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Abstract 

We obtain the general abnormal parity solutions of the Wess-Zumino consistency conditions 
for chiral SU(L)xSU(L) symmetry. We find an additional non-trivial solution which cannot be 
obtained from the usual Bardeen non-abelian anomaly through the addition of a local Lagrangian 
counter-term. 

1. Introduction 

In general a quantum field theory with fermions contains so-called 'anomalies' 
which arise from renormalisation ambiguities in certain fermion loop diagrams (Adler 
1969; Bell and Jackiw 1969). These anomalies have direct physical relevance, for 
example 7TO --+ 'Y'Y decay, resolution of the U(I) problem, anomaly bound-state 
matching conditions, quark-lepton duality, Skyrme soliton quantisation, magnetic 
monopole induced baryon-number decay, and the limitations on possible grand unified, 
supersymmetric and superstring theories. 

In a properly regularised theory these anomalies satisfy consistency conditions 
(Wess and Zumino 1971) obtained by applying the 'gauge' generator commutators 
to the vacuum generating functional (see below). These consistency conditions have 
given anomalies a topological underpinning through the mathematical connection 
with cohomology theory. 

It is widely believed that because of their non-linearity, the solution to the 
Wess-Zumino (WZ) consistency conditions is unique up to an overall normalisation 
constant and possible Lagrangian counter-terms which correspond to alternative 
renormalisations of the fermion loop diagrams. We show here that this is not 
generally true by finding the explicit solution of the WZ consistency conditions for 
chiral SU(L)xSU(L) symmetry. 

2. WZ Consistency Conditions 

We consider the connected generating functional 

exp(i W[ V, AD = f § q § lj§ GfL 

x exp(i f x [2' (x) + lj(x)'Y fL I VfL(X) +'Y5 AfL(x) J q(X)]) , (1) 
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where .!f is the usual QCD Lagrangian density with L massless quarks, the quark 
field q is a colour triplet and flavour L-vector, G,... are the gluon octet gauge fields, 
and ~ and A,... are Lx L traceless flavour matrix source fields. 

Peiforming a change of variables in the functional integral (1), which corresponds 
to a local SU(L)xSU(L) chiral transformation 

q(X) -+ (1 +i a(x) +i~(x)'y5 J q(x) , (2) 

where a and ~ are space-time dependent Lx L traceless flavour matrices (a = a i i"i), 
gives 

exp(i W[ V, A]) = exp( -i f}~ i(X) Gi(x) +ai(x) F;(x) J) exp(i W[ V', A']), (3) 

where 

V~ = V,...-i[a, ~]-i~,A,...]-(a,...a), 

A~ = A,... -i[a, A,...] -i~, ~] -(a,... p). 

The non-abelian anomalies are contained in the first exponential term on the 
RHS of (3) which corresponds to the Jacobean for the transformation (2). The 
anomaly functionals Gi = Gi[ V, A] and Fi = Fi[ V, A] can be determined in principle 
(Balachandran et al. 1982; Einhorn and Jones 1984) but are left as unspecified here 
since we seek solutions of the WZ consistency conditions for these functionals below. 
The usual non-abelian anomalies can be obtained from (3) by functional differentiation 
with respect to a,~, ~ and A,...: for example, the AAA anomaly is specified by the 
A2 term in Gi • 

More generally one can extend (2) to U(L)xU(L) chiral transformations with a, 
~, ~ and A,... not traceless. This leads to an additional class of current-current 
anomalies (Christos, in preparation) as well as the usual U(I) axial gluonic anomaly 
(Fujikawa 1979; Christos 1983). Our discussion is however limited to the non-abelian 
SU(L)xSU(L) anomalies. 

For small a and ~ the connected vacuum functional W[ V', A'] can be written as 

W[ V', A'] = W[ V, A] + f x ai(x) Xi(X) W[ V, A] 

+ fx~i(X) lj(x) W[V,A] +O(a2,~2,a.~), (4) 

where 

I I) I I) x I) 
Xi(x) = -film V",(x) 8 V::;'(x) -film A",(x) I)A::;'(x) - a,... I) V~(x) , (5a) 

I 8 I 8 x I) 
lj(x) =:= -film V",(x) ., "mf _., -film A",(x) ., Umf _., - a,... ... ,;, ,. (5b) 
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Substituting (4) into (3) and functionally differentiating with respect to a and (3 
gives 

Xj W[V,A) = Fj[V,A), Y; W[V,A) = G;[V,A). (6a, b) 

The infinitesimal 'gauge' operators X; and lj can be shown to satisfy the 
commutation relations of the underlying group (Wess and Zumino 1971), here 
SU(L) x SU(L), 

[X;(x), XJ(x'») = !;jk 84(x_ X')Xk(X) , 

[lj(x), lj(x'») ~ !;jk 84(x- X')Xk(X) , 

[X;(x), lj(x'») = !;jk 84(x_ x') Yk(x). 

