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Abstract 

The problem of a swarm approaching the hydrodynamic regime is studied by using the projection 
operator method. An evolution equation for the density and the related time-dependent transport 
coefficient are derived. The effects of the initial condition on the transport characteristics of 
a swarm are separated from the intrinsic evolution of the swarms, and the difference from the 
continuity equation with time-dependent transport coefficients introduced by Tagashira et al. 
(1977, 1978) is discussed. To illustrate this method, calculations on the relaxation model collision 
operator have been carried out. The results are found to agree with the analysis by Robson 
(1975). 

1. Introduction 

Research on the space and time evolution of an isolated group (swarm) of charged 
particles in a neutral gas in the presence of a uniform electric field is of importance 
for defining and understanding the transport characteristics for times shorter than 
the relaxation time. The charged particles are assumed to be injected at a point in 
space with some initial distribution of velocities and then to approach a steady state 
distribution (i.e. the hydrodynamic regime). 

The problem of a swarm approaching the hydrodynamic regime has been previously 
studied by solving the initial value problem of a velocity distribution function (see 
e.g. Skullerud 1974, 1977) or by solving a continuity equation with time-dependent 
transport coefficients (Tagashira et al. 1977, 1978). Time-dependent transport 
coefficients have been obtained by direct numerical analysis of the time-resolved 
Boltzmann equation (Kitamori et al. 1980) and by Monte Carlo simulation (McIntosh 
1974; Braglia 1977; Lin and Bardsley 1977; Braglia and Baiocchi 1978). The aim 
of the present paper is to give an alternative analysis of swarm behaviour in the 
non-hydrodynamic regime by deriving the evolution of the density distribution in 
space and time. A projection operator which acts on the velocity distribution function 
is used to derive the precise evolution equation from the Boltzmann equation in 
Section 2a. 

The evolution equation given here shows that the evolution characteristics in the 
short time region are essentially non-Markovian processes (equation 13), and the time 
derivative of the number density of the swarm at n(r, t) should be expressed as a 
power series in the convolution integral of the density gradients with a time-dependent 
tensorial function (equation 20). The evolution equation derived in this paper also 
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shows the effect of the initial distribution of velocities on the transport characteristics 
of a swarm by separating them from the intrinsic evolution (equation 20). 

The relation between the continuity equation with time-dependent transport 
coefficients (equation 5) and the new evolution equation is discussed in Section 3 b. 
Generalised forms for the moment of the density of swarm and for the transport 
coefficient are given by means of a Laplace transformation (equations 18 and 27), 
in which a dependence on the initial velocity distribution is distinguished from the 
intrinsic components. 

The theoretical analysis given here is applicable to the real problem for electron 
and ion swarms. To illustrate this analysis, calculations for the relaxation model of 
the collision operator with an arbitrary isotropic velocity distribution after collision 
are carried out (Section 3 a). In the case of the Bogoliubov-Green-Kirkwood (BGK) 
model of the collision operator, calculations are found to give agreement with the 
analysis of Robson (1975). The effects of reactions on the evolution characteristics of 
swarms are also discussed in Section 3 c. 

2. Derivation of the Evolution Equation for the Number Density 

(aJ Boltzmann Equation and Continuity Equation 

The velocity distribution function f( v, r, t) at position r and time t must satisfy 
the Boltzmann equation 

(a t+ r)f(v, r, t) = 0; 

r= v.\7r +a.\7v +J, 

a = (e/m)E, Jf(v, r, t) = -(arf(v, r, t»)con, 

where m and e are the mass and charge of the particles respectively. 
The number density of particles at r is written as 

n(r, t) = f f(v, r, t) dv. 

(la) 

(lb) 

(lc,d) 

(2) 

The present aim is to solve the initial value problem of equations (1) and (2) for a 
given initial velocity distribution and to give a proper expression for the evolution of 
n( r, t) in the initial relaxation processes. 

Previous methods have been based on the continuity equation (see e.g. Tagashira 
et al. 1977). The continuity equation is obtained by integrating equation (1) with 
respect to v: 

at n(r, t) + \7 .j(r, t) = S(r, t); 

j(r,t) = V(r,t)n(r,t), S(r,t) = (atn(r,t»)con. 

