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Using molecular dynamics (MD) for a system of.nonlinear (quadruple-quadratic) oscillators on a 
nearest-neighbour square lattice, the pair-displacement correlations. and the frequency spectrum 
for the dynamical order-parameter correlation function are obtained as a function of temperature. 
For temperatures T near Tc' the pair-displacement correlation function (with the long-range order 
component subtracted out) was found to vary with particle separation r as r- 1/2 exp { - A( T) rj, 
at least out to the tenth neighbour in the 40x40 particle lattice. This is consistent with predictions 
for the two-dimensional Ising model for T above, but not below, Tc. The frequency spectrum 
for the dynamical order-parameter correlation function shows the softening of the damped 
phonon-like modes as T approaches Tc and the formation of a central peak at Tc' consistent with 
the presence of soliton-like excitations. For small I T - Tc I an additional broad peak appears at 
low frequencies. This is interpreted as an additional phonon-like peak, the two quasi-phonon 
processes being associated with vibration across the potential barrier and vibration in one or 
other of the two potential wells respectively. Although the squared frequency wi of the soft 
quasi-phonon is approximately linear with I T - Tc lover a range of temperatures, as T increases 
the wi curve eventually flattens out. 

1. Introduction 

Information concerning the correlation properties of structural phase transitions 
may be obtained through observation of diffuse X-ray and neutron scattering. Spatial 
correlations are derivable from the widths in reciprocal space of diffuse peaks, the 
peaks in some cases becoming superlattice Bragg reflections as the temperature T 
drops to ~ and below (see e.g. Henriques et al. 1984). For the case of neutron 
scattering, energy analysis of the inelastic intensity allows time-dependent correlations 
of the system to be observed in frequency space. Such results have shown the softening 
of certain phonon frequencies to be associated with some structural phase transitions 
(e.g. in KMnF3' Gesi etal. 1972) and the appearance ofa central peak in the dynamical 
response function at temperatures near ~ has also sometimes been observed [Riste et 
al. (1971) made the first such observation in SrTi03]. This central peak corresponds 
to an excitation of the system with a very long characteristic timescale compared with 
that of the phononsand, although it could be caused by extrinsic phenomena, such 
as structural defects, an alternative purely anharmonic cause is the slow movement 
of domain walls across the crystal (i.e. a soliton-like excitation). The central peak 
arising from such propagating walls has been computed for a one-dimensional coupled 
double-well model by Aubry (1976) (see also Aubry 1975; Krumhansl and Schrieffer 
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1975). For two-dimensional systems also, MD calculations by Schneider and Stoll 
(1976), Kerr (1979) and Kerr and Bishop (1986) have shown that the central peak 
can arise as a purely anharmonic feature associated with soliton-like excitations of the 
system. Softening of the phonon driving the transition also occurs as an accompanying 
feature. 

All of the above models have been based upon a coupled quartic multiple-well 
potential, which may be a reasonable model for some systems near Tc' but gives 
a nonlinear temperature dependence for the mean-square displacement (MSD) for 
T:> 7;,. This is at variance with experimental MSD data for the soft-mode systems 
K 2SnCl6 (Mair 1984) and CsPbCl3 and CsPbBr3 (Sakata et al. 1980), which show that 
the MSD of the halide ion, which is the ordering species, is linear with temperature 
at temperatures well above Tc' A multiple-well potential with quadratic walls gives 
the experimentally observed linear behaviour for the MSD at high temperatures. This 
has been shown for a range of harmonically coupled quadruple-quadratic potentials 
by Mair (1986) using MD for a two-dimensional lattice of particles (and for the 
one-dimensional case by Mair 1983 a, 1983 b). 

In SrTi03 (Ivanov et al. 1979) the MSD departs from linearity several hundred 
degrees above the phase transition, the approximate form for the MSD being 
c T + d T2, where c and d are positive and d -( c. This temperature dependence 
is typical of many substances at high temperature and would be consistent with the 
addition of a small negative quartic term to the quadratic-walled potential, allowing 
the walls to become 'softer'. A quartic multiple-well potential, by contrast, has walls 
that are even 'harder' than quadratic. 