(7a) 

(7b) 

(7c) 

Applying these relations to the connected vacuum functional we derive the WZ 
consistency conditions 

3. Solution 

Xj(x) Fj(x') - XJ(x') Fj(x) = !;jk 84(x_ x') Fk(x) , 

lj(x) 0(x') -lj(x') Gj(x) = !;jk 84(x- x') Fk(x) , 

Xj(x) 0(x') - lj(x') Fj(x) = !;jk 84(x_ x') Gix). 

From equations (6), (5) and (1) it follows that 

I'- j 
Fj=il,JI'-+ ... ' 

I'- j 
Gj = il J1'-5+ ... , 

(8a) 

(8b) 

(8c) 

(9a, b) 

where J ~ = ijy I'- ! A.i q and J ~5 = ijy I'- 'Y 5 ! A ; q are the quark vector and axial-vector 
currents respectively. Therefore, under parity and charge conjugation (see also 
equation 1) 

p 
Fj---+Fj 

c 
---+ -Fj 

p 
Gj ---+ - Gj 

c 
---+ Gj 

VI'- ~(0', - V) 

c ---+ _ VT 
1'-' 

AI'- ~(_Ao, A) 

CAT. 
---+ 1'-. 

(with A; ---+ AT>, (lOa) 

(with Aj ---+ AT>, (lOb) 

(lOc) 

(IOd) 
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From the parity transformation properties it follows that the abnormal parity terms 
(those proportional to Ellva/J) of F and G are respectively odd and even in A, with 
the reverse for the normal parity terms. These conditions together with the fact that 
F and G must have dimension 4 severely restricts the form of these functionals. The 
most general expressions for the abnormal parity* pieces of F and G are given by 

Gi = EIlV(TTTr[i Ai! 91 (all v,,)(a(T v,.)+ gz(all ~)(a(T~) 

+93(all v,,)V(T v,.+93 VIl v,,(a(T v,.)+94 vll(av V(T)v,.+95(all v,,)A(TAT 

+ 95 All ~(a(T v,.)+ 96 A/av V(T)~+ fh(all ~)A(T v,. + fh VIl ~(a(T~) 

+ 9s(all~) V(T AT + 9s All v,,(a(T ~)+ 99 vll(av A(T)AT + 99 AIl(av A(T) v,. 

+ 910 VIl v" V(T v,. + 911 VIl v" A(T AT+ 911 All ~ V(T v,. + 912 VIl ~ V(T AT 

+ 912 All v" A(T v,. + 913 All v" V(T AT + 914 VIl ~ A(T v,. + 915 All ~ A(T AT J] 

+ 916 EIlV(TTTr[ i Ai! VIl ~ - All v" J]Tr[ V(T AT], (1Ia) 

Fi = EIlV(TTTr[i Atl1(all v,,)(a(T AT) + h(all ~)(a(T v,.) 

+ .t2(all v,,)A(T v,. + .t2 VIl ~(a(T v,.)+ J3(all v,,) V(T AT+.t3 All v,,(a(T v,.) 

+.1; v/av V(T)AT+.I;AIl(av V(T)v,.+/s(all~)V(T v,.+/s VIl v,,(a(T~) 

+ 16 VIl(av A(T) v,. + h(all ~)A(T AT+ h All ~(a(T ~)+ Is AIl(av A(T)~ 

+ J9 All Vv V(T v,. + J9 VIl v" V(T AT + ho VIl ~ V(T v,. + ho VIl v" A(T v,. 

+hl VIl~A(TAT+hl AIl~A(T v,.+h2 AIl VvA(TAT+h2AIl~ V(T~J]. (llb) 

Inserting these expressions for F and G into the WZ consistency conditions (8) 
and equating coefficients of similar terms leads to a set of equations relating the 
coefficients f and 9. (In arriving at these equations it proves useful to re-express the 
SU(L) !;jk symbol in terms of a A commutator by !;jk Ak = - ii[A;, Aj]. Also in some 
cases one obtains different equations for the coefficients depending on whether one 
integrates over x or x'.) Solving these equations in terms of a minimal set of 

* The normal parity pieces are uninteresting because it is generally considered that they can be 
eliminated by Lagrangian counter-terms (Bardeen 1969). The case for Fi = 0 was considered 
by Xiong and Zhu (1985). In the present case (Fi =1= 0) the calculation becomes intractable with 
their inclusion, involving hundreds of additional parameters. 
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parameters leads to the general solution of the WZ consistency conditions 

G; = E/.lVa-TTr[~A;! (,'h -i g5 +i !h)(a/.l v,,)(aa- v,.) + ,'h(a/.l A,,)(a(T A.) 

