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Abstract 

A nonlinear wave theory is developed on the basis of the Infeld-Rowlands method to study the 
stability of modified Korteweg-de Vries waves. A general stability criterion is derived in order 
to show that unstable waves exist. 

1. Introduction 

Let us consider the modified Korteweg-de Vries (mKdV) equation written in the 
form 

ut +6au2 ux + uxxx = o. (1) 

This equation was derived via Shen's method (Shen and Zhong 1981) for water waves 
in a two-layer fluid filling a channel with varying cross section (Murawski 1986). We 
now look for a solution of the form 

u = B(~=x- ct). (2) 

For the Zakharov-Kuznetsov equation c may be assumed to be zero because of 
Galilean invariance of this equation (Infeld 1985), but in our case we have to put 
c =I=- O. 

Upon integration of (1) we get 

2aB3-cB+B~~ = a, (3) 

where a is a constant. Multiplying this equation by B and integrating, we get 

B~ = cB2-aB4+2aB+I, (4) 

where I is an integration constant. This equation must have double roots, so that 
a = ± 1 requires c3 > 2:} a2 and c3 < - ¥ a2 respectively. From this equation we can 
find solutions of (1) without analytical calculations. Fig. 1 presents phase diagrams for 
the case of a < 0 and a = o. The range of periodic waves (curve b is one such wave) 
is limited by a linear wave (curve a) and a shock wave (curve c). Fig. 2 shows phase 
diagrams for the case a =I=- O. Periodic waves (curve b) are bounded by linear 
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Fig. 1. Phase diagrams for equation 
(4) for the case a = - 1 and a = 0: 
curve a, linear wave limit; 
curve b, cnoidal wave; 
curve c, shock wave. 

Fig. 2. As for Fig. 1, but a oF 0 and 
curve c is for solitons. 

B Fig. 3. The case of a = I: 
curve a, linear wave limit; 

B 

curve b, cnoidal wave on the right and 
linear wave on the left; 

curve c, cnoidal waves; 
curve d, solitons; 
curve e, cnoidal wave. 
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waves (curve a) and solitons (curve c). The case a > 0 is treated in Fig. 3. We can 
distinguish three regions assigned by Imin < lay < Imax which correspond to double 
roots of equation (4). In the region Imin < I < lay there are periodic waves. For 
I = Imin a linear wave appears and for I = lay we have periodic and other linear 
waves. In the region lay < I < Imax there are two periodic waves corresponding to 
the same parameter I. For I = Imax they are both limited by solitons. The region 
I > Imax contains only periodic waves. 

Nonlinear wavetrain instabilities of the mKdV equation have been considered 
by Fornberg and Whitham (1978) in numerical and theoretical studies of the KdV 
equation and its generalisations. Here we shall discuss the stability of the whole set 
of mKdV waves and thus generalise the problem using the Infeld-Rowlands method 
(Infe1d 1981, 1985; Infeld et al. 1978, 1985; Infe1d and Rowlands 1979a, 1979b, 
1980). This method includes nonlinear terms and may be regarded as an extension 
of linear methods (see e.g. Lashmore-Davies and Stenflo 1979; Bateman 1980; Storer 
1983). 

The paper is arranged as follows. The next section considers the stability of the 
mKdV waves in the limit of long wavelength perturbations, while Section 3 presents 
numerical results which reveal the fact that unstable waves exist. 

2. Infeld-Rowlands Method 

Suppose a nonlinear wave given by (4) is perturbed by a long wavelength linear 
wave with small amplitude 8u. We then have 

U = B(g) +8u(g)exp{i(kg+wt)} , (5) 

where we have the stretched coordinates 

g=x-ct, t = t, (6a, b) 

and 8 u( g) is periodic with the same period A. We assume k is small and expand as 

w=wj k+U2e+ ... , 8u = 8Uo+ k8uj + .... (7,8) 

In the frame moving with speed c we may write 

Ut - C u~ + 6a u2 u~ + u~~~ = o. (9) 

Introducing (5) into (9), we find (neglecting terms quadratic in 8 U and proportional 
to k 3) 

(L8u)~ = -i w8u -6i kaB28u -3i k8~~ +3k28u~, (10) 

where the following notation is used: 

2 2 
L = a~+6aB - c, W== w-kc. (11, 12) 

In zeroth order of k, after substitution of (7) and (8) into (10), we have 

L8Uo = K, (13) 

where K is an integration constant. The homogeneous equation corresponding to 
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(13) is solved by 

BUo! = B~, f d~ BUo2 = B~ B~' (14,15) 

So, the general solution of equation (13) may be written as 

BUo = B~+ GIf!+K<P, (16) 

where 

f d~ 
If! == B~ 2 = f3~B~+ Qo(~), 

B~ 
f Bd~ 

<P = B~ -2 = y~B~+ Q!(~). 
B~ 

(17a,b) 

The functions Qo and Q! are both periodic with the same period as B, i.e. A. The 
second and third terms of the RHS of (16) are both secular. Removal of these secular 
expressions determines G as 

G= -Kylf3, (18) 

and consequently 

B Uo = B~ + K( Q! - ~ Qo). (19) 

In the first order of k, we have from equation (10) 

(LBu!)~ = -3iBUo~~ -iil\ BUo -6iaB2BUo. (20) 

The constant K has to be equal to zero because of the equation obtained by 
integration of (20) over the period A: 

K(w! +const 1) = o. 

