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Abstract 
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Because photons are described by quantum mechanical wavefunctions that have a nonzero spatial 
extent it follows that they can be influenced by curved space-time. It is generally assumed that 
this tidal interaction is far too small to have a significant effect. This paper argues that there 
is a significant effect that results in an interaction between the photon and the material causing 
the curved space-time in which the photon loses energy to low energy secondary photons. 
The energy loss is a function of the space-time curvature and is proportional to distance. The 
only situation fully considered is that of a photon in curved space-time due to a uniform 
distribution of matter. Because the energy loss rate is very small it is difficult to observe in the 
laboratory and therefore its major applications are in astronomy. If the intergalactic density of 
matter is n hydrogen atoms m - 3, then the predicted value for the 'Hubble' constant (assuming 
no universal expansion) is 51·68 n1 /2 km s - 1 Mpc - 1. The theory can solve the virial mass 
discrepancy observed in clusters of galaxies and it makes a definite prediction about their relative 
magnitudes. Other astronomical applications are considered. 

1. Introduction 

Although the tidal stress on a fundamental particle moving along its geodesic in 
curved space-time is very small, it is not negligible. This paper argues that this tidal 
stress can produce an energy loss mechanism that is of considerable astrophysical 
importance. In particular, this loss can explain the Hubble redshift without requiring 
universal expansion. This paper will concentrate on the derivation of the energy loss 
relation and its application to the Hubble redshift. The crucial idea is that as the 
geometry of null geodesics in curved space-time is that of a three-dimensional surface 
in four-dimensional hyperspace, then momentum is not confined to three dimensions 
but has four spatial components. Suppose a photon starts off with all its momentum 
in the observable, three spatial dimensions, then in curved space-time the photon's 
trajectory is curved so that some momentum is transferred to the fourth dimension. 
This momentum transfer corresponds to an effective energy loss by the photon. The 
basic assumption of this paper is that the momentum transfer is not permanent but is 
subject to the Heisenberg uncertainty principle, in that it can only stay in the fourth 
dimension for a distance inversely proportional to the momentum. Then it appears 
as new low energy secondary photons. In other words, the fourth dimension is only 
accessible on a temporary basis. The main thrust of the analysis is to obtain the 
magnitude of this deflected momentum. This is done by examining the behaviour of 
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a bundle of photons in curved space-time and extrapolating the results to a single 
photon. 

The result of this analysis of the interaction between a photon and the curved 
space-time produced by a uniform distribution of matter is that a photon suffers a 
fractional energy loss proportional to the square root of the density of the medium, and 
proportional to the distance travelled. It is argued that if there is any other interaction 
occurring then the energy loss can be inhibited. This means that laboratory tests 
are very difficult and that the major application of the theory is in astronomy where 
the requirements of large distances and low densities can be found. As well as the 
prediction of a Hubble redshift many other astronomical applications are considered. 
Not only can it resolve the virial mass discrepancy that is observed in clusters of 
galaxies, but there is a definite prediction of an as yet unobserved relationship between 
the velocity of a galaxy in a cluster and its redshift. 

2. Energy Loss Relationship 

The following analysis keeps within the geometric optics approximation to wave 
propagation in curved space-time and does not consider post geometric effects 
such as coupling between the particles spin and the space-time curvature. It is 
therefore implicit that the wavelength is short compared with distances over which 
the amplitude, wavelength or polarisation varies, and is also short compared with the 
minimum radius of curvature of space-time. The basic results of the geometric optics 
approximation (Misner et al. 1973) are that rays are null geodesics, the polarisation 
vector is perpendicular to the rays, and the amplitude is an adiabatic invariant. 
Consider a bundle of null geodesics that has a cross-sectional area normal to a 
central reference geodesic, then the product of this area times the square of the 
wave amplitude is invariant. Physically this means that as the wave propagates its 
total energy remains constant. Because of the 'focussing theorem' the cross-sectional 
area will remain constant or decrease and hence the amplitude remains the same or 
increases. Geometrically, the bundle of rays follow a three-dimensional surface that 
always has a non-negative curvature. These results are often interpreted in the photon 
model by saying that photons are point-like particles that travel on null geodesics 
and that the total number of photons is conserved. The electromagnetic properties 
of photons are due to the combined effects of a large number of photons. Here it is 
argued that photons are particles with physical extent and wave-like properties and 
that individual photons are subject to tidal stress due to the curvature of space-time. 
In the standard model the curvature of space-time only influences the geometry of 
the photon bundle and the trajectories of individual photons are completely described 
by null geodesics. 

