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We present here an interior solution of the Einstein-Maxwell equations for a charged static 
fluid sphere. The physical 3-space t = constant of the solution is spheroidal. The solution is 
interpreted as an exact relativistic model for a charged superdense star. 

1. Introduction 

Many exact interior solutions of the Einstein-Maxwell equations corresponding to 
a static charged sphere are available in the literature. The sphere of uniform density 
has been discussed by Kyle and Martin (1967) and by Mehra and Bohra (1979). The 
sphere of charged dust has been investigated by Bonnor and Wickramasuriya (1975), 
Raychaudhuri (1975) and Tikekar (1984). In all these cases, except Tikekar (1984), 
the physical 3-space t = constant is spherical. Patel and Pandya (1986) have obtained 
a Reissner-Nordstrom.interior solution in which the physical 3-space t = constant is 
spheroidal. In all the above-mentioned solutions, the space-times are not conformally 
flat. Chang (1983) has obtained some conformally flat interior solutions of the 
Einstein-Maxwell equations for a charged static sphere, while Hajj-Boutros and Sfeila 
(1986) have presented a generation technique to derive new exact solutions for a 
charged fluid sphere. They have also listed those papers which deal with different 
aspects of interior Reissner-Nordstrom solutions; for the sake of brevity, we do not 
repeat these references here. 

Furthermore, it has been generally suggested that the collapse of a spherically 
symmetric distribution of matter to a point singularity can be avoided if the matter 
is accompanied by charge. The gravitational attraction is then balanced by the 
electrostatic repulsion and by the pressure gradient. This shows the importance of 
the interior Reissner-Nordstrom solutions. 

It is the purpose of the present paper to obtain an interior solution for a charged 
perfect fluid sphere with the following properties: 

(i) the space-time describing the geometry of the solution is not conformally flat; 

(ii) the associated physical 3-space t = constant is spheroidal. 
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2. Metric Form and the Field Equations 

Vaidya and Tikekar (1982) have discussed the space-times, with physical 3-space 
spheroidal, in some detail. They expressed the line element of such space-times in 
the form 

( Kr2)( r2 )-1 ds2 = exp(y) dt2 - 1 - R2 1 - R2 dr2 

- r2(de2 + sin2 e d<j>2) , (1) 

where y is a function of r only. Here Rand K are constants and K < 1. The 
line element (1) is regular at all points where r2 < R2. We denote the coordinates 
by xl = r, x 2 = e, x 3 = <j> and X4 = t. When K = 0, the physical 3-space 
t = constant becomes spherical. 

The combined Einstein-Maxwell field equations are (using the geometric units 
c = G = 1) 

iIi i R k- 'iR8k = -81T T k' (2) 

where the energy-momentum tensor splits into two parts: 

T~ = M~+E~. (3) 

For a charged perfect fluid we have 

M~ = (P+P)ViVk- p8L (4) 

E i 1 (FinF I <>i F Fmn) k = 41T - kn+4 uk mn , (5) 

where E~ is the electromagnetic energy tensor and Vi is the 4-vector velocity. The 
electromagnetic field tensor Fik satisfies Maxwell's equations 

Fik,j+ Fkj,i+ Fji,k = 0, 

a l'k 1 . 
-{(-g)2F' J = 41T(-g)2J', 
axk 

(6a) 

(6b) 

Ji being the 4-current vector. The fluid has been assumed to have null conductivity, 
so that 

. i 
J' O-V, (7) 

where 0- denotes the charge density and, since the field is static, we have 

Vi = (0,0,0, exp( - 4y»). (8) 

Since there is only a radial electric field, the only surviving component of Fik is Fi4' 
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The Maxwell equations (6) lead us to write 

.- exp(~Y)(I-Kr2/R2)~ JY 2(I-Kr2/R2)~ 
1'\4 - 2 2 2 47T0"Y 2 dr, 

r l-r/R 0 l-r2/R 
(9) 

and also 

-1'\4 F14 = E2(r) , (10) 

where E(r) can be interpreted as the field intensity. The results (9) and (10) imply 
that 