(3a) 

(3b, c) 

Equation (3a) states that the changes in n(r, t) are due to the convective particle 
current V(r, t) n(r, t) and the production term S(r, t). 

When a long time has elapsed the effect of the initial velocity distribution vanishes 
and the hydrodynamic regime is established. The distribution function becomes a 
functional of n(r, t) and the particle flow j(r, t) can be expressed as a power series 
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in the gradient operator with constant coefficients. Equation (3a) then takes the form 
(Kumar and Robson 1973) 

(at - ~ W(])0(-\ly)n(r, t) = o. 
)=0 

(4) 

The constants w(]) are the symmetric tensorial transport coefficients of rank j and 
o denotes a j-fold scalar product. In order to express the development in time 
before the hydrodynamic regime has been established, Tagashira et al. (1977, 1978) 
transformed the continuity equation (4) into a power series of the gradient operator 
but with time-dependent coefficients: 

(at - j~O w(])(t)0( - 'VY)n(r, t) = o. (5) 

Kumar (1981) discussed a treatment of the problem. Further, an explicit analytic 
solution of the initial value problem for a swarm with the BGK model collision 
operator has been given by Robson (1975). 

(b) Projection Operator 

In order to derive the evolution equation and the time-dependent transport 
coefficients which describe the development of a swarm exactly at all times we use a 
'projection operator' method. The properties of this operator are briefly introduced 
in this subsection. 

The projection operator p acts on the phase-space distribution and is defined by 
(see e.g. Messiah 1961) 

pf( v, r, t) = </>0 ( v) J l/J( v') f( v', r, t) d v' , 

where </>o( v) and l/J( v) are functions of the variable v only and satisfy 

J l/J(v) </>o(v) dv = 1. 

(6) 

(7) 

From these definitions, it can be shown that the operator p satisfies the relation 
p2 = p. The operator defined as p' = 1-P satisfies p'2 = p' and p' p = pp' = O. 
Using the operator p and p' the velocity distribution function f( v, r, t) can be written 
as 

f(v, r, t) = pf(v, r, t)+p,/(v, r, t). (8) 

If the function l/J( v) is chosen to be unity, then the projected function pf is given 
by 

. pf(v, r, t) = </>o(v) J f(v, r, t) dv = </>o(v) n(r, t). (9) 

The function </>o( v) may be chosen to be the velocity distribution function in the 
steady state case under a constant external acceleration of a = (e/ m)E. 
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(c) General Expression of the Evolution Equation 

In order to simplify the discussion, it is assumed that rio particles are produced by 
collision, i.e. J J f( v, r, t) d v = 0, and therefore 

ro <f>o(v) = 0, 

where 

ro = a.\lv+ J , 

pro = rop = O. 

Applying p and p' to both sides of the Boltzmann equation we have 

(lOa) 

(lOb) 

(11) 

otpf = -(prpf+prp'f), at p'f = -(p' rpf + p' rp'f) , (12a, b) 

where r = ro + r 1 and r 1 = v. \l r. 
By solving equation (12b) for p'f with the initial condition f( v, r, t = 0) and 

eliminating p'f from equation (12a), the generalised evolution equation for the particle 
density n(r, t) is obtained as (Zwanzig 1964; Mori 1965) 

at <f>o(v) n(r, t) = -pr1 <f>o(v) n(r, t) 

+ pr1 f~ dT e-(t-T)P'r p' r<f>o( v) n(r, T) 

-pr1 e-tP'F{f(v, r, t=O) -<f>o(v) n(r, t=O)}, (13) 

where n( r, t = 0) is the initial number density of particles. The second term of 
the right-hand side of (13) shows the characteristics of non-Markovian evolution 
processes (e.g. Alder and Alley 1978, 1981), and the third term expresses the memory 
of the initial velocity distribution. In the discussion that follows, we assume an initial 
velocity distribution of the form 

f(v, r, t=O) = fo(v) n(r, t=O); n(r, t=O) = 6(r). (14a, b) 

(A more general form of the initial distribution of velocities is discussed at the end of 
this subsection.) If the initial velocity distribution function fo(v) is chosen to be the 
steady state distribution <f>o( v), the third term vanishes and no memory of the initial 
velocity distribution- exists in the evolution characteristics of the number density. 