The problem of computing the tidal stress on a photon is attacked by considering 
the geometry of a bundle of null geodesics. At any point on the reference geodesic 
we can erect Riemann normal coordinates, which provide a local inertial reference 
frame. Then within the assumptions of geometric optics this frame is Minkowskian. 
Consider a cylindrical coordinate system with all the photons parallel to the z-axis 
at the origin. Then as the bundle of photons propagate along null geodesics the 
cross-sectional area decreases or at least remains the same. There is no differential 
change in the longitudinal direction. In general there will be a change in the average 
direction of the bundle due to gravitational deflection. However, this is of no interest 
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here and will be ignored. It is the second order term that depends on the local 
curvature that is important. Since the change in area is scale invariant, and neglecting 
possible higher order terms, the cross-sectional area A satisfies the differential equation 

1 d2 A 

A dz2 

2 
-E , (1) 

where E2 is proportional to the local gaussian curvature. Consistent with the geometric 
optics approximation, we assume that E2 has negligible variation over the distances 
of interest. The geometry is that of a three-dimensional surface of a four-dimensional 
hypersphere of radius liE. 

Consider a plane wave with finite lateral extent and let the wave travel a distance 
z, which is large compared with a wavelength but small compared with liE. In 
four spatial dimensions the wave has been deflected by an angle EZ and therefore 
if Po is the original momentum, the momentum deflected into the fourth spatial 
dimension is Po sinEZ, and the energy associated with this deflected momentum is 
Eo sinEZ, where Eo is the original energy. Basically we are assuming that the change 
in momentum of a body travelling along a three-dimensional curved surface in four 
dimensions is the same as that for a body travelling along a two-dimensional surface 
in three dimensions, or a one-dimensional surface in two dimensions. In all cases the 
trajectory can be reduced to a circular path in two dimensions. The only difference 
with the four-dimensional space is that we cannot directly perceive the curvature. 
This change in momentum is quite general in that it only depends on the properties of 
wave propagation in the approximation of geometric optics. It must therefore apply 
to the propagation of a bundle of photons. In this case we identify the momentum 
density with a photon density, and find the same result for the total deflected energy 
and momentum. 

How can these ideas be applied to a single photon? The area change is a proportional 
one so that arguments about the photon being too small to be affected are not valid. 
More importantly, the wave equation used to describe the photon obeys the laws of 
geometric optics and its propagation is modified by the curvature. Havas (1966) has 
pointed out that the concept of a single photon is rather tenuous. There is no way 
we can tell the difference between a single photon and a bundle of photons which 
combine to have the same energy, momentum and spin. This is because photons obey 
Bose-Einstein statistics which is the quantum mechanical equivalent of the principle 
of superposition. However, the wave equation that describes the photon in quantum 
mechanics only applies to three spatial dimensions. The effective energy is given by 
an operator whose expectation is taken over three dimensions; it does not cover the 
energy deflected into the fourth dimension. This energy is 'lost' from the photon. In 
the limit where EZ is very small, which usually applies, we find this energy loss to be 

E=EZEu, (2) 

where Eo is the energy of the primary photon. Since the energy E is lost to the 
primary photon we interpret this as an energy loss equation which can be written as 

dEu/dz = -EEu· (3) 
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If the curvature is constant this can be integrated to get 

E(z) = Eo exp( - EZ). (4) 

What happens to the energy? The only reasonable explanation is that it gets emitted 
as low energy photons. The energy can only remain 'lost' in the fourth dimension 
for a time consistent with the Heisenberg uncertainty principle. The primary starts 
off at Z = 0 in an initial state, with all its energy and momentum confined to three 
dimensions, then as it travels the momentum imbalance builds up, until eventually 
at z, it emits two (or possibly more) secondary photons and regains its initial state, 
but with a slightly reduced energy. At least two secondaries are required in order to 
preserve spin and momentum. The primary then repeats this procedure. An estimate 
of the interaction length between emission of secondaries can be obtained from the 
uncertainty principle applied to the primary photon. This is equivalent to observing 
that radiation efficiency requires that the pathlength between emissions is comparable 
with the wavelength of the secondaries. If there is any energy loss .:l E then the 
uncertainty principle applied to the primary photon relates it to a distance .:lz, where 

.:lE .:lz = hc/47T, (5) 

and using equation (3) to get .:lE, the average distance between the emission of 
secondaries is 

1 

.:lz = (hc/47TEEo)2 . (6) 