1 ( d )( r2 )~( Kr2)-~ 417'0" = - -(r2E) 1 - - 1 - - , 
r2 dr R2 R2 

(11) 

and, subsequently, 

r( Kr2)~( r2 )-~ Q(r) =417' Jo 1- R2 1- R2 ' O"r2 dr, (12) 

which represents the total charge contained within the sphere of radius r. 
The Einstein-Maxwell equations (2), along with (3), (4) and (5), give 

2 {1-K Y'( r2 )}( Kr2)-1 -87Tp+E = ---- 1-- 1-- , 
R2 r R2 R2 

(13) 

87Tp+E2 = 3(1-K)(1 _ Kr2)(1 _ Kr2)-2 
R2 3R2 R2 ' 

(14) 

2 (Y" y'2 Y')( r2)( Kr2)-1 -87Tp-E = - -+-+- 1-- 1--
2 4 2r R2 R2 

(1-K)r(y' 1)( Kr2)-2 + -+- 1--
R2 2 r R2 

(15) 

Here a prime indicates differentiation with respect to r. 

3. Solution of the Field Equations 

We have the three equations (13), (14) and (15) and the four variables p, p, yand 
E2; hence, we have only one free variable. Patel and Pandya (1986) have used this 
freedom to obtain the solution by taking a specific form of the function E2. In this 
section we take another and new specific form of E2 and solve the three equations 
for the remaining three functions. Let us assume that 

E2( r) = ~2 r2 exp( - ~y) 
R4(1 - Kr2/ R2)2 ' 

(16) 
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where /3 is a constant. Clearly E2 is positive. Equating the expressions for the 
pressure p from (13) and (15), we get the differential equation 

2 d2 F dF 
(I-K+Kz )-2 -Kz- +K(K-l)F = 0, 

dz dz 
(17) 

where z2 = l_r2/R2 and F = exp(i'Y)-2/32/K(K-l). Equation (17) has been 
solved by Vaidya and Tikekar (1982) in the uncharged case (i.e. /3 = 0) for K = -2. 
Following the same method, the closed-form solution of (17) for K = - 2 in the 
charged case can be expressed as 

exp(i'Y) = %/32+Az(1-~z2)+B(1-~z2)~, (18) 

where A and B are integration constants. The closed-form solutions of (17) have also 
been obtained for K = -7 and -14 etc., but are not reported here. 

The matter density and the fluid pressure are found to be 

817 = 5-2z2 - .3 , 
3 ( /32(I-z2») 

P R2(3-2z2)2 /32+3Az(1-~z2)+3B(I-jz2)2 (19) 

817 pR2(3 _2z2){ %/32 +Az(l- ~z2)+ B(1- jz2)~ J 

= /32(1_~2) -/32 +B(6z2-3)(I~jz2)4+Az(4z2-5). (20) 

The density p and the pressure p at the centre (r = 0) attain the values 

9 
817PO = 2' 

R 

9 ( Bv3-A-/32 ) 
817lb = R2 Bv3 +5A +3/32 . 

The charge density u can be determined from (11) in the form 

817UR2 1 + - exp(ly) = /3 - 30 + -- - --+-( 2r2)~ {A( 11 r2 22r4 8r6) 
R2 4 9 R2 R4 R6 

+ - 1 - - 1 + - 1 - - + f:./3 2 3 + - 1 - -2B ( r2 )4( 2r2)~( r2 ) ( 2r2)( r2 )~} 
v3 R2 R2 3R2 3 R2 R2' 

where exp(y) is given by (18). It is easy to see that E2 = 0 at the centre r = O. 

(21) 

(22) 

(23) 

We consider a situation where the spherical charged perfect fluid distribution 
extends to a finite radius a < R. The interior metric (1) with exp(y) given by (18) 
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should then match with the external Reissner-Nordstrom metric 

( 2 2) (2 2)-1 2 m q 2 m q 2 
ds = 1 - - + - dt - 1 - - + - dr 

r r2 r r2 

- r2(d82 + sin2 8 d</>2), (24) 

across the boundary r = a. Here m and q, respectively, denote the total mass and 
the total charge of the sphere. The relations (12) and Q( a) = q give us 

/ ( 2a2)2{{32 A( a2 )t( 4a2) 
{32a6 R4 1 + If 3 + 9" 1 -' R2 5 + If 

B ( 2a2)~} 2 + 3y/3 1 + If = q . (25) 