By introducing the Fourier and Laplace transforms of n(r, t) 

N(k,s) = f: dt fdre-ik.r-stn(r,t), No(k) = fdre-ik.rn(r,t=O), (15a,b) 

and using relation (11), the evolution equation (13) can be transformed into 

{ s+prk-prk( 1 )p'rk}<f>o(V)N(k,S) 
s+p'rk 

= {<f>o(v)-prk(s+;' rJp'fo(V)} No(k), (16a) 
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where 

r k = rO +i k. v, p'rk = ik.p'v+ro = ik.(v-pv)+ro· (16b, c) 

Since the operator (s+ p' r k)-l can be written as the polynomial power series 

--- = ~ -Ik -- (p v) --~ ( . )n( 1 ){ , ( 1 )} n 
s+p'rk n=O s+ro s+ro 

(17) 

equation (16a) becomes 

where 

(s- j~l(-ikYn0)(S»)N(k'S) = (1 + j~l(-iky@0)(S»)No(k)' (18a) 

n(1)(s) = J dv v<1>o(v) = <v>, 

n(2)(s) = JdV v(_l_)(V-<v»<1>o(V), 
s+ro 

(18b) 

(18c) 

n0)(s) = JdV V(_l_) {(P' V)(_l_)}j-\V-<V»<1>o(V) ' 
s+ro s+ro 

U';;> 3); (18d) 

@(1)(S)=JdVV(_1_)(fo(V)-<1>o(V»),(18e) 
s+ro 

@0)(S)=JdVV(_l_){(p'V)(_l_)}j-l(fo(V)-<1>o(V»)' 
s+ro s+ro 

U';;> 2). (18t) 

Applying inverse transformations, the density in space and time is obtained as 

n(r, t) = (277")-3 J ds J dk eik . r+st N(k, s). (19) 

Therefore the evolution equation for the density, valid for all times after the injection 
of the particles is given by 

00 Jt 
0t n(r, t) = j~l 0 dr n0)(t-r)0( - vy n(r, r) 

00 

+ 2 @0)(t)0(-VYn(r, t=O), 
j=l 

(20a) 
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where nW(t) and @W(t) are tensorial functions of rank j 

nW(t) = -. est .iJW(s) ds, 1 fC+ iCO 

27T 1 c-ico 

1 fC+iCO 
@W(t)=_.·est@W(s)ds, 

27T 1 c-ico 

K. Kondo 

(20b) 

(20c) 

and where c is the axis of conversion. This is a more general form of the expression by 
Alley and Alder (1979, equation 6). Equation (20a) can be applied when external forces 
are present and should be compared with the continuity equation with time-dependent 
transport coefficients (equation 5). Both nW(t) and @W(t) can be derived for a given 
operator J, and quantities such as the drift of the centroid and the increase of the 
mean square displacement of particles from the centroid may be obtained exactly. 

Equation (20a) shows that the evolution of a swarm consists of two parts. From 
equations (18), it can be seen that the function nW(t) is independent of the initial 
velocity distribution and is given only by the steady state distribution <po( v). Therefore, 
the first part of the right-hand side of (20a) shows intrinsic characteristics of evolution 
not affected by the initial velocity distribution. This part of the time evolution of the 
density of the swarm is a convolution integral between the time-dependent functions 
.aW(t) and the gradients of the density. 

As time elapses after the injection of particles, the time evolution operator 
exp( - tp'I) [or in the Fourier-Laplace transformation form (s+ p' r k)-l] approaches 
zero, and it is clear that both nW(t) and @W(t) tend to zero. Therefore for large 
times, the first part of (20a) becomes equivalent to the conventional continuity 
equation with constant transport coefficients, i.e. equation (4), thus establishing the 
hydrodynamic regime: 

0t nCr, t);:::; j~l(f~co n W(t-7) d7)0(-VYn(r, t). (21) 

The constant tensorial coefficients wW are given approximately by 

wW ;:::; ft n W(t-7) d7 = fco n W(7) d7. 
- co 0 

(22) 

The secbnd part of (20a) and the right-hand side of (18a) express the memory effects 
of the velocity distribution of the injected particles. As shown in these equations, the 
function @W( t) depends on the difference between the velocity distribution functions 
corresponding to the initial and steady state. If the initial velocity distribution foe v) 
is chosen to be the same as that of the steady state, then @W(t) becomes zero. 

