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Abstract 

The Painleve test for a linearly coupled anharmonic oscillator is performed. We show that 
this system does not pass the Painleve test. This suggests that this system is not integrable. 
Moreover, we apply Ziglin's (1983) theorem which provides a criterion for non-existence of 
first integrals besides the Hamiltonian. Calculating numerically the maximal one-dimensional 
Lyapunov exponent, we find regions with positive exponents. Thus, the system can show chaotic 
behaviour. Finally we compare our results with the quartic coupled anharmonic oscillator. 

1. Introduction 

Recently, much attention has been paid to the relation between coupled quartic 
anharmonic oscillators and integrability (Bountis et al. 1982; Yoshida 1984; Carnegie 
and Percival 1984; Lakshmanan and Sahadevan 1985; Steeb and Kunick 1985; Steeb et 
al. 1985b, 1986a, 1986b; Steeb and Louw 1986). The different aspects (singular point 
analysis, stability analysis of periodic solutions, numerical treatment) for studying 
integrability have been discussed. Depending on the coupling constants and the 
energy value E one finds that the system can be integrable or non-integrable. Among 
the non-integrable systems we find those with chaotic behaviour. 

In the present paper we investigate a linearly coupled anharmonic oscillator. The 
Hamiltonian H under investigation is given by 

H(x,p) = i(pi+p~+Axi+Ax~)+ia(xi+xi)+CXI~' (1) 

where a > 0 and A ;;;. O. The equations of motion are 

.. A 3 Xl = - xl-axl-c~, 
.. A 3 x2 = - ~-ax2-cxI· (2a, b) 

This system describes two linearly coupled anharmonic oscillators. The potential 
admits the discrete group C2v . 

First we perform a singular point analysis (Painleve test) for the system (2). The 
system does not pass this test, which suggests that the system is not integrable. Then, 
we apply Ziglin's theorem in order to prove whether or not the system is integrable. 
Finally, we calculate numerically the maximal one-dimensional Lyapunov exponent. 
Since the motion is bounded and this value is positive for certain energy values E 
and coupling constants c, we find that the system can behave chaotically. 
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2. Particular Solutions 

For special values of A, a and e particular solutions of system (2) can be found. For 
e = 0 the equations of motion are uncoupled. The resulting equation x = - Ax - ax3 

can be solved in terms of elliptic functions (Davis 1962). For e oF 0 we can find a 
periodic solution of system (2) by setting xl = -X2 = x. Let us assume that A + e ;;;. o. 
Then the solution to the equation of motion x = -(A+ e)x- ax3 is given by 

x(t) = Cl cn«A+ e+ aCf)~(t- ~), k), (3) 

where k = Cd2(A+e)la+2CIJ-1I2 (k modulus of the elliptic function cn). The 
constants of integration are Cl and ~. For the special case A+ e = 0 equation (3) 
simplifies to 

x(t) = Cl cn( a~ Cl (t- ~), 2-~). (4) 

Another periodic solution can be found by setting xl = - -X2 = x. Consequently, we 
get x = (-A+ e)x- ax3 . Again the solution can be expressed by elliptic functions. 

The elliptic functions are periodic functions. When the differential equations 
described above are considered in the complex plane, the solution is given by the 
elliptic function cn with a complex argument. Its singularities are simple poles of 
order one and are distributed doubly periodically in the whole complex z-plane. 

3. Painleve Test 

It is desirable to have a simple approach for deciding whether a dynamical system is 
integrable or not. For ordinary differential equations the so-called Painleve test (also 
called singular point analysis) can serve 'in a certain sense' to decide between integrable 
and non-integrable cases [see Steeb and Louw (1986) for a detailed discussion and 
references therein]. The differential equation is considered in the complex time plane. 
Then the structure of the singularities (poles, algebraic branch points, etc.) of the 
solution of the differential equation is studied in the complex time plane. 

The idea of the singular point analysis is due to Kowalevski (1889, 1891), who 
showed that the only algebraically completely integrable systems among rigid-body 
motions are Euler's rigid body, Lagrange's top and the Kowalevski top. 