The appropriate boundary conditions are 

( a2 )( 2a2)-1 2m q2 exp{'Y(a)} = 1-- 1+- = 1--+-, 
R2 R2 a a2 

and the pressure at r = a vanishes. These conditions determine the constants A, B 
and m to be 

( 2a2)( 2a2)-! {32( 5a2)( a2 )-t A=~ l- lf l+lf -6 4-lf 1- R2 ' (26) 

Y/3( 4a2)( a2 )t( 2a2)-1 B= - 1+- 1-- 1+-
2 R2 R2 R2 

{32 ( 9a2 20a4)( 2a2)-~ +- 2---- 1+- , 
6y/3 R2 R4 R2 

(27) 

m 3a2 ( 2a2)-1 {32 a4 ( a2 )-t( 2a2)-~ 
-=- 1+- +-- 1-- 1+- . 
a 2R2 R2 2R4 R2 R2 

(28) 

From (28) it is evident that the mass parameter m is positive. 
Thus, the final form of the metric of our solution is 

ds2 = .! {32 + - 1 - - 5 + - + - 1 + - dt2 { A( r2 )!( 4r2) B ( 2r2)~}2 
9 3 R2 R2 Y/3 R2 

1 +2r2/R2 
- d? - r2(d82 + sin2 8 d</>2), 

l_r2/R2 
(29) 

where A and B are given by (26) and (27). When {3 = 0, the electromagnetic 
field disappears and we get the solution discussed by Vaidya and Tikekar (1982) in 
connection with the exact relativistic model for a superdense star. Thus, our solution 
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is a charged analogue of the Vaidya-Tikekar solution, and describes the interior field 
of a charged superdense star. 

Table 1. Variation of parameters with alb for (a),Bl = 0·1 and (b),Bl = 2.0 

No. aiR A A B f{A,B) 1-3f{A,B) I-f{A,B) 

(a),Bl = 0·1 

1 0.025000 0.997913 1.430550 0.924300 0.007774 0.976679 0.992226 
2 0.050000 0.991697 1.422240 0.925902 0.009037 0.972889 0.990963 
3 0.075000 0.981479 1.408470 0.928513 0.011146 0.966562 0.988854 
4 0.100000 0.967468 1. 389350 0.932047 0.014107 0.957680 0.985893 
5 0.125000 0.949940 1. 365060 0.936390 0.017922 0.946216 0.982072 
6 0.150000 0.929229 1.335780 0.941399 0.022622 0.932133 0.977378 
7 0.175000 0.905713 1. 301770 0.946909 0.028208 0.915376 0.971792 
8 0.200000 0.879797 1.263270 0.952740 0.034710 0.895871 0.965290 
9 0.225000 0.851901 1.220570 0.958698 0.042160 0.873521 0.957840 

10 0.250000 0.822444 1.173960 0.964582 0.050601 0.848196 0.949399 
11 0.275000 0.791835 1.123770 0.970186 0.060091 0.819727 0.939909 
12 0.300000 0.760458 1.070280 0.975308 0.070702 0.787895 0.929298 
13 O~. 325000 0.728670 1. 013830 0.979746 0.082527 0.752420 0.917473 
14 0.350000 0.696792 0.954700 0.983306 0.095687 0.712939 0.904313 
15 0.37500)) 0.665108 0.893198 0.985803 0.110337 0.668989 0.889663 
16 0.400000 0.633860 0.829605 0.987057 0.126676 0.619971 0.873324 
17 0.425000 0.603253 0.764187 0.986903 0.144963 0.56511l 0.855037 
18 0.450000 0.573454 0.697201 0.985179 0.165535 0.503396 0.834465 
19 0.475000 0.544594 0.628881 0.981736 0.188838 0.433487 0.811162 
20 0.500000 0.516773 0.559449 0.976430 0.215471 0.353586 0.784529 
21 0.525000 0.490060 0.489106 0.969120 0.246259 0.261233 0.753744 
22 0.550000 0.464502 0.418041 0.959670 0.282340 0.152980 0.717660 
23 0.575000 0.440123 0.346425 0.947943 0.325383 0.023850 0.674617 
24 0.600000 0.416929 0.274414 0.933799 0.377866 -0.133598 0.622134 

