must both be 
negative in cases (1) and (2), whereas only El < 0 is required in case (3). In the 
former case, W must be limited within the range WT 1 < W < wLI!' while in the latter 
case the allowed range of W is less restrictive, W < WL 1. 

Fig. 2a illustrates the TM dispersion curves of case (1) (8 = 0). Fig. 2b is for case 
(2) (8 = -!7T, ky = 0); there is only one allowed band in this case. Fig. 2c 
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corresponds to case (3) (8 = i'IT, kx = 0). To give an impression of the relative 
positions of polariton bands in all three cases, we reproduce them together in Fig. 3, 
where the limiting frequencies at large k of the various branches are also indicated. 

3·0 

2·5 

~ I --===-(3) 

a 
"-a 

2·0 
I --=--

(1) 

(2) 

l.Jf o I ~ 1 4 

kda 

Fig. 3. Reproduction of the dispersion curves of Fig. 2 to 
illustrate the relative positions. The limiting frequencies at 
large k (arrows) of the various branches are fixed by (1) 
€l + (€1/€11)1I2 = 0; (2) €l + 1 = 0 or w = B(wL +w~ 1)}1I2; 

and (3) €II + (€1/€11)1I2 = o. 

4. Non-retarded Solutions 

We now turn to non-retarded solutions. In the electrostatic limit, one has 

E = - V'ljJ, ljJ(x, y, z, t) = <I>(z) exp{ i(kx x + ky Y -(.r) t) J . 

Within a h-Iayer, V'. (EV'ljJ) = 0 leads to 

d2<1>b(z) + d<l>b(Z)(2ikxExz)-(k;Exx+k~Eyy)<I>b(Z) = O. 
Ezz dz2 dz 

Taking <l>b(z) as the superposition of <1>% exp(az) and <l>b exp(-az), we get 

4 2 2 1 -1 _. -1 '+' " a = El(EII kx +E zz ky)2lEzzl +1 kxEzz Exz = a E _laE' (33) 

Equation (33) can also be obtained directly from (4) in the limit c ~ 00. In the 
a-layers, <I> a(z) satisfies the Laplace equation 

(dd;2 - k2)<I> a(z) = 0, k2=k;+k~. 
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Periodicity in the z direction implies 

<I>(z) = <I> t exp( kz) + <1>;; exp( - kz), 0 < z < da 

1 <I> t exp(aE z) + <I> b exp( - aE z) I exp(i a~), - db < z < 0 

1 <l>t exp(kz+ kd) +<I>;;exp( - kz- kd)l exp( -i qd), - d < z < - db' 

and continuity of <I> and D z at the interfaces 

<l>b(z)lz=o,-db = <l>a<z)lz=O,-db' 

p kx Ezx <l>b(z) + <l>i,(z)Ezzlz=o,-db = Ea<l>~(z)lz=o,-db 

(34) 

gives rise, for the coefficients <I>~ and <l>t, to a set of four algebraic relations, with 
the secular equation 

cos(qd -a~ db) = cosh(kda)cosh(aE db) 

+(2EaEzz kaE)-I(E~ k 2 +aiEzz)sinh(kda)sinh(aE db)' (35) 

For (35) to be valid, one must have Ezz < 0 (when a E > 0), or equivalently, in view 
of (33) and Ezz = El sin2 0 +EII cos20, 

E1(W) < 0, 

EII(w) < IE11(1 + tan2 0 + k-;2 k~)-l k-;2 k~ tan2 O. 

(36) 

(37) 

In the cases of special orientations of the crystal axis considered in Section 3, 
equation (35) can be obtained directly from (30) in the limit c ~ 00. [No non-retarded 
solutions corresponding to equation (31) exist.] As a result of the anisotropy, equation 
(35) contains 0 as well as the angle between c and k. In the isotropic limit (E 1 = Ell)' 
(35) reduces correctly to the dispersion relation obtained by Carnley and Mills (1984). 
Setting da = 00, equation (35) leads to the dispersion relations 

Ezz = -aE-IEaktanh(iaEdb)' 

Ezz = -aE- 1 Ea kcotanh(iaE db)' 

in accordance with earlier results by Tarkhanian (1975). 

(38) 

(39) 

At a general orientation of the crystal axis, the anisotropy of the b-Iayers results 
in an asymmetry of the dispersion curves with respect to k x' i.e. equation (35) is not 
invariant under a change of sign of k x' A similar observation occurred in the case of 
a single interface (Wallis et al. 1974). 

Another feature of interest is that, in contrast to the isotropic case, non-retarded 
layer localised modes with fields limited mainly in one sort of layer becomes possible 
in the anisotropic case. [Only retarded but not non-retarded layer localised modes are 
allowed in isotropic superlattices (Carnley and Mills 1984; Shi and Tsai 1984, 1985).] 
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Setting a = -ia;' in (35), we have 

cos(qd -a~ db) = cosh(kda)cosh(adb) 

+(2Ea Ezz ak)-l(E~ k 2 -E;z a~)sinh(kda) sinh(a~ db)' (40) 

For a to be real, a;, must be imaginary. At a given angle (J this is possible in suitable 
frequency ranges. In the cases (1) and (2) of Section 3, the frequency ranges are 
fixed by El , Ell < 0, while in the case (3), since a;, = k, there can be no undulatory 
solutions, as in the isotropic case. 

f 

3·0 

l·S 
=0,"IT 
=O,"IT 
= "IT 
=0 

.JA!f:l~7omo/!!ffm1!4 
o 1 2 3 4 

kda 

Fig. 5. Dispersion curves obtained by solving equation (40) with e = "IT 14 
and qd = O,"IT. The same parameters as in Fig. 2 are adopted. 

At a general angle (J, equation (40) is also non-invariant under a change of sign of 
k x' Figs 4a and 4b show the dispersion curves for ± k, k = kx' respectively, when 
(J = 17'/4 and qd = 17'/5. The shaded areas are regions of crowded dispersion curves. 
A glance at these two figures shows clearly the asymmetry with respect to + k = k x' 

Fig. 5 illustrates the dispersion curves according to equation (40) for (J = 17'/4 and 
qd = 0 and 17'. The shaded areas again represent regions of crowded dispersion 
curves. The curves for q d = 0 and 17' almost coincide except at the boundaries of 
the two allowed regions. 
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The asymmetry with respect to ± k x and the existence of layer localised modes 
are two new features unique to supedattices consisting of uniaxial crystalline and 
isotropic layers, and thus can be expected to be subjected to, for example, light 
scattering investigations. 
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