Equation (14a) is not the most general form of the initial distribution. A more 
general expression is 

co 
I(v, r, t=O) = ~ J;(v)0(-V)i n(r, t=O), 

i=O 
(23) 

which is related to the solution by Tagashira et al. (1978, equation 4) for the 
Boltzmann equation (la). We can repeat the analysis for this distribution and show 



Evolution Equation and Transport Coefficients 373 

that the intrinsic function nW( t) is independent of the function 1;( v), while @W(t) 
is dependent on the higher order expansion terms fi(v) (i > 1) for j > 2. 

Thus, even with the more general form for the initial distribution, the analysis 
presented in this subsection leads to the separation of the intrinsic evolution from the 
effects of the initial distribution. 

3. Moment of the Number Density and Time-dependent Transport Coefficients 

(a) Centroid and Mean Square Displacement 

From equations (18), one can derive general formulas which express exactly the 
position ofthe centroid <r)(t) and the mean square displacement of the pulse <R2)(t). 
These quantities are denoted by 

<r)(t) = I rn(r, t) dt/11o, <r2)(t) = I r2 n(r, t) dt/11o, (24a, b) 

<R2)(t) = <r2)(t)-{<r)(t)]2, (25) 

respectively, where the total number of particles 110 = f n(r, t) drand R = r-<r)(t) 
is the position of the particles relative to the centroid, and may be determined by an 
idealised time-of-flight experiment. 

If the initial pulse is described by a delta-function in space, the jth moment of the 
number density < rj )( t) and its time derivative can be derived from the relation 

. I (O)jA 
11o<"')(s) = (-i).i ok j\{k,s)lk--+o' (26) 

with 

<,J)(t) = 2"-l<;J)(s) 

= u!){ji1 (It nU-h)(r) It-r <rh)(t') dt' ctr) + It @W(r) dr}. (27) 
h=O 0 0 h! 0 

~<,J)(t) = 2"-1 s<;J)(s) 
dt 

. = u!){ji1 (It nU-h)(t_r) <rh)(r) ctr) + @W(t)}, (28) 
h=O 0 h! 

where <rj)(s) is the Laplace transformation of the jth moment of the number density 
< rj )( t) and the operators 2" and 2" -1 represent the Laplace and inverse Laplace 
transformation respectively. 

The motion of the centroid < r)( t) and the second moment of the number density 
<r2)(t) are given by 
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<r>(t) = I~ n(I)(T)(t-T) dT + I~ @(I)(T) dT = <v>t + I~ @(1)(T) dT, (29) 

<r2>(t) = 2 I~ n(2)(T)(t-T) dT +2 I~ @(2)(T) dT +2< v> I~ <r>(T) dT. (30) 

Therefore, the mean square displacement of the pulse is 

<R2>(t) = 2 I~ n(2)(T)(t-T) dT 

+2 I~ @(2)(T) dT -2<v> I~ T@(1)(T) dT -(I~ @(I)(T) dT r, (31) 

where the first term is the component independent of the initial velocity distribution, 
and represents intrinsic diffusion and corresponds to the expression for the mean 
square displacement in terms. of the time correlation function (Kubo 1966). 

The function n(2)( t) is identified as the autocorrelation function of the random 
velocity v (Skullerud 1974; Braglia 1980; Kumar et al. 1980): 

n(2) (t) = < v(O) v( t» . (32) 

For t long enough after a swarm is initiated, the mean square displacement of the 
pulse can be simply written as 

<R2>(t) _ 2(Dt+A), (33) 

where 

D = I: n<2)(T) dT, (34a) 

A = I: Tn(2)(T) dT + I: @(2)(T) dT - i(I: @(I)(T) dT r (34b) 

The diffusion coefficient can be also obtained from equation (18c) as a limiting value 
of s _ 0 as follows: 

D- lim n(2)(s) = IdV v(a. \7 v+J)-I(V-<V»<po(v). (35) 
s~o 

The drift velocity and the diffusion coefficient at time t are described by 

d It W ret) = dt <r>(t) = 0 n(I)(T) dT + @(1)(t) = < v>+ @(I)(t), (36) 

D(t) = 1. ~ <R2>(t) = It n(2)(T) dT + @(2)(t) 
2 dt 0 

- @(1)(t)(I~ @(I)(T)dT+<V>t). (37) 
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Now we consider a relaxation model of the collision operator given by 