(b),Bl = 2·0 

1 0.025000 0.997782 0.164481 2.016130 0.128708 0.613875 0.871292 
2 0.050000 0.991172 0.157952 2.002370 0.127731 0.616807 0.872269 
3 0.075000 0.980308 0.147154 1.979580 0.126083 0.621750 0.873917 
4 0.100000 0.965409 0.132217 1.947920 0.123736 0.628793 0.876264 
5 0.125000 0.946765 0.113312 1.907660 0.120646 0.638063 0.879354 
6 0.150000 0.924732 0.090655 1.859110 0.116755 0.649735 0.883245 
7 0.175000 0.899707 0.064497 1. 802600 0.111989 0.664033 0.888011 
8 0.200000 0.872118 0.035119 1. 738540 0.106252 0.681243 0.893748 
9 0.225000 0.842409 0.002831 1.667340 0.099425 0.701725 0.900575 

10 0.250000 0.811024 -0.032041 1. 589430 0.091357 0.725928 0.908643 
11 0.275000 0.778392 -0.069156 1. 505230 0.081863 0.754412 0.918137 
12 0.300000 0.744919 -0.108163 1. 415190 0.070710 0.787871 0.929290 
13 0.325000 0.710982 -0.148710 1. 319700 0.057608 0.827175 0.942392 
14 0.350000 0.676919 -0.190439 1.219170 0.042196 0.873413 0.957805 
15 0.375000 0.643026 -0.232996 1.113960 0.024012 0.927963 0.975988 
16 0.400000 0.609559 -0.276033 1. 004420 0.002474 0,.992578 0.997526 
17 0.425000 0.576729 -0.319202 0.890850 -0.623171 1. 069510 1. 023170 
18 0.450000 0.544710 -0.362163 0.773535 -0.053904 1.161710 1. 053900 
19 0.475000 0.513634 -0.404575 0.652714 -0.091018 1. 273050 1. 091020 
20 0.500000 0.483600 -0.446103 0.528595 -0.136251 1.408750 1.136250 
21 0.525000 0.454674 -0.486406 0.401350 0.191980 1.575940 1.191980 
22 0.550000 0.426896 -0.525136 0.271117 -0.261524 1. 784570 1.261520 
23 0.575000 0.400279 -0.561934 0.137997 -0.349643 2.048930 1. 349640 
24 0.600000 0.374815 -0.596420 0.002057 -0.463357 2.390070 1.463360 

If P 0 is the value of P at the boundary r 
calculation yields 

a and A P of Po, then a straightforward 

A=.!. 3+- 1+- -- 1-- 1+-( 2a2)( 2a2)-2 {32a2( a2)-4( 2a2)-~ 
3 R2 R2 9 R2 R2 R2 (30) 

It is not hard to see that A < 1. Thus, the central density Po is greater than the 
density Po at the boundary. For a physically significant model we must have 

Po> 0, Po> 0, Po-Po> 0, Po-3Po > 0. (31) 
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If we set f(A, B) = (BV3 -A -{32)/(BV3 +5A +3{32), we see that the conditions 
(31) are equivalent to 

f(A, B) > 0, 1- f(A, B) ;;. 0, 1-3f(A, B);;. O. (32) 

If a/ R is given, then A, B and A. can be determined from (26), (27) and (30) 
respectively for a fixed value of {3. For the uncharged case, Vaidya and Tikekar 
(1982) have noted that a/ R must be less than 0·5567 for a physically significant 
model. For {32 = 0·1 and {32 = 2.0, and for 0·025.;;; a/ R .;;; 0·60, the values of A., 
A, B, f(A, B), 1-3f(A, B) and 1- f(A, B) are given in Table 1. From this table 
it is clear that, when a/ R increases, A. decreases. From Table 1 a it is clear that for 
{32 = O· 1, 1-3f(A, B) becomes negative for a/ R = 0·60. Thus, for {32 = O· 1, the 
conditions (31) are satisfied for 0·025.;;; a/R.;;; 0·575. From Table 1b it is evident 
that f(A, B) becomes negative for af R = 0·425. Thus, for {32 = 2·0, the conditions 
(31) are satisfied for 0·025 .;;; a/ R .;;; 0·40. Though the numerical calculations have 
been carried out for the exact solution corresponding K = - 2, the method is quite 
general and can be used for a whole series of models with K < 1. 
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