For performing the Painleve test [cf. Steeb and Louw (1986), Steeb et al. (1985a) 
and Kunick and Steeb (1986) for details and also for references], we consider the 
quantities xl' -X2 and t in the complex domain. For the sake of simplicity we do not 
change our notation. In the first step one tries to find a solution (or solutions) of 
system (2) expressed as a Laurent series. First, we determine the dominant behaviour 
of a Laurent series. We find three branches: 

Branch I: Inserting 

Xk(t) ex akO(t- tl)nk (5) 

(k = 1,2) into system (2) we find that nl = ~ = - 1 and aIo = a~o = - 2/ a. 
The coupling term eXl -X2 does not play any role in the dominant behaviour. For 
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the anharmonic oscillator x = - Ax- ax3 (which has the Painleve property and 
therefore passes the Painleve test), we know that the resonances are given by rl = -1 
and r2 = 4. Consequently, system (2) has the resonances r1 = - 1 (twofold) and 
r2 = 4 (twofold). The resonances are defined as follows: Inserting the ansatz 
xk( t) = akO(t- tl)-I + bk( t- tl)-I + r into system (2) without the non-dominant 
terms yields, up to leading order in b, Q(r)b = 0, where b = (bl , ~l and Q(r) is 
a 2x2 matrix whose elements depend on r. The roots of det Q are called resonances 
(sometimes also called Kowalevski exponents). The resonance at r = -1 corresponds 
to the arbitrariness of tl . Inserting the ansatz (Laurent series) 

00 

xk(t) = (t- tl)-I ~ akj(t- tY 
j=O 

(k = 1,2) into system (2), we find that al1 = ~I = 0 and 

al2 = (c~O+AalO)l6, ~2 = (calO+A~o)l6, 

a13 = ~3 = O. 

(6) 

(7a) 

(7b) 

At the resonances r2 = 4 we find that al4 and ~4 can be chosen arbitrarily. From 
this branch we cannot decide whether system (2) passes the Painleve test. The 
general solution must contain four arbitrary constants since system (2) is given by 
two second-order ordinary differential equations. In the present case we have only 
three arbitrary constants, namely tl , al4 and ~4' 

Branch II: Let -X2 be less singular than xI' Assuming that -X2 is small enough 
that the right-hand sides of (2a) and (2b) are dominated by xI only, then we obtain 
for the dominant behaviour 

XI(t) ex:: afo(t- tl)-I, 

-X2( t) ex:: ~o + ~I (t- tl) +(2c/ a)( t- tl) In(t- tl )· 

(8a) 

(8b) 

Branch III: Let XI be less singular than -X2. Putting XI ~ -X2 we find the result 
of branch II. 

Consequently, system (2) does not pass the Painleve test. This means we cannot 
find a Laurent expansion with four arbitrary constants [see Steeb and Louw (1986) 
for more details]. Only for c = 0 does the system pass the Painleve test, and this 
case is trivial since we have two uncoupled anharmonic oscillators. In this special 
case the system (2) is integrable. For c =f= 0 we conjecture that the result that the 
system (2) does not pass the Painleve test indicates that system (2) is not integrable 
for c =f= O. Notice that we cannot avply the theorem of Yoshida (1983) which states: 
'In order that a given similarity invariant system Xi = Fi(x) with rational right-hand 
sides is algebraically integrable, every possible resonance must be a rational number'. 

The search for first integrals [besides the Hamiltonian (1)] is unsuccessful. We 
have considered the ansatz 

hex, p) = pf 91 + p~ B2 + PI Pz fJ.J + PI 94 + Pz 95 + 96' (9) 

where the 9i are functions of XI and -X2 only. Furthermore, the search for symmetry 



590 

generators of the Cartan form (Steeb 1983) 

2 

a = l: Pidxi -H(x,p)dt 
i=1 

W.-H. Steeb et af. 

(10) 

is unsuccessful. This means that, besides S = a/at which is related to the Hamiltonian 
(1), no further symmetry generator arises. 

4. Ziglin's Theorem 

Recently, Ziglin (1983) gave necessary conditions for the existence of a given 
number r > 0 of additional meromorphic first integrals for the system in terms of 
the monodromy group of the system in variations along some phase curve of the 
system. This theorem can be applied here. In the following we consider the special 
case A + C = o. The variational system of (2) is given by 

jil = (-A-3axI)YI- CY2, ji2 = - CYI +( -A-3ax~)Y2· (11a, b) 

We put XI (t) = -X2(t) = x(t), and then x+ ax3 = O. The solution, given by equation 
(4), has two independent periods in the complex time plane. The coefficient matrix can 
be diagonalised [see Yoshida (1986) for the technique]. Then, we obtain the normal 
variational equation and the tangential variational equation. Let ~ + A( t)~ = 0 (Hill's 
equation) be the normal variational equation and let X( t) be its fundamental system. 
The monodromy matrix M(Tj) is defined by X(t+ Tj) = X(t) M(Tj) for each period 
Tj. Then Ziglin's theorem can be formulated as (Yoshida 1986): 'Suppose that a 
Hamiltonian system with two degrees of freedom permits a meromorphicfirst integral 
h in addition to the Hamiltonian H. Further, suppose that for a periodic solution the 
normal variational equation is written in the form of Hill's equation ~ + A( t)~ = 0 
with multiple periods Tj. Then all monodromy matrices M( Tj), with non-resonant 
multipliers, must commute.' 