In the present paper, one of the quadruple-quadratic models of Mair (1986), with an 
anti-ferrodistortive structural phase transition, is adopted for calculation of the space 
and time dependent correlation properties. As the quadruple-quadratic potential has 
a cusp-shaped barrier, a modification with a smoothed barrier is also considered. MD 
results for the pair-displacement correlations as a function of particle separation and 
temperature are presented and compared with results for one-dimensional systems 
and the two-dimensional Ising model. The frequency spectrum for the time dependent 
order-parameter correlation function is also calculated for a range of temperatures and 
the results compared with those for the quartic models mentioned above. Diagrams 
are presented showing the time evolution of ordered clusters. 

2. Definitions and Equations 

The details of the model and numerical methods are treated in Mair (1986) (model 
1B of that paper is the one used here), so only an outline of these will be given here. 

(a) Methods 

The vibrational potential <P is written in terms of the displacements (xlk"Ylk) of 
the atoms from their high temperature phase equilibrium positions, defined by the 
intersections (l, k) of a square grid. Here <P is the sum of an effective one-particle 
potential CPanh and a harmonic nearest-neighbour coupling component CPc: 

<P = CPanh +CPc' (1) 
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where 

and 

where 

<Pc = ~ [~mw~{(Xlk-XI+lk)2+(Ylk-Ylk+I)2 
lk 

+(Xlk- Xlk+I)2 +(Ylk- Yl+ 1 k)2} 

+ ~ mw~ {(Xlk- Yl+ 1 k)2 +(Ylk- Xl+ Ik)2 

+(Xlk- Ylk+ 1)2 +(Ylk- Xlk+ 1)2 j], 

<Panh = ~ (f(Xlk) + f(Ylk)} , 
lk 

feu) = ~ mw%(1 ul- d)2. 
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(2) 

(3a) 

(3b) 

Choosing numerical values (scaled to unit mass and lattice constant) for the 
parameters in (1) to (3) of mw% = 4·0, d = 0·1, mw~ = -0·1 and mw~ = 1·0, 
the potential <P has its two deep minima in the directions <1 -I) and < -II). An 
anti-ferrodistortive phase transition occurs at temperature Tc = 0·029 (scaled by the 
inverse Boltzmann constant), the soft-mode driving the phase transition having wave 
vector qs = (1T/ao)(e l +e2), where ao is the lattice constant and e l and e2 are unit 
vectors directed along the x and Y axes defining the square grid [Fig. 1 of Mair (1986) 
shows the displacements of the atoms in going from the high to the low temperature 
phases]. 

For the case where the cusped barder in <Panh is smoothed, we redefine f(x) in 
(3a) over the region I xl < d/4 by 

f(x) = ax6/d4 +bx4/d2 +cd2 (4) 

and analogously for the fey) in (3a) over the region lyl < d/4. Choosing 
a = 426.667, b = -64 and c = 0·708333 ensures that <Panh is smooth everywhere. 
Retaining the <Pc of (2), a completely similar anti-ferrodistortive phase transition 
occurs for this modified potential, except that Tc is marginally smaller. 

(b) MD Calculations 

The MD method, which was first used for calculations on fluids (Alder and 
Wainwright 1960; Rahman 1964), involves the numerical solution of the equations of 
motion for the velocities and displacements of the particles at successive time intervals. 
In the present work the calculations were performed on a CYBER 205 computer, 
extensive use being made of vector processing. The number of particles was N 2 , 

where N = 40 for the unmodified potential of equations (1)-(3) and N = 20 for the 
modification of (4). Periodic boundary conditions were employed. The temperature 
was fixed by scaling the mean-square velocity of the particles to the desired value 
at each time-step. The time-step was fixed at 0·01 (the unit of time being inversely 
related to the frequency units). The number of time-steps to achieve stabilisation and 
then to obtain the required averages varied somewhat with the temperature and with 
the quantity being estimated. The largest number of time-steps were required near 
Tc (e.g. 5 x 105 at T = 0.030), where the timescale for variation of the system is 
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long. Time averages were taken over a minimum of 105 and a maximum of 4x 105 

time-steps. 
Ensemble averages were carried out assuming ergodicity. In general, for the 

quantity X, with value X i ( t) for the ith atom at the tth time-step, the average was 
calculated as 

tF fV2 
(X) = N- 2 n(tp, tI )-l ~ ~ Xi(t) , 

, t=t( i=l 
(5) 

where n( tp, tI ) is the number of time-steps in the interval tp - tI • For the time-averaged 
x component of the order parameter (Sx)' the spatial average in (5) takes the form 

S (t) = N-2 ~(-I)/+kxlk(t), 
x Ik 

(6) 

the y component being, by symmetry of the equations of motion, equal but opposite 
in sign [see Fig. 1 a of Mair (1986) for a diagram of the ordered structure]. 