There is an important difference between this tidal interaction and the majority of 
particle interactions. Normal interactions occur in a small volume and there is no 
interference between different interactions of the same or different types. However, 
this tidal interaction requires a slow build up of an energy discrepancy and the 
secondaries are only emitted when the discrepancy can no longer be maintained. Any 
other interaction that occurs during the process can interfere with the tidal interaction. 
Although the energy discrepancy built up prior to the interfering interaction could 
be emitted as supplementary secondary photons, the very short pathlength compared 
with their wavelength suggests that the radiation efficiency would be very low. The 
result is that if there is another interaction that has an interaction length much 
shorter than .:lz, then the tidal energy loss is inhibited. Then, as the interaction 
length becomes comparable with .:lz, we expect a transition zone as the energy 
loss builds and reaches its full value when the interaction length is much greater 
than .:lz. This inhibition is similar to the influence of a plasma on the emission of 
synchrotron radiation (Pacho1czyk 1970) in which the intensity of the low frequency 
radiation in a plasma is less than that in a vacuum. The difference is because the low 
frequency radiation has a different phase velocity in a plasma and eventually loses 
phase coherence with its source. For the tidal interaction it is the velocity of the 
primary photon that is important. For efficient radiation oflow energy photons it must 
maintain phase coherence with the gravitational field over a distance commensurate 
with the secondary wavelength. This inhibitory effect is considered later in discussing 
possible laboratory experiments. 
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3. Calculation of Curvature 

The curvature parameter E can be obtained from the Raychaudhuri (1955) equation 
which describes the evolution of the volume of a bundle of geodesics. If we assume 
that the geodesic bundle has zero shear and vorticity it states that 

1 d2 V 
V ds2 = - Ra/3 Ua U/3 (7) 

where s is a suitable affine parameter, Ra/3 is the Ricci tensor, Ua is the 4-velocity 
on the reference geodesic and V is the volume of the bundle of geodesics. This 
equation can be obtained directly from the equation of geodesic deviation by restricting 
the acceleration of the displacements to be parallel to the displacements, which is 
equivalent to having zero shear and vorticity" Because of symmetry the shear and the 
vorticity of a geodesic bundle are zero for homogeneous and isotropic media. The 
applicability of equation (7) can be extended by using the Goldberg-Sachs theorem 
(Chandrasekhar 1979) which states that if the Riemann tensor is algebraically special 
then the shear and vorticity are zero. The Kerr solution for the external field of a 
rotating mass, and the special case of the Schwarzschild solution for the external field 
of a non-rotating mass, satisfy this theorem. Since the Ricci tensor is zero for the 
exterior solutions the right-hand side of (7) is zero for both these cases. The result is 
that there is change of volume and, therefore, there is no predicted photon interaction 
with the external gravitational field of a mass such as the Sun or the Earth. There is 
still the possibility that there is an interaction that depends on factors other than a 
simple volume change. 

For null geodesics the pathlength z is a suitable affine parameter. Note that the 
focussing theorem states that the right-hand side of (7) is always non-positive. Then, 
since there is no change in the longitudinal direction, the change in volume is entirely 
due to a change in area. Therefore, combining equation (1) with (7) we get 

E = (Ra/3 Ua U/3)~ . (8) 

This relationship is only a function of the Riemann geometry of space-time and does 
not depend on any particular gravitational theory. However, Einstein's general theory 
of gravitation gives a particularly elegant evaluation. Direct application of the field 
equations with the stress energy-momentum tensor T a/3 and metric tensor ga/3 gives 

E = (87TG(T Ua U/3 -.! Tg, Ua U/3) +Ag, Ua U/3I~ a/3 2 a/3 a/3 ' (9) 

where T is the contracted form of T a/3' and A is the cosmological constant. For 
photons with null geodesics we have ga/3 ua U/3 = 0, and the two last terms in (9) 
are zero. Equation (9) has a particularly simple form for a perfect fluid where the 
pressure is negligible compared with the density, which is true for most astrophysical 
gases and plasmas. For photons we can combine equation (3) with (9) for a perfect 
fluid at rest to get 

dE1J/dz = - (87T Gpl C2)~ E1J, (10) 

where p is the density of the medium. This equation was derived by a simpler 
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heuristic argument in an earlier paper (Crawford 1979). This is the essential result of 
this paper. It states that a photon travelling in a medium, which is rare enough for 
there to be effectively no other interaction, loses energy at a rate proportional to the 
square root of the local density. 