Thus, this theorem can be applied here. We find that besides H there is no other 
functionally independent meromorphic first integral. 

5. Numerical Studies 

First of all let us introduce the one-dimensional Lyapunov exponent A which 
serves to characterise chaos (Contopoulos et al. 1978). Given an autonomous system 
of ordinary differential equations of first order Xi = Fi(x) and the corresponding 
variational system 

n 
.Pi = l: aFi(x) 

k=1 ax Yk' 
k 

(12) 

any set of initial values xlO' ... , XnO and YIO' ... , YnO gives a solution x;(t, xIO' .•. , xnO) 
and Yi(t, xlO' ... ,YnO). If the system Xi = F;(x) is defined on a compact manifold and 
preserves a measure for almost all xlO' ... , xno and for all YIO' ... , Yno, the limit 

. 1 
hm -lnlly(t)11 =:A(xIO'···'YnO) 

t ~ 00 t 
(13) 
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exists where II y(tH denotes the norm of Yl (t), ... , yi t). The quantities" are called 
one-dimensional Lyapunov exponents. Given xlO' ... , xnO' " takes at most n different 
values, and the maximum of them is denoted by "max' If one chooses YlO' ... , YnO at 
random with a probability of 1, one obtains "max' 

In the present case we put Xl = X:J and x2 = x4 . Then (2) can be written as an 
autonomous system of first-order differential equations. The corresponding variational 
equations are given by 

Yl = Y3' Y2 = Y4' 

h = (-A-3a~)Yl-eY2' Y4 = - eYl +( -A-3a~)Y2' (14) 

For our numerical treatment we put A = 0 and a = 1. The Toda-Brumer 
criterion which measures local instability indicates that for xI x~ < e2/9 the system 
is in the chaotic region, bearing in mind, however, that this criterion can lead to 
misinterpretations [see Eckhardt et al. (1986) for a detailed discussion and references 
therein]. Notice that the equations of motion are not scale invariant. This means 
for different energy shells we find different behaviour. The numerical calculations are 
performed using the Lie series (Grobner and Knapp 1967), with the program tested 
for the special case of e = O. Here we find that "max = 0, since we have a periodic 
motion. We let xlO = O· 7, -X2o = O· 8 and X:Jo = X40 = 0 and, for e sufficiently 
small, we find that "max = O. Thus, no chaotic motion is indicated. If we let e = 2 
then we obtain E = 1· 282425 and the maximal one-dimensional Lyapunov exponent 
is given by "max = o· 10. Also, for other trajectories with energy E = 1·282425 
chaotic motion is indicated, so that the motion is bounded and "max > O. With 
increasing E the system becomes more and more chaotic. 

6. Conclusions 

Let us now compare our results with quartic coupled anharmonic oscillators, with 

H( ) 1 (p2 2) 1 (4 4) 1 2 2 
x, P ="2 1 + P2 +"4 Xl + X 2 +"2 eXl X2' (15) 

The integrability for this Hamiltonian has been studied previously (Bountis et al. 
1982; Yoshida 1984). The Hamiltonian equations of motion pass the Painleve test if 
and only if c = 0, 1 and 3. In these cases the system is algebraically integrable. For 
c = 0 the system is decoupled, while for e = 1 and 3 there is a second first integral 
(besides the Hamiltonian). The first integrals are polynomials. In all other cases 
additional first integrals cannot exist. Here we can apply the theorem due to Yoshida 
(1983) and, consequently, the quartic coupled oscillator is different from the linearly 
coupled oscillator in which, for all c > 0, the system is not integrable. Yoshida 
(1986) applied Ziglin's theory to the Hamiltonian (15) and confirmed the results 
from the Painleve analysis. Finally, we mention that the equations of motion of the 
Hamiltonian (15) are scale invariant. Owing to the scale invariance the calculation 
has to be done only for one energy shell. An open question is the study of the 
quantised version of the Hamiltonian (1), i.e. the investigation of 'quantum chaos' 
(Steeb and Louw 1986). 
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