For two-particle properties, the spatial average is over all pairs of particles. Then 
for the correlation function r i' which is the pair-displacement correlation normalised 
by the MSD, (x2), we have 

tF fV2 JV2 

(x2)ri = n(tp, tI )-l N-4 ~ ~ ~ Xjk(t) Xj+i,k+i(t) 
t= tl1=l k=l 

(7) 

for the (II) direction. For N = 40 and periodic boundary conditions, the calculations 
were made for i = 1 to 19. To obtain a better estimate for r i , the mean value of 
(7) and the corresponding y component was taken. The two components should be 
equal by symmetry. 

(c) Time and Frequency Dependent Properties 

We now define the atomic displacement ulk(t), referred to the mean positions Rlk 
of the equilibrium phase. Above Tc' ulk(t) has cartesian components (xlit), Ylit~). 
Below Tc' the components become 

(Xlk(t)-( -1)/+k(Sx), Ylk(t)-( -1)/+ k(Sy») , 

and these components are still valid above Tc as (Sx) and (S)I) are then zero. 
The Fourier amplitudes of the ulk(t) are defined as 

U(q, t) = ~ ulk(t) exp( -i q. R 1k). 
Ik 

The wave-vector dependent correlation function may then be defined (see also Kerr 
1979) as 

D(q, t) = N-4(u(q, t+ t). u( - q, O)t" 

where ( ... ) t' denotes an average over time only. For the special case of the wave 
vector qs' the correlation function D(qs' t) [hereafter referred to as the dynamical 
order-parameter correlation function D( t)] reduces to 

tF 

D(t) = 2{ n(tp- t, tI )} -1 ~ {Sit+ t')-(Sx)} {Sit')-(Sx)} . (8) 
t'=t( 
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In the present calculations D( t) is normalised to D(O). 
The corresponding frequency spectrum is defined as 

D(w) = J:oo D(t) exp(iwt) dt, 

and was evaluated as 
IF 

D( w) = !:J. t l: D(t) cos( w t) A( t) , (9) 
1= II 

where A( t) is a gaussian function chosen primarily to damp out the values of t near 
t p , which are not reliable because of insufficient averaging in (8). More explicitly, we 
have 

A(t) = exp(-at2), 

with a being chosen so that A(!< tp - t1» = !. The function A( t) also partially 
smooths out the step-function aperture for D( t), caused by the finite time interval in 
(9), so that D( w) does not oscillate to strongly negative values. The position or the 
peaks in D( w) is insensitive to the presence of D( t) in (9). Since the time averages 
for D( t) were over very long times, the width of A( t) could be chosen to be large 
enough to have negligible effect on the widths of the peaks of D(w). 

The frequency spectrum D( w) is closely related to the cross section for neutron 
inelastic scattering (see e.g. Marshall and Lovesey 1971) at wave vector q = qs' if 
we assume the one-phonon approximation. 

3. Results 

Before presenting the results for the pair-displacement correlations and the order
parameter spectral function it is useful to consider the MSD. There are two reasons 
for this; firstly, the effect of modification of the potential barrier can be demonstrated 
and secondly, the MSD provides a useful framework for interpreting the physical 
processes that are occurring. 

(a) Mean-square Displacement 

The MSD is represented in Fig. 1 for the potential with and without the smoothed 
barrier. In Mair (1986) it was shown that the size effect on the MSD is negligible 
for N > 16, so that any differences in the sets of points in Fig. 1 are truly due to 
the shape of the potential barrier. It is clear that the cusp-shaped potential barrier 
does not cause any anomalous effects in the MSD, as the two sets of results are so 
similar. The largest deviations occur near Te , and are mainly attributable to the 
lowering of the barrier through smoothing. For a more extensively modified barrier, 
the deviations are similar but larger (see Mair 1986). 