4. Hubble Redshift 

The obvious application of equation (10) is to see if it can explain the Hubble redshift 
without the necessity of universal expansion. The simple model is that the redshift is 
due to the energy loss by the photons in passing through the intergalactic medium. 
It is a 'tired light' model for explaining the observed redshift distance relationship. 
In fact for a constant density intergalactic medium it predicts an exponential redshift 
distance function (cf. equation 4). For small distances a linear relationship is a good 
approximation. It can be shown (Crawford 1987; present issue p. 459) that the diffuse 
X-ray background is consistent with free-free emission from a very hot intergalactic 
plasma. Let this plasma have a density of n hydrogen atoms m- 3, then the observed 
Hubble redshift H is given by (10) as 

H = 51·68 n~ kms- I Mpc- I . (11) 

For the best-fit density to the X-ray observations (Crawford 1987) of n < 2·05 m- 3, 

this gives H < 74 km S-I Mpc- I , a value in good agreement with current observations. 
The inequality arises because of the unknown clumpiness of the intergalactic medium. 
This clumpiness could easily give a reduction by a factor of about 2 in the predicted 
value for H. Although this result was derived for a specific cosmological model, 
we note that Marshall et af. (1980) using a standard model found a density of the 
intergalactic gas of 36% of the closure density. The closure density is defined as 
3H2/8'T1"G, and comparison with equation (10) shows that this tidal energy loss theory 
.predicts a density of one-third of the closure density in order to give the same redshift 
relationship, which is to be compared with their value of 36%. The significance of 
this result is that the density of the intergalactic medium and hence the predicted 
Hubble constant is not critically dependent on cosmological models. 

If there is a high degree of clumping of the intergalactic gas the measurement of 
the Hubble redshift is likely to have systematic errors, especially for nearby galaxies. 
For instance, a gas cloud similar in density and size to those inside clusters of galaxies 
would produce an additional effective velocity of about 2000 km s -I for objects seen 
through it. Indeed, we expect to see 'holes' in the redshift distribution due to the 
effects of high density clouds between us and the object. This may well be the 
explanation of the observations by Karoji et af. (1976), who found that galaxies seen 
through clusters have a larger redshift than those selected away from clusters. They 
used apparent magnitudes to make a relative normalisation for the distribution in 
distance, and found that the redshift velocity of radio galaxies seen through a cluster 
was about 2500 km s -I greater than that for galaxies away from clusters. 

5. Virial Theorem for Clusters of Galaxies 

A long standing problem in understanding the dynamics of clusters of galaxies is 
that the mass predicted from the virial theorem is much larger than the observed 
mass of the galaxies (Dressler 1978). The virial theorem states that for a number 
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of masses in gravitational equilibrium the average potential energy is twice the 
average kinetic energy. The kinetic energy in clusters of galaxies is computed from 
differential redshifts of the individual galaxies interpreted as line of sight velocities. 
The kinetic energy is computed from these velocities on the assumption that the 
transverse velocities have the same distribution. The potential energy is computed 
from distances, and masses derived from luminosities and mass-to-light ratios. X-ray 
observations have shown that there is a considerable quantity of gas in the centres of 
clusters. Suppose that the differential redshifts are not due to different velocities, but 
are essentially due to energy loss by the photons in the gas. The more distant galaxies 
in the cluster would have a larger redshift than the nearer ones. This is in addition to 
the overall redshift caused by the intergalactic gas between us and the cluster. From 
equation (18) we note that the extra redshift is proportional to the square root of the 
cluster gas density. Therefore, the root mean square velocity, the velocity dispersion, 
is also proportional to the square root of the gas density. The X-ray intensity from 
the cluster gas is due to free-free interactions (bremsstrahlung) and is proportional 
to the square of the gas density. The result of this extremely simple model is that the 
X-ray intensity should be proportional to the fourth power of the velocity dispersion, 
which is in agreement with the analysis by Quintana and Melnick (1982) who found 
an exponent of 4· O±O· 7. It will be shown in a later paper that a better model that 
includes observed gas distributions makes predictions that are in excellent agreement 
with observations. 

An important consequence of this model is that galaxies with larger redshifts are 
deeper into the cluster gas and therefore further away, and therefore fainter. The 
model makes the definite prediction that in a cluster there is a correlation between the 
redshift of each galaxy and its apparent magnitude (or any other independent distance 
measure). This is one result that is a crucial test of the theory. The major difficulty 
in making the test is that the relative distance range is small, and hence the predicted 
spread in magnitudes is small, and because the intrinsic spread in magnitude is much 
larger, a large number of measurements are needed to get a statistically significant 
result. 