Jf(v, r, f) = V(I-<ps(V) f dV)f(V, r, f), (38a) 

where <Ps( v) is an arbitrary isotropic velocity distribution function satisfying the 
relations 

f <Ps(v) dv = 1, f v<Ps(v) dv = O. (38b, c) 

In this case the drift velocity < v) and the mean square velocity in the steady state 
case are given from (10) as 

<v) = av- 1 , <v2) = 2<V)2 + f dv v2<ps(v) , 

and we can transform equations (18) into the real time domain by using 

lIFo (FO)2 
-- = ---+--- ... , 
s+ Fo s s2 s3 

f dv v(Fo)n+lh(v) = v f dv v(Fo)nh(v) (n> 1), 

f dv v2(Fo)n+lh(v) = v f dv v2(Fo)nh(v) 

_2av n- 1 f dv v(Fo)h(v) , 

f dv v(Fo) h(v) = v f dv vh(v) -a f dv h(v) , 

f dv v2(Fo) h(v) = v f dv v2h(v) -«v2)_2<v)2)v f dv h(v) 

-2a f dv vh(v), 

for an arbitrary function h( v) satisfying h( 00) = O. 

(39a, b) 

(40a) 

(40b) 

(40c) 

(40d) 

(40e) 

Then, the functions n 0\f) and @W(t) in (18) and (27) can be easily obtained: 

n(2)(t) = «v2)_<v)2)e- vt , 

@(l)(t) = «v)o-<v»e- vt , 

@(2)(f) = !<v2)O-<V2 )-<v)«v)o<v») fe- vt 

+a«v)o-<v»t2e-vt . 

(41) 

(42) 

(43) 
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Consequently, the centroid and the second moment of the particles and the time
dependent drift velocity and diffusion coefficient are given by 

<r)(t) = <v)t+«v)o-<v»v- I(I-e- vt), (44) 

<r2)(t) = <vit2 

where 

+212< v2)_< v2)o +< vX v)o -3< vi -2av- I« V)o -< v» J v-I t 

+ 2[ < v2)o -2< v2)+ 3< V)2 - 2< vX v)o + 2av- I« v)o -< v» J v-2(1_e- vt) 

-2[ < v2)o-< v2)_< vX v)o+< V)2 +2av- I« v)o-< v» J v-I t(l_e- vt) 

-2av- I« v)o -< v»t2e-vt , (45) 

W /t) = <v)+«v)o-<v»e-vt , (46) 

D(t) = «v2)_<V)2)v- 1 

+2« v)o< v)-< v2)o -< v2»v- Ie-vt 

+ [< v2)o-< v2)_2< v)« v)o -< v» J te-vt 

+ a« v)o-< v»t2e-vt +« v)o-< V»2 v -I e-2vt, (47) 

<v)o = f vfo(v) dv, <v2)o = f v2fo(v) dv 

are respectively the initial drift velocity and the initial mean square velocity. 
For times much shorter than v-I, immediately after the swarm is released, the 

centroid (equation 44) and the mean square displacement can be expressed as 

< r)( t) :::::: < v)o t +! a t2 , <R2)(t) :::::: «V2)O-<V)~)r2. (48a, b) 

These equations show that before many collisions have occurred, the swarm exhibits 
behaviour similar to that of charged particles in the absence of neutral molecules; this 
has been pointed out by Robson (1975). 

For the BGK model collision operator, the function <l>s( v) is given by a Maxwellian 
of temperature T as 

<l>s(v) = (a2/27T)~exp(-!a2IvI2), (49a) 

where 

a 2 = m/kT. (49b) 
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The mean square velocity < v2 ) in the steady state case is obtained from equations 
(39) as 

<v2) = 2aav-2+a-2[1], (50) 

where [1] is the unit tensor. 
When the swarm is initially injected with the same form as equation (49a), but with 

different temperature, i.e. <v)o = 0 and <v2)o = (a')-2[1], the present expressions 
for the centroid and the mean square displacement at time t, equations (44) and (45), 
agree with Robson (1975) (his equation 13). 