The physical interpretation of the shape of the MSD is as follows. In the linear 
region for T < 0·015 the particles are vibrating in either of the two deep potential 
wells, but are not sufficiently energetic to hop across the potential barrier. The MSD 
then corresponds to harmonic motion about one or other of the two sites defined by 
the deep minima in the potential, each site being occupied with equal probability. 
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potential of equations (1)-(3) and the crosses are for the potential with 
the smoothed barrier. In this and all other figures the curve through 
the points is only a guide to the eye. 
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In the region 0·015 < T < 0·065 there is a dip in the MSD. This is the region 
in which there are two competing effects: (a) vibration about one or other of the 
'sites' defined by the potential minima, as for T < 0.015, and (b) hopping across the 
potential barrier, which is now energetically possible. As the temperature is raised 
above about 0·065 the presence of the potential barrier becomes insignificant and 
effect (b) becomes the dominant one. TheMSD has by then recovered its value before 
going through the dip and the quadratic walls of the potential cause the MSD to 
increase linearly once again. 

The gradients d<x2)/d T at high and very low temperatures are the same and 
are determined by the quadratic one and two particle potential parameters. A more 
general choice of potential barrier, such as a sextic polynomial for I xl < d (rather 
than for I xl < d/4 as in equation 9), causes the high and low temperature gradients 
to differ (see Mair 1986) as the sextic polynomial parameters influence the shape of 
the potential at low but not high energies. 

Note that the high temperature MSD extrapolates linearly to a nonzero value at 
T = O. This value is determined by d'2, where d' is the separation in the potential 
minima of the high temperature effective one particle potential, and d' < d. This may 
be more clearly understood by reference to Mair (1983 b), where effective one particle 
potentials were calculated for a series of double-quadratic chains (see particularly 
Fig. 7 of that reference). 

(b) Pair-displacement Correlations 

All calculations of the pair-displacement correlations rj were carried out on the 
potential with the unmodified barrier. 

The pair-displacement correlations, similar to the MSDs, vary smoothly with 
temperature through Te' As shown in Fig. 2, a steep rise in the rj occurs near Te as 
the temperature is lowered. This is a direct result of the greatly increased correlation 
across the crystal as the particles become ordered. The rise in rj is more pronounced 
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Fig. 2. Pair-displacement correlations for first (crosses) and tenth 
(circles) neighbours (rl and rlO) in. the direction <II), as a function 
of scaled temperature. 
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for the pair-displacement correlations at large separation (compare j = 1 and j = 10 
in Fig. 2). As the temperature increases, rj tends to a constant, indicating that the 
<Xjk Xj+i,k+i) vary linearly with temperature, similar to the MSDs. 

The dependence of rj upon the particle separation j is illustrated in Fig. 3. The 
logarithmic plot in Fig. 3 a shows that, unlike the one-dimensional case of a chain of 
particles (Johnson and Mair 1985), the pair-displacement correlations do not decay 
exponentially with distance, although for the highest temperatures the curves become 
more nearly exponential. Well below Te, the rj are almost constant with j, a result 
of the long-range ordering. In fact, with increase in j the rj tend to <Sx)2/<x2). In 
order to see the effect of the fluctuation in rj for T < 1;;, it is necessary to subtract 
out this ordering component, and so we define 

rj = r j -<Sxil<x2). (10) 

Asymptotic expansions of the spin-spin correlation in the two-dimensional Ising 
model (Kadanoff 1966), which is a magnetic analogue of the present system, have 
shown that for large separations r, and T above but near 1;;, the spin correlation 
function varies as r- 1I2 exp( -Ar), where A is independent of r. The parameter A 
may be considered to be an inverse correlation length for the system. For T < 1;; 
Kadanoff found that the fluctuation in the spin correlations varies as r-2 exp( -2Ar) 
for large r, and quoted a variation proportional to r- 1I4 for r -+ O. 