6. Laboratory Tests 

One of the major disadvantages of this theory is that it does not readily predict a 
result that can be tested in the laboratory. This arises because the interaction length 
of other interactions is small enough to inhibit the energy loss process. It is difficult 
to have sufficient density to get a measurable energy loss without having competing 
interactions. As an example of a possible experiment we consider the gravitational 
redshift experiment by Pound and Snider (1965). They measured the gravitational 
redshift of 14·4 keY 'Y rays passing through a vertical, 22·5 m path in helium. The 
predicted fractional energy change 'from equation (10) is -1· 25 x 10- 12 . The typical 
pathlength between emission of secondaries (equation 6) is 11 m, and the typical 
frequency for the secondaries is about 1 MHz. Even for a very strong source it would 
be very difficult to detect the secondaries because of their very low power and broad 
spread in frequency. Pound and Snider observed a fractional energy change that 
was in agreement with the gravitational redshift of 2·5 X 10- 15 , and not the much 
larger value predicted here. Their experiment measured the difference between the 
frequency shift of upward moving photons to that of downward moving photons and 
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was deliberately designed to cancel one-way effects. Nevertheless, they would have 
seen the large shift predicted here. However, it has been argued above that if the 
photons have an interaction length from some other interaction that is much smaller 
than that predicted by equation (6), then the effect would be greatly reduced. In 
this case there is such an interaction; the coherent forward scattering that produces 
the macroscopic effect of refractive index. An estimate of the interaction length is 
provided by the extinction length given by the Ewald and Oseen extinction theorem 
(Jackson 1975). In the high frequency limit the electrons are essentially free and the 
refractive index is the same as that for a plasma. For a plasma with a density of 
n electrons m- 3, and for X-ray photons with wavelength A, the extinction distance 
has the value (A n ro) -1, where r 0 is the classical electron radius. A simple calculation 
shows that the extinction distance in a plasma is just that distance over which an 
electromagnetic wave has a phase change of one radian compared with propagation 
in a vacuum. 

For the Pound and Snider experiment the extinction length is 0·15 m, a value 
much smaller than the typical decay distance of 11 m, which shows that these results 
do not invalidate the photon decay theory. It is of interest to note that in an earlier 
experiment Pound and Rebka (1960) did observe an unexplained one-way energy 
loss, but for less than the value predicted above. This analysis also shows that the 
laboratory confirmation of the theory would be very difficult, because it requires the 
observation of very high energy photons over long distances through a low density 
medium in order to eliminate the interference from other interactions. 

7. Other Astronomical Effects 

The astronomical effects of this theory are pervasive. The theory must be considered 
in nearly all cases where redshifts are interpreted as velocities. Particular examples 
are in the dynamics of the Galaxy, galactic rotation curves and the dynamics of stellar 
clusters and gas clouds. Another example is the velocity distribution of nearby stars 
where there has been an unexplained redshift, the K term, left after other galactic 
rotation velocities have been removed. The verification that the K term is due to tidal 
interactions is rendered difficult because of the large and unknown density distribution 
of the interstellar gas. 

There is the possibility of explaining some discrepancies in the redshifts of galaxies 
and quasars (Burbidge 1979) as being due to differerit line of sight density distributions. 
It is easy with reasonable estimates of densities and sizes of intergalactic gas clouds 
to get differential redshifts that correspond to effective velocity differences of up to 
105 kms- 1, but to go much higher is difficult. Nevertheless, this theory can explain 
many of the smaller discrepancies. One effect of these clouds is that the redshift of 
nearby galaxies may not be a good indicator of their distance. However, the statistics 
of large numbers should ensure that the redshift is a good measure of distance (with 
an exponential equation) for large distances., 

A more subtle effect of this theory is the broadening of spectral lines seen in 
absorption. Each spectral line will be broadened by the redshift due to the density of 
the cloud, as the radiation passes through the cloud. The width of the spectral line 
will be proportional to the product of the depth of the cloud and the mean value of 
the square root of its density. 



Photons in Curved Space-Time 457 

8. Summary 

A simple model for the interaction of a photon with matter producing curved 
space-time has been described. The essential result is that in a dilute gas (or plasma) 
the photon loses energy at a rate given by equation (10). If the gas density is too 
large the tidal interaction is inhibited due to interference from other interactions, in 
particular the coherent forward scattering that is equivalent to refractive index. This 
tidal interaction can explain the Hubble redshift with an intergalactic density of about 
2 hydrogen atoms m- 3. As a result, the Universe must either be static or have a 
much lower rate of expansion than currently believed. A first order analysis suggests 
that it can resolve the virial mass discrepancy in clusters of galaxies by attributing 
most of the differential redshifts to energy losses in the plasma that produces the 
cluster X-ray emission. The theory makes definite predictions that the galaxies in 
a cluster with higher redshifts are further away than those with smaller redshifts. 
Under the standard description the correlation is zero due to the time symmetry of 
the gravitational dynamics. The possibility of laboratory tests of the theory is remote 
because of the strong inhibition of the tidal interaction by other interactions. 
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