We can also multiply (20) by B and integrate over the period to obtain 

K(w! +const2) = 0, 

and hence 

K=O. (21) 

The homogeneous equation corresponding to (20) is solved by 

Bu!,! = B~, B U!,2 = B~ f ~~ . 
So, the general solution of equation (20) may be rewritten as 

B u! = B~(1 - ii~) +(D - iii) If! +i R<P - ii( w! + c)</> , (22) 

where D is an arbitrary constant and 

f B2d~ </> = B~ -2- = K~B~ + Q2(~)' 
B~ 

R = -(a +iR). (23a, b) 
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We remove secular expressions in (22) to determine D: 

1 A 

D= 2p IP1+(t'bt+ C)IC-2Ry+2} , (24) 

and 

8UI = B~+(D-iil)G+iRQI-ii(t'bt+c)~. (25) 

Equation (10) yields, in second order, 

(L8~)~ = 3B~~ -3i8uI~~ -it'bt 8UI -iil2 B~ -6iaB28uI. (26) 

We then determine 

1 fA <f) = - Id~. 
A 0 

(27) 

Equation (26) integrates over the period to give 

t'bt<8UI)+6a<B28ul) = o. (28) 

If we multiply (26) by B on the left, integrate over the period and use the self-adjoint 
property of the operator L, we get 

<Bd~ L8~) = -<B~ L8~) = -<L8~ B~) = -<8~ LB~) = o. (29) 

Thus, the compatibility condition for (L 8 u)~ = I, . and I periodic, is <f B) = O. 
This is the condition used after (20) and (26). Then we get 

3i<BB~~)+3<B8uI~~)+ t'bt<B8uI)+6a<B3 8UI) = O. (30) 

From (24) and (28), we have 

R = P(t'bt + c)(6a<B2~)+ t'bt<~») 
2p(6a<B2 QI)+ t'bt<QI»)-2y«G)t'bt +6a<B2 G») 

(wI<G)+6a<B2 G»){2-1C(t'bt + c)} 

+ 2p(6a<B2 QI)+ t'bt<QI»)-2y«G)t'bt +6a<B2 G») 
(31) 

Substituting (31) into (30), after some straightforward calculations, we obtain 

a 2 wf + ~ wi + '2 WI + d;. = o. (32) 

3. Numerical Results 

Equation (32) is the main result of this paper. Within the limitations of the 
mKdV model it is a very general test for stability of nonlinear waves. Three arbitrary 
parameters a, c and I are restricted by existing solution regimes. Let us consider the 
simpler case of a = -1 and a = O. Then I = 0 and I = c2/4 correspond to linear 
and shock waves respectively (see Fig. 1). The parameter I changes between these 
two limitations. Fig. 4 presents numerically obtained plots of the real parts of t'bt for 



598 K. Murawski 

14TI---L--~--~--~--~~--~--~---L--~--~--~--~--t 

12 

10 

"5 s 
0-

~ 6 

4 

2 

o 0·40 o·so 1·20 1·60 2·00 2·40 2·S0 

Fig. 4. Real part of the roots of equation (32) for c = - 3, a = - 1 and a = O. The imaginary 
part is equal to zero. 
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Fig. 5. As for Fig. 4, but a = - 1. 
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Fig. 6. Imaginary parts of equation (32) for c = 3, a = 1 and a = -1. Waves are unstable in 
the regions l",in < I < lav and I> l",ax. 
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C = - 3. Imaginary roots of equation (32) do not appear at all. Thus, both periodic 
and shock waves are stable. Secondly, we also have the case of a = -1, C = -3 and 
a = -1 (see Fig. 2). The double root of equation (4) appears at I = lmin < lay < Imax· 

The cases I = Imin and I = lay correspond to a linear wave and soliton respectively. 
For lmin < I < lay, there are periodic waves. 

The real parts of ~ are plotted against I in Fig. 5 for the case a = - 1. In 
this region periodic waves and solitons are stable. The case of a = 1 is more 
complicated. We choose c = 3 and a = -1 in further calculations and distinguish 
Imin < lay < Imax' In the regions lmin < I < lay and I> Imax all waves are unstable, 
whereas for lay < I < Imax periodic waves are stable. The imaginary parts of ~ are 
shown in Fig. 6. 

In conclusion we note that unstable mKdV waves exist for a = 1 in the regions 
lmin < I < lay and I> Imax' 
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