Logarithmic plots of j1l2 rj against j for T near 1;; are presented in Fig. 3 b for 
} < 10. The functions are not plotted for larger j as the generally very small values of 
rj for j large could not be computed reliably enough. The linearity of the plots for T 
near 1;; (i.e. at T = 0·030 and 0.02875) shows that, for distances up to orie-quarter 
of the diagonal length of the crystal, r; varies as r- 1I2 exp( -Ar) for this system, 
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Fig. 3. 
(a) Pair-displacement correlations in 
the direction <11) as a function of 
separation, the rj being plotted on a 
logarithmic, scale. Curves are marked 
with the scaled temperature. The error 
bars for T = 0·030, derived from 
successive calculations, are, indicative 
of that type of error at the other 
temperatures. 
(b) Logarithmic plots of i 12 rj as a 
function of separation j. The Fj are 
the same as rj of Fig. 3a for T> Tc 
(open circles), but for T < Tc the 
long-range order component has been 
subtracted out (closed cicles). Curves 
are marked with the scaled 
temperature . 
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not only above but also below Tc. The low gradient of the curve at T = 0·030 
indicates a long correlation length, as expected near Tc. As I T - Tc I increases the 
gradients at low j also increase in size, corresponding to a decrease in correlation 
length, and the nonlinearity of the curves shows the r- 1/2 exp( - A r) relationship to 
be less appropriate. Note that neither of the Ising model predictions quoted above 
for T.;;; Tc are obeyed by the present system. 

(c) Dynamical Order-parameter Correlations 

Examples of the frequency spectrum for the order-parameter correlation function 
(equations 8 and 9) are presented in Fig. 4. In most cases, several repetitions of the 
calculations were carried out to assess the reliability of the results. The spectra show 
the soft-phonon mode peaks (at frequency w s) and, as shown in Fig. 4i, there is also 
a second mode at scaled frequency Wo - 3·1. The spectra shown in Figs 4a-4h 
have not been extended out far enough in w to show this peak. The spectra show 
oscillations due to the finite time interval for averaging and are not highly reproducible 
near Tc' particularly near T = 0·04. Splitting of the peaks also tends to occur in 
this temperature region, especially for shorter averaging times. [Compare the small 
broad peak in Fig. 4e near w = O· 7 with the multiple peaks in the same frequency 
range in Fig. 4/. Fig. 4e is calculated for 4x 105 time-steps (4000 time-units), twice 
the time used for Fig. 4/.] An estimate of the resolution in w is provided by the 
full width at half height ~w of the phonoll peaks in D( w) for the harmonic model, 
obtained for d = 0 in equation (3b). MD calculations give ~w = 0·04 for this case. 

The general features evident from the spectra are as follows. At T = 0·02 
there is a rather broad peak, corresponding to the damped phonon-like mode at 
Ws ;:::; 1·1, but no other feature. [An exception is the small, somewhat sharper peak 
at Wo = 3·27, with peak height D(w o) = 1·85, corresponding to the optic mode 
at the same wave vector. This occurs beyond the frequency range of the diagram.] 
As T is raised to 0·025 the quasi-phonon frequency decreases (i.e. softens) and 
a new, broad feature occurs below w - 0·3. By T = 0·0275 the latter feature 
overlaps with a much more intense peak centred very near w = o. At the same 
time the quasi-phonon mode appears to have softened further, to w s - 0·3, although 
there is no clear delineation between the quasi-phonon peak and the feature near 
w = o. At T = 0.03, which is just above Tc' there is only a single narrow peak 
centred on w = 0, corresponding to an almost stationary value of the order parameter 
and consistent with 'soliton' like excitations. At T = 0·04 there is again a broad 
additional peak at a small finite frequency, overlapping a much-reduced central peak. 
A rather broad quasi-phonon peak, near w - O· 7 in Fig. 4e, can now be distinguished, 
although there is considerable uncertainty in its exact position. By T = 0·06 this 
quasi-phonon peak is again well defined, the central peak has disappeared and the 
broad extra peak at low frequency is reduced in intensity. This feature has almost 
disappeared by T = 0·065 and the quasi-phonon frequency has again increased, until 
at T = 0·13 a value of 1·1 is reached. Note that an extra peak in D(w) has also 
been observed by Kerr (1979), but only in a narrow range of temperatures above Tc 
(certainly not at 2 Tc as obtained here) and always accompanied by a central peak. 

The spectra are not sufficiently well defined to give good quantitative data on 
quasi-phonon lifetimes and central peak widths. However, it is clear that the 
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Fig. 5. Square of the soft-mode frequency w; (crosses) as a function of scaled temperature for 
(a) the unmodified potential and (b) the potential with the smoothed barrier. The open circles are 
the squared frequencies w~ for the optic mode occurring at the same wave vector (see Fig. 41). 
Note that w~ is much larger than w; and is plotted on a different scale. Error bars, where 
present, are derived from repeated calculations and from uncertainties in the peak position due 
to poor definition of its shape. The dashed line corresponds to the Curie-Weiss law for T < Te' 
The shading is discussed in Section 4 c. 
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soft-phonon peak half-widths increase as T decreases towards Tc' corresponding to 
a decrease in phonon lifetime, and that the central peak width at Tc is very narrow, 
representing long-lived excitations of the system. 