+( - g4 - ~ g5 + ~ !h)(a/.l v,,) Va- v,. +( - g4 - ~ g5 + ~!h) V/.l v,,(aa- v,.) 

+ g4 v/av Va-) v,. + g5(a/.l v,,)Aa- A. + g5 A/.l A,,(aa- v,.) 

+(~ g5 - ~!h - gg)A/av Va-)A. + !h(a/.l A,,)Aa- v,. 

+!h V/.l A,,(aa- A.) + gg(a/.l A,,) Va- A. + gg A/.l v,,(aa- A.) 

- ~(g5 + !h) v/.l(av Aa-)A. - ~(g5 + !h)A/av Aa-) v,. 

+i(2g4 + ~ g5 - ~!h + gg) V/.l v" Va- v,. 

- i(g4 + g5) V/.l v" Aa- A. - i(g4 + g5)A/.l A" Va- v,. 

+ i(g4 + g5) V/.l A" Va- A. + i(g4 + g5)A/.l v" Aa- v,. 

-i(2g4 + ~ g5 - ~!h + gg)A/.l v" Va- A. 

+i(~ g5 - ~!h + gg) V/.l A" Aa- v,. 

-i(~ g5 - ~!h + gg)A/.l A" Aa- A.l], 

F; = E/.lVa-TTr[~A;!(,'h+~ig5-~i!h)(a/.l v,,)(aa-AT) 

(12a) 

+(,'h+~ig5-~i!h)(a/.lA,,)(aa- v,.)-g4(a/.l v,,)Aa- v,.-g4 v/.lA,,(aa- v,.) 

+(g4 + g5+ gg)(a/.l v,,) Va- A.+(g4 + g5+ gg)A/.l v,,(aa- v,.) 

-(g4 + g5 + gg) v/.l(av Va-)AT-(g4 + g5 + gg)A/.l(av Va-) v,. 

+(g4 + g5 + gg)(a/.l A,,) Va- v,. + (g4 + g5 + gg) V/.l v,,(aa- A.) 

+ g4 ~(av Aa-) v,.+(~ g5 - ~!h + gg)(a/.l A,,)Aa- A. 

+ (~g5 - ~!h + gg)A/.l A,,(aa- A.) 

-(~ g5 - ~!h + gg)A/.l(av Aa-)A.)] . (l2b) 

For reasons that will become clear below we define 9z, c1, £1 and C3 by 

I· I· . -
,'h = 2: 1g5+2:1!h+lgg+,'h, g4 = -3i ,'h(12 +2i CI)' 

g5 = i ,'h(l + 3 C:3 +6i CI), !h = i,'h(3c3 -l). 
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We can then rewrite our solutions to the WZ consistency conditions as 

Gi = (-3i92)Ef1v(J'TTr[i",i!(-2cl +i)(af1 v,,)(a(J' v,,) 

+ti(af1A,,)(a(J'AT)+(-0+icl+l)(af1 v,,)V(J' v" 

+(-0+icl+ 1)Vf1 v,,(a(J' v,,)+(0+2icl)Vf1(av V(J')v" 

- (C3 + 2i cl + t)(af1 v,,)A(J' Ar - (c3 + 2i Cl + t)Af1 A,,(a(J' v,,) 

+(c3- 4i cl-~)A/av V(J')AT-(C3-t)(af1 A,,)A(J' v" 

-( c3 - t) VI' A,,(a(J' Ar)+( c3 +i cl + t)(af1 A,,) V(J' AT 

+(C3 +i C1 + t)Af1 v,,(a(J' Ar)+(C3 +i Cl) v/av A(J')AT 

+(c3+i c1)A/av A(J') v,,+i(20- 1) VI' v" V(J' v" 

+i(C3 - 0 + t) ~ v" A(J' Ar+i(c3 - 0 + t)Af1 A" V(J' v" 

-i( C3 - 0 + t) VI' A" V(J' Ar -i(c3 - 0 + t)Af1 v" A(J' v" 

+i(2c3-t) VI' A"A(J' v,,-i(20- 1)Af1 v" V(J'Ar 

-i(2c3 - t)Af1 A" A(J' AT J] 

