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Abstract 

The hydrodynamic part of the distribution function of a swarm is separated from its non
hydrodynamic part using a projection operator, leading to an explicit expression for the time
dependent transport coefficients. These are then related to a time of flight experiment. The 
contribution from non-hydrodynamic effects to the measured drift velocity is shown to be a 
power series in 11 d, where d is the drift length. A calculation based on an exactly soluble 
Fokker-Planck model shows that the correction to mobility measurements of lithium ions in 
helium due to non-hydrodynamic effects is of the same order of magnitude as those observed 
experimentally. 

1. Introduction 

Investigation of the approach of swarms to the hydrodynamic regime is important 
for confirming that transport data derived from experiments do in fact correspond 
to theoretical calculations based on the hydrodynamic assumption. The non
hydrodynamic regime has been explored numerically [by Monte Carlo methods (see 
e.g. McIntosh 1974) or by numerical solutions to the Boltzmann equation (see e.g. 
Skullerud 1974, 1977)], and also by taking a continuity equation with time-dependent 
transport coefficients (see e.g. Tagashira et al. 1977). A recent review of this area has 
been given by Kumar (1984). 

This work continues the time-dependent transport coefficient approach. The starting 
point for this is the work by Kumar (1981), where the connection between non
hydrodynamic behaviour and the spectral properties of the operator 1 == a. a c + / 
was established. Here a is the acceleration of the ion due to the electric field, and / 
is the collision operator. At large times, the evolution of the swarm will only depend 
on the smallest eigenvalue of 1. This allows us to separate the hydrodynamic terms 
from the non-hydrodynamic terms by using a projection onto the eigenspace of 1 
associated with the smallest eigenvalue. This was tried by Kondo (1987) and leads to 
a distinction, possibly unnatural, between effects due to the relaxation of the initial 
velocity distribution and those due to the relaxation of the initial spatial distribution. 

Instead of working with 1, which contains information only about the velocity 
distribution, we work with the operator c." +1, which brings in the effects of 
spatial gradient. Since 1 is independent of r, the gradient symbol can be eliminated 
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by taking the Fourier transform. Thus, we are lead to using a projection onto the 
eigenspace 00 e. k+vH', corresponding to the lowest eigenvalue of vH'. This leads to 
a particularly simple form of the time-dependent transport coefficient. 

2. Time-dependent Transport Coefficients 

Definitions 

The hydrodynamic regime is characterised by a continuity equation for the particle 
density function n(r, t), with constant coefficients w(l), 

00 

Otn-1: w(l)0(-V)ln = o. 
1=0 

(1) 

Here the w(1) are rank I tensor coefficients and 0 denotes an I-fold inner product. 
The time-dependent transport coefficients"are defined by a generalisation of equation 

(1): 
00 

1: w(l)(t)0(-V)ln = 0t n. 
1=0 

Taking the Fourier transform of this equation, and dividing by n, the Fourier 
transform of n, one gets 

00 

1: w(l)(t)0(-ik)1 = 0tln n(k,t). 
1=0 

The individual transport coefficients can be extracted from this power series by 
taking the Ith derivative of this at the origin of k-space. Defining the operation 

n(1) = lim (i Ok)1 
k_O I! ' 

the transport coefficients can be expressed as 

w(l)( t) = n(1) 0 t In n( k, t). (2) 

In Kumar et al. (1980), these coefficients are identified with the time derivatives of 
certain correlation functions. In particular, w(O) ( t) is the logarithmic time derivative 
of the number of charged particles, and w(1)( t) is the velocity of the centroid of the 
swarm. 

Projection Operator 

We assume that the operator i e. k +vH' and its adjoint admit a complete set of 
biorthogonal eigenfunctions 

(i e. k +vH') 1/1 a( e, k) = - wa(i k) 1/1 a( e, k) , 

(i e. k +..ff ) <Pa(e, k) = -wa(i k) <Pa(e, k), 

f 1/1 a(e, k) <P/3(e, k) de = 8a/3' 

(3a) 

(3b) 

(3c) 
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The eigenfunctions and eigenvalues of 1 and vi, q,~O)(e) = q,a(e,O), cP~O)(e) = 
<Pa(e,O) and w~) = wa(O), will also have these properties as a special case. 
Furthermore, we suppose that there is an eigenValue _w~O) such that w~O) = 
Re(w~O» > Re(w~O» for any other a. Then, we define a projection operator Pk' which 
projects out the hydrodynamic (long time) part of the Fourier transform of a phase 
space distribution ]( e, k, t) by 

Pk]{e, k, t) = q,o(e, k) J cPo(e', k)]{e', k, t) de'. 

The k-space density function can now be split into a hydrodynamic part 

iio(k, t) = J Pk]{e, k, t) dc, 

and a non-hydrodynamic part 

x( k, t) = ii( k, t) - iio( k, t) 
iio(k, t) 

The Taylor series coefficients of x( k, t) are denoted by 

x(l)(t) = n(l) x(k, t). 