The results for the quasi-phonon frequencies Ws and Wo are summarised in Fig. 5a, 
where w; and w~ are plotted as a function of temperature. Estimates of Ws and Wo 

were made from the mean peak positions of two to five calculations of D( w). Fig. 5 b 
shows corresponding data for the potential with the smoothed barrier. The result for 
w; at 0·0275 is placed in parentheses, since it is not clear that a quasi-phonon can 
be unambiguously separated out from the spectrum at this temperature. 

Figs 5 a and 5 b are almost the same within error, so that it may be concluded that 
the cusped barrier for Fig. 5 a does not have a significant effect on the essential features 
of the T dependence of the frequencies. Both figures show that the optic mode softens 
as Tc is approached from above or below, a rather steep change in w~ occurring 
below Tc' The squared soft-mode frequency w; appears to obey the Curie-Weiss 
law below Tc' with Ws going to zero at Tc if the datum-point at T = 0·0275 can 
be relied upon. Immediately above Tc the uncertainty in peak position means that 
the temperature dependence is not known. Certainly, a linear dependence on T - T;; 
does not exist over the complete temperature range above Tc' The results show that 
the w; curve is gradually flattening out as T increases, although it is approximately 
linear in the range 0·06 < T < 0·115. 

Since Fig. 5 b was calculated for a lattice of 400 particles, whereas 1600 were used 
for Fig. 5 a, finite size effects appear to be minimal. This conclusion also applies to 
the D( w) which are very similar for both sizes of lattice. 

(d) Motion of Clusters 

Although the appearance ofthe central peak in D(w) is consistent with the presence 
of soliton-like excitations, more direct evidence of such excitations is given by plots 
of the evolution of the system in space and time concurrently. In Figs 6a and 6b the 
time evolution of the 40 particles in a row of the lattice is traced for T = 0·030 and 
0·025 respectively. The dark portions of the diagrams represent regions where the 
local order parameter is negative, the remaining areas corresponding to positive local 
order parameter. At T = 0·030, we see evidence of large clusters with very long 
lifetimes. The border between the major black and white regions is almost parallel 
to the time axis, indicating that the velocity component of the cluster wall along the 
row is almost zero. These features are the signatures for a soliton-like excitation with 
a central peak in the frequency spectrum. 

At T = 0·025, the system is fairly well ordered but still contains clusters of the 
opposite sign. Fig. 6 b shows that some of these clusters still have a considerable 
lifetime, but are much shorter lived than at T = 0·030. The boundaries of the larger 
dark portions of Fig. 6b are not parallel to the time axis, indicating that the cluster 
walls have finite velocities along the row. 

Similar effects to these have been observed by Schneider and Stoll (1976), who also 
found a new branch in the dispersion surface in the vicinity of the critical wave vector. 
They suggested that the 'cluster waves' (i.e. soliton-like excitations) are responsible 
for this new branch. 

Note that a small contribution to the central peak will also result from relaxational 
hopping. 
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Fig. 6. Variation of the sign of the local order parameter with time for a row along the x 
direction of the lattice at scaled temperatures of (a) 0·030 and (b) 0·025. Dark (light) regions 
correspond to negative (positive) local order parameter. Note that the timescale is in ·units of 
scaled time, not time-steps (see Section 2 b). 
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4. Discussion 

(a) Pair-displacement Correlations 

The pair-displacement correlations r(r) are unlike the MSDs (Mair 1986) in that 
they are highly dependent on the dimensionality of the system. A good example of 
this is shown by comparing the r(r) across and along the chains in a two-dimensional 
model crystal composed of weakly coupled chains (Kerr and Bishop 1986). These 
results show. that r(r) along the chains is exponential with r, and thus one dimensional 
in character, whereas perpendicular to the chains r(r) is not exponential [the detailed 
form of r( r) perpendicular to the chains was not analysed]. 