(b) Comparison with Time-dependent Transport Coefficients 

In the expression for the time-dependent transport coefficients of Kitamori et 
al. (1980), the effects of the initial velocity distribution on the coefficients are not 
separated from the intrinsic time-dependent component. Equation (20a), however; 
shows clearly the dependence on the initial velocity distribution in the second term 
on the right-hand side. 

When the continuity equation is obtained by integrating the Boltzmann equation 
(la) with respect to velocity v, the statistical information concerning the random 
velocity v present in the initial velocity distribution and the development of the 
swarm is not explicitly represented. On the other hand, in the present derivation 
of the evolution equation (20a) and the time-dependent parameters by the use of 
projection operators, we distinguish in the velocity distribution function a 'relevant' 
part denoted by pf( v, r, t) and an 'irrelevant' part denoted by p'f( v, r, t), as shown 
in equation (8), and obtain a generalised equation of evolution for the 'relevant' part, 
pf( v, r, t) = cf>o( v) n( r, t) (see equations 12 and 13). This 'relevant' part contains 
all the information which is necessary for the calculation of the number density at 
any time and we shall see that (13) is equivalent to the original Boltzmann equation, 
containing the same statistical information as (la). This is the reason the projection 
operator method is useful in expressing the short time development of swarms in the 
initial relaxation processes. 

Equations (5) and (20a) are, respectively, the expansion of at n(r, t) from the 
time-dependent transport coefficient method and from the present method using 
projection operators. Equating the expansion terms of both equations and using 

00 ( r)h 
f(t-r) = e-ra, f(t) = l: ~(at)hf(t) 

h=O h! 
(51) 

gives the relation 

00 00 00 (It ( r)h ) j!-l wV\t)0( - vy n(r, t) = j!-lh!-o 0 -hI nCJ)(r) dr 0(- vy(at)h n(r, t) 

00 

+ l: eCJ)(t)0(-Vyn(r, t=O). j=l (52) 
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A relationship between the coefficients of these expansions can be derived from the 
time derivative of the jth moment of the number density from equation (5), 

d (i-I 
dt <ri)(t) = U!) ~ wU-h)(t) <rh)(t») 

h=O h!' 
(53) 

and the equivalent equation by the projection operator method from the right-hand 
side of (52), which is equivalent to (28). Equating both expressions for (d/dt)(ri)(t), 
the following relation between the coefficients can be obtained: 

iii wU-h)(t) <rh)(t) = iii i (It (_r)n nU-h)(r) dr) 
h=O h! h=O n=O 0 n! 

( d )n<rh)(t) +@W(t). 
x dt h! 

(54) 

In the intrinsic case where @W(t) = o and <ri)(t) = <v)t (i.e. there are no effects 
present due to the initial distribution), the time-dependent transport coefficients can 
be obtained from the function nW( t). Using equation (54) with j = 1, 2 and 3, and 
solving for wY\ t) gives 

wP)(t) = I: n(l)(r) dT = <v), wf2)(t) = I: n(2)(r) dT, (55a, b) 

wP)(t) = I: n(3)(r) dT - I: n(I)(r) dr I: rn(2)(r) dT, (55c) 

where the SUbscript i denotes the intrinsic case. Higher order transport coefficients 
wY)(t) U ;> 4) are obtained from equation (54) in a similar manner. 

(c) Effects 0/ Reactions 

In order to make the analysis simple, the discussion in the previous sections was for 
no source term. We now discuss the case where ionisation cannot be neglected. Here 
the function 4>o( v) does not satisfy equation (lOa) due to the presence of ionisation, 
and as a result the operators pro and ro p in (11) are no longer zero. The operator 
prl on the right-hand side of (13) must be replaced by 

pr = prl +pJ, (56) 

and the projection operator p = 4>o( v) f d v should be defined by a new function 
4>o( v) satisfying the relations 

(ro+R)4>O(v) = 0, R = - I J4>o(V) dv, (57a, ,b) 

where R is an ionisation frequency. 
The generalised evolution equation including the source term can then be given 

in the same form as (20a) but including terms with j = o. The new functions 
n(O)(t) and e(O)(t) which express the intrinsic reaction term and the effect of the 
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initial velocity distribution respectively in the evolution equation are given by Laplace 
transform expressions as 

n(O)(s) = R, (58a) 

e(O)(s) = - JdV J( 1 ){!o(V)-cf>o(V)}. (58b) 
s+ro-pJ 

The other functions jj(])(s) and f?j(])(s) can also be obtained as 

jj(1)(s) = <v) - JdV J( 1 )(V-<V»cf>o(V) , (59a) 
s+ro-pJ . 