(4) 

(5) 

(6) 

(7) 

Substituting ii = iio(1 + x) into (2), the time-dependent transport coefficients become 

w(l)(t) = n(l)0t{1n iio+ln(l+x)} 

= n(l){Ot ln iio+Otx(l-x+~- ... )}. (8) 

Formal Solution of the Boltzmann Equation 

The Boltzmann equation describing the evolution of a swarm of particles from an 
initial distribution fi(e, r) is 

(at + e. V +1)f(e, r, t) = B(t)fi(e, r). (9) 

The Fourier transform of this is 

(at +i e. k +1)]{:e, k, t) = B(t)1i(e, k), (10) 

and has the formal solution 

](e, k, t) = e(t) exp{ -(i e. k +1)t} 1i(e, k), (11) 

where e(t) is the Heaviside step function; e(t<O) = 0 and e(t~O) = 1. 
Equation (11) can be expressed in terms of the complete basis defined by equations 

(3) as 

](e,k,t) = e(t)~exp{wa(ik)t} q,a(e,k) J cPa(e',k)1i(e',k)de'. 
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familiar from quantum mechanics: 

{ ':I2 ..2 3 ( 2wa(k) 2k2v2 2ia.k 6 2Vo)}_ 
ug-Y + + - -- - -3- - --3- - + - :;a(g) = O. 

v 1 v 1 v 1 v 1 
(20) 

This equation is separable in the cartesian coordinates g1' 91, fh, and has solutions in 
terms of Hermite polynomials (Abramowitz and Stegun 1965,22.6.20): 

Ea(g) = e-ti- 12 Ha1 (g1) Ha2(91) Ha3(fh), (21) 

. i a. k V 2 2 
Wa(l k) = -v1(3+al +a2+ a 3) +Vo - -- - 2 k . (22) 

v1 v 1 

These solutions can also be expressed in spherical coordinates by means of Burnett 
functions (Kumar 1980). The non-reactive case is specified by setting w~O) = 

vO-3v1 = 0, which provides an expression for vo. 
To use this model to calculate x(l)(O), we need to make some assumptions about 

the initial phase space distribution. The swarm is collected in a potential well formed 
by the electric shutter, before being released into the drift tube. For calculational 
simplicity, we assume that the initial velocity distribution is a gaussian. Thus, we 
have 

li(c, k) = (o-hT)~ exp( _o-c2). (23) 

Substituting this into (5), we get 

_ { v2 k2 
( V1) i a. k} no(k,O) = exp + --3 3 - -- + -2- , 

2v1 2v2 0- v 1 
(24) 

X(1)(0) = n(l)( 1- iio(k, 0») = + .!!... = + vdr • 

iio(k,O) vI V1 
(25) 

England and Elford (1987) have measured the mobility of Li+ ions in helium at 
various distances, and fitted the experimental data to equation (14), truncating the 
series at a2. Their fitted values for a 1 ranged from O· 5 to 2 mm, as a function 
of electric field strength. It is of interest to compare this value of a 1, which is 
the combined error due to all end effects, with the numerical value for x(l)(O) 
obtained by substituting the experimental parameters into equation (25). Even though 
this Fokker-Planck model is not really applicable to lithium in helium, where the 
ions and neutrals have nearly the same mass, the result should indicate whether 
non-hydrodynamic effects are a significant proportion of the total end effect. 

The experiment was performed with a neutral gas pressure of 50 Pa and a 
temperature of 300 K. Using the ideal gas equation of state, this corresponds to a 
number density of 1 022 particles per m 3. The measured drift velocity was 4 x 103 m s - 1 . 

From Viehland (1982), the cross section at this kinetic energy (i mu v~r) is about 
20a5 = 5 x 10-20 m2, where ao is the Bohr radius. This figure is very similar to 
417' a5 obtained by considering the collision of two rigid spheres of radius ao. From 
this, we can conclude that the collision frequency will be of the order of 500 v dr' or 
v 1 ::::: 870vdr. Substituting this into equation (25), the value of x(l)(O) will be of the 
order of 1 mm. 
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While experimental corrections must include other end effects, as discussed by 
England and Elford (1987), we can conclude that non-hydrodynamic effects are a 
significant contribution to experimental end effects. 

5. Conclusions 

In this paper, I have calculated the form of the error due to non-hydrodynamic 
effects in mobility measurements. This error has the same dependence on drift length 
as the combined end effects observed by England and Elford (1987). A calculation 
based on a very simple model indicates that the errors contribute significantly to 
the experimentally observed end effects. Using a more sophisticated model, the 
contribution of non-hydrodynamic effects can be calculated more accurately. It is 
possible that experimental data on end effects can become a source of information· 
constraining model calculations of potentials, and of the ion production. However, 
to extract out that part of the end effect due to non-hydrodynamic phenomena would 
require a detailed study of the other end effects, most notably the effect that absorption 
of ions at boundaries have on the swarm distribution, and the problem of fields leaking 
into the drift tube. 
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