+~Ef1V(J'TTr[i",i!(af1 v,,)(a(J' v,,)+(af1 A,,)(a(J' AT)JL (13a) 

Fi = (-3i92)Ef1v(J'TTr[i",i!Cl(af1 v,,)(a(J' AT) + c1(af1 A,,)(a(J' v,,) 

- (0 + 2i Cl)(af1 v,,)A(J' v" -( 0 + 2i Cl) VI' A,,(a(J' v,,) 

+(0+ icl)(af1 v,,)V(J'AT+(0+ icl)Af1 v,,(a(J' v,,) 

-(0+ i cl) ~(av V(J')Ar-(0+ i cl)A/av V(J') v" 

+( 0 +i Cl)(af1 A,,) V(J' v" +(0 +i cl) ~ v,,(a(J' Ar) 

+(0 +2i Cl) v/av A(J') v" + c3(af1 A,,)A(J' Ar 

+ C3 AI' A,,(a(J' AT)- CJ Af1(av A(J')Ar J] 

+~Ef1V(J'TTr[i",i!(af1 v,,)(a(J' Ar) + (af1 A,,)(a(J' v,,)J]. (13b) 
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We now aim to show that up to an overall multiplicative constant (which cannot 
be determined from the commutator based WZ consistency conditions), the solution 
above with ih = 0 can be obtained from the usual Bardeen non-abelian anomaly by 
adding a local Lagrangian counter-term. The solution proportional to ih cannot be 
obtained in this way. 

There is a certain arbitrariness in the specification of the anomaly which is 
associated with renormalisation. One is free to redefine the generating functional 
W[ V, A] through the addition of a local Lagrangian counter-term depending only on 
the external source fields ~ and A).L (Bardeen 1969; Gasser and Leutwyler 1984). If 
we set 

W[V,Al~ W[V, A] + Ix b..Y(V, A; x), 

we obtain in place of (3) 

W[V, A] = W[V', A'] + I}b.'y(VI,AI; x)-b..Y(V,A; x)} 

- Ix{,8i(X)Gi(x)+a i(x)Fi(X)}. 

(14) 

(15) 

Note that in this redefinition we are supposed to treat the new generating functional as if 
it generated the same Green's functions as in (1). Expanding b..Y( V', A')-b.'y( V, A) 
in lowest order in a and ,8 (see equation 4) leads to a new form of the anomaly 
specified by the functionals 

Gi(y) = Gi(y) - Y;(y) I x b.X' ( v, A; x), 

Ft(y) = Fi(y) - Xi(y) I x b.X' ( v, A; x). 

(16a) 

(16b) 

The most general Lagrangian counter-term which is consistent with parity and 
charge conjugation invariance is 

Ix b.X'(V, A) = Ix E).LVITTTr[Cl(a).L v,,)(VIT~ -AIT v,.) 

+£2 ~ v" VIT~ +C:J ~AvAIT~]· (17) 

These counter-terms have a direct association with the renormalisation prescription 
ambiguities in the VVA, VVVA and VAAA triangle and square diagrams. Adding the 
effect of this counter-term to the usual Bardeen form of the non-abelian anomaly 

Fj = 0, 

G - 1 ).LVITTT [h i{ 1 V v: + 1 A A 
i - - -2 E r 2'" 4 ).LV ITT T2 ).LV ITT 417 

+ii(A).LAv VITT+A).L v"IT~+ ~vAIT~)-!A).LAvAIT~}], 
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where 

V",v = a", v.,-av V",-i[~, v.,]-i[A""A,,], 

A",v = a",A"-avA",-i[V""A"]-i[A,,,, v.,]' 

G. A. Christos 

leads to a new form of the anomaly which corresponds to (13) with 9;. = 0 and the 
overall normalisation fh. = -l/127T2 • Consequently the WZ consistency conditions 
do not uniquely determine the form of the non-abelian· anomaly up to an overall 
normalisation constant. 

In passing we note that the Bardeen anomaly cannot be eliminated by a Lagrangian 
counter-term. This is immediately apparent since the counter-term (17) cannot 
generate an ETr[A.(aA)(aA)] term in G. 

The solution of the WZ consistency conditions (8) with Fj = 0 is (uniquely) 
the Bardeen anomaly up to an overall multiplicative constant (see also Wess and 
Zumino 1971; Gottlieb and Marculescu 1972; Xiong and Zhu 1985). This however 
presupposes that the theory can be renormalised so that Fj = O. 
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