The increase in the correlation length with decrease in temperature, evident from 
the r curves of Fig. 3 a, also appears as a decrease in width in the diffuse and (for 
T < Tc) superlattice peaks in the coherent X-ray scattering. This effect was illustrated 
by Mair et al. (1987), who have calculated coherent X-ray scattering intensities over a 
range of temperatures for the present model. Since the intensity of first-order diffuse 
scattering is proportional to the pair correlations <xjk xj+ i.k+ i> (see Borie 1970), 
the present model predicts approximately linear high temperature behaviour for this 
component of the scattered intensity. 

(b) Mode Softening 

Although there is much experimental evidence that soft-mode frequencies obey 
the Curie-Weiss law at temperatures well above Tc' a clear case of the flattening of 
the w; temperature curve is given by the infrared data for SrTi03 by Servonin et 
al. (1980). This deviation from the Curie-Weiss law is found in the present MD 
results, but is not observed in the MD results of Kerr (1979) or Kerr and Bishop 
(1986), who used quartic multiple-well potentials. Recalling that for a harmonic 
system w is independent of temperature, the flattening of the w; temperature curve 
may be understood as a tendency towards less anharmonic behaviour as temperature 
increases. At very high temperatures the quadratic multiple-well potential behaves 
increasingly like a single harmonic well, whereas a quartic multiple-well potential 
always remains a highly anharmonic system. 

(c) Order-parameter Spectral Function near Tc 

The order-parameter spectral function outside the region 0·025 < T < 0·0625 
(shaded in Fig. 5) consists of a well-defined damped phonon-like peak. Within the 
shaded region an extra, broad peak occurs at low frequencies, the damped phonon-like 
peak is more poorly defined and, close to Tc' the central peak occurs. This region 
coincides with the main part of the dip in the MSD curve (see Fig. 1 and Section 3 a), 
where competing interactions are occurring, namely hopping across the potential 
barrier and vibration about one or other of the potential minima. As a result of the 
spatially correlated nature of these two processes, domain walls and quasi-phonons 
are formed and interact. 

Aubry (1976) has found that for a displacive chain of quartic double wells there are 
three possible solutions to the equations of motion; a 'soliton' solution, which is stable 
at all energies and gives rise to the central peak in D(w), and two pseudo-phonon 
solutions, one of which is stable at low energies and the other at higher energies. 
There is an energy region in which all three of these solutions are stable, producing 
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a three-peaked structure in D(w), i.e. a central peak and two pseudo-phonon peaks. 
Near Te this three-peaked structure is just discernible in the spectra of Fig. 4. For 
slightly larger 1 T - Te I, the central peak disappears and two broad peaks remain, the 
extra peak persisting to 2 Te' Three-peaked structure in D(w) was also observed in the 
MD results of Kerr (1979), but only up to - 1 ·2 Te, and no very clear interpretation 
of the physical processes causing the extra low-frequency peak was given. 

The results of Aubry apply for a one-dimensional case of quartic double wells, but 
it seems likely that analogous processes would occur in the present two-dimensional 
system. Then the two peaks in D( w) at nonzero w would both be interpreted as 
phonon-like excitations due to the two competing processes (a) correlated hopping 
across the barrier and (b) correlated vibration in one or other of the potential wells. 
Process (a) becomes energetically unfavourable at low temperatures and (b) at high 
temperatures, corresponding to the observed appearance of only a single peak in 
D( w) at very low and high temperatures. In the region of their co-existence, the 
quasi-phonons and the 'solitons' interact, causing the observed poor definition and 
broadening of the quasi-phonon peaks near Te' 

5. Conclusions 

The main conclusions arising from this MD study on the system described are as 
follows: 

(1) The fluctuation in the pair-displacement correlations r'(r) varies with distance 
as r- 1I2 exp( -"A.r) for 1 T - r;, 1 small and for distances at least out to the tenth 
neighbour in the 40x40 particle lattice. 

(2) The squared soft-mode frequency varies less strongly than T as temperature 
T increases. 

(3) A central peak is observed in the order-parameter frequency spectrum. This 
is consistent with the presence of soliton-like excitations whose existence has been 
demonstrated by diagrams of the time evolution of a row of the lattice. 

(4) For a small region near Te , it is postulated that two competing quasi-phonon 
modes exist, one corresponding to vibration across the potential barrier and the 
other to vibration within one or other of the potential wells. Taken with the 
central peak, these modes give rise to a three-peaked structure in the time dependent 
order-parameter frequency spectrum at T - Te , and a two-peaked structure for 
slightly larger 1 T - Te I. 
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