jj(])(s) = JdV V( 1 ) {(p'V)( 1 )}j-2(V-<V»cf>o(V) 
s+ro-pJ s+ro-pJ 

- JdV J( 1 ) {(p'V)( 1 )}j-\V-<V»cf>o(V) , (59b) 
s+ro-pJ s+ro-pJ 

f?j(1)(s) = JdV V( 1 ) {!o(v)-cf>o(v)} 
s+ro-pJ 

- JdV J( 1 )(p'V)( 1 ){!o(V)-cf>~(V)}. (59c) 
s+ro-pJ . s+ro-pJ 

f?j(])(s) = JdV V( 1 ) {(p'V)( 1 )}j-l {!o(v)-cf>o(v)} 
s+ro-pJ s+ro--pJ 

- J dv J(s+r~_PJ ){(p'V>(s+r~_PJ )r{!o(V)-cf>o(V)} ' 

(j > 2). (59d) 

These equations show the effects of the birth of new particles on the evolution 
characteristics of the swarm. 

If the operator (ro- pJ) satisfies the following relation for an arbitrary function 
h(v, t), 

J dv J(ro-pJ)h(v, t) = vr J dv Jh(v, t), (60a) 

where 

h(v, t) = g(v, t)-cf>o(V) , J g( v, t) d v = 1, (60b, c) 
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then the time-dependent ionisation frequency R( t) can be approximately given as 

R(t) = R+(Ro- R)e-V,T, (6Ia) 

where 
Ro = - J Jfo(v) dv (6Ih) 

is the ionisation frequency at the initial time (t = 0). This result is a consequence 
of the fact that under the conditions of equations (60) the mean value of the 
velocity distribution function taken over the whole group of the particles, g( v, t) = 
f f( v, r, t) drl n(t), can be presented by the Boltzmann equation with the collision 
term of a relaxation model as follows: 

atg(v, t) = -rog(v, t) = -vrlg(v, t)-<Po(v)J +<Po(v)R(t). (62) 

The second term on the right-hand side of (62) represents ionisation and indicates that 
new particles just after ionisation have the velocity distribution <Po( v) of the steady 
state case. Equation (61a) is an approximate form of the time-dependent ionisation 
frequency derived under the condition v r > R. 

Equations (58), (59) and (61) can be used to explain the time-dependent characteristic 
and the initial velocity dependence of the transport coefficients found by studies using 
Monte Carlo simulation (McIntosh 1974) and the numerical analysis of the Boltzmann 
equation (Kitamori et al. 1978, 1980). 

4. Concluding Remarks 

A general description of swarm evolution has been derived which includes all 
the processes that occur from the time of the injection of particles into the gas to 
the beginning of the hydrodynamic regime. The intrinsic time-dependent transport 
coefficients and the effects of the initial velocity distribution on the swarm evolution 
can be analytically calculated from the theory given here. 

It should be noted that although the conventional continuity equation (4) and the 
continuity equation with time-dependent coefficients (5) appear very similar, their 
effects on the evolution of the swarm are quite different. The expansion terms of 
equation (5) or, equivalently, those in the first part of the right-hand side of (20a) can 
be expressed as expansions in the time derivatives of the number density, as shown 
in (52). Therefore, it is apparent that the exact evolution equation in its differential 
form should involve terms in (a tY n( r, t) with j ;;;. 2 and would not be the typical 
parabolic partial differential equation of the conventional diffusion equation, even if 
the source term and higher order diffusion terms were omitted. 

The theory given here is for the idealised time-of-flight experiment with no 
boundaries. But in a real time-of-flight experiment, as dealt with for example in the 
study by Wagner et al. (1967), boundary effects due to finite enclosures and detecting 
electrodes lead to non-hydrodynamic behaviour. However, an experiment in which 
the mean of photon flux is measured (Blevin et al. 1976) should be less affected by 
the boundaries. The Fourier transformation method used here would not normally 
be directly applicable to experiment without some modification beginning with the 
Boltzmann equation. Such an analytical model of the Boltzmann equation which 
takes finite boundaries into account has been given by Kumar (1984). 
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