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Abstract 

A corn stalk is assumed to be a tube with strong anisotropic properties. For this model a set of 
four fundamental equations is written which describes the behaviour of one-dimensional pressure 
waves of small amplitude and long wavelength in an infinite thin-walled compliant tube with 
walls of elastic rings. The reductive Taniuti-Wei (1968) method is developed in order to reduce 
this set to Burgers' equation. Finally, formulae which describe the velocity of pressure shocks are 
derived. The analysis of these formulae along with associated measurements allows calculation 
of Young's modulus in the circumferential direction for corn stalks. 

1. Introduction 

The knowledge of certain relationships between soil, machines and plants is required 
when developing agricultural machinery. It is difficult to establish these relationships 
because the effects of the activity of machines both on soil and plants are not fully 
known. Deriving physical models of individual plants is necessary since this allows 
the behaviour of biological materials to be described in a mathematical way. This 
permits various loading conditions to be studied. So far physical models of this 
nature have not worked successfully. The difficulty results mainly from insufficient 
knowledge of the process of the strain of biological materials, and their anisotropic 
and heterogeneous structure. Besides, rheological models of these materials are time 
varying and cells may be destroyed by repeated loadings. 

Experimental research carried out so far (Gawda and Haman 1983; Gowin and 
Haman 1984) has described Young's modulus in the longitudinal direction and has 
assumed full heterogeneity of the investigated samples. But the actual medium of 
the corn stalk possesses anisotropic properties in the circumferential direction, which 
current methods have been unable .10 estimate. 

The main purpose of the present paper is to propose a new method which addresses 
this question and specifically enables us to determine the elastic properties in the 
circumferential direction of the corn stalk on the basis of shock pressure propagation. 

Knowledge of Young's modulus is useful in order to predict the behaviour of corn 
stalks subject to wind forces. Often the stalk constitutes a valuable industrial material 
and therefore knowledge of its elastic properties is of considerable use. 
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2. Model of the Corn Stalk: Fundamental Equations 

The medium of the stalk has a complicated and heterogeneous structure and in 
order to analyse the mechanics of this structure some simplifying assumptions must 
be made. However, future investigations of more realistic and thus more complicated 
models appear feasible. Nevertheless, simple models can give significant insight into 
the structure of the solutions of more realistic and complex models. 

In this paper it is assumed that the stalk is an infinite tube having a constant 
volume density and constant but different physical properties in the circumferential, 
longitudinal and radial directions. The air filling the tube is assumed to be an 
ideal gas which undergoes barotropic conversion during pressure shock propagation, 
independent of its viscosity. One-dimensional irrotational motion of the air in the 
tube can be assumed because investigated samples of the stalks possess large values 
of aerodynamic slenderness and the internal diameter 2a is small compared with the 
wavelength A of the pressure disturbance. If we denote the characteristic amplitude 
of the wave by L we may write 

L -< 2a -< A. (1) 

The proposed method of determination of Young's modulus in the circumferential 
direction of the corn stalk is based on Lamb (1980) and Bhatnagar (1979). These 
authors were partially interested in wave propagation in an infinite tube, although 
Lamb did not take the viscosity and compressibility of the medium into account. 
Bhatnagar used the energy conservation equation and the state equation in the form 
of P = p(p, T), where T is the temperature of the fluid, P the density of the air 
filling the tube and P the pressure of the air inside. All quantities were averaged over 
a cross section. 

Our starting point is the following set of equations: 

(i) The conservation of mass equation given by 

(PA)t+(P V A)x = 0; (2) 

(ii) Euler's equation 

P Vt+p VVx+Px-fJ- Vxx = 0; , (3) 

(iii) Newton's equation (Lamb 1980) 

Pm ha2 Att + E h(A-'1T'a2) -2'1T'a3(p- q) = 0; (4) 

(iv) equation of state of the air 

p(P) = tJlp. (5) 

The symbols used here have the following meanings: A is the internal cross 
sectional area of the stalk, V the air velocity, 1[1 a constant, E Young's modulus in 
the circumferential direction, Pm the volume density of the stalk wall, h the thickness 
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of the stalk wall, a the average radius of the stalk at the undisturbed uniform state, 
q the outside pressure of the air, x the length coordinate of the stalk, and t the time. 
The subscripts x and t indicate partial differentiation. 

3. Derivation of Burgers' Equation 

Our primary aim is to derive an approximate single equation from the fundamental 
set of equations presented in the previous section. For this purpose we apply a 
reductive Taniuti-Wei (1968) method. Assuming that A, V and p are slowly varying 
functions in a reference frame moving with speed "0, we introduce the coordinate 
stretching 

~ = E( X - "0 t), T = E2 t, (6) 

where E is a scale parameter proportional to the wave number, defined by 

E = L/2a. (7) 

On the other hand, since we are concerned with weak nonlinear waves, we expand 
the dependent variables as power series in E around the undisturbed uniform state: 

A = Ao+EAI + ... , V = E Vi + E2 ~ + ... , p=q+EPI+ .... 

In terms of ~ and T the set of equations (2)-(5) reduces to 

where 

E(pA)r+(pA(V- "o)]g = 0, 

1 I.t 
p ( E v,. + ( V - "0) ~] + IJI Pg = E IJI ~g, 

E4 A,.T _2E3 "0 A,.g +E2 V6 Agg + RI A + R2 p = R3 , 

RI E 
P 2' rna 

R2 = 27Ta 
Pm h' 

R3 = 7T(E h-2aq) 

Pm h 

(8) 

(9) 

(10) 

(11) 

(12) 

and indices T and ~ indicate partial differentiation. Substituting (8) into the above set 
of equations and equating all the coefficients of the various powers of E to zero, we 
have 

q(Ao Vi - "0 AI) -Ao "oPt = 0, PI 

Hence, we obtain 

Al = _ R2 R'PI 
I 

q"oIJlVi, 

R2 
-q"o IJI R' Vi, 

I 

RI Al +R2PI = 0. (13) 

(14) 

and the formula which determines the velocity of the moving frame 

( Eh )i 
"0 = IJI(Eh+2aq) 

(15) 
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For the second power in EO, equations (9)-(11) may be rewritten as 

( RI) RI{ 1 (AoRI )} q - - Ao AIT +2 - JiQ + - -- -1 Al AI~ 
R2 R2 If/ JiQ q R2 

+ q(Ao JS~ - JiQ A2~) - Ao JiQ P2~ = 0, (16) 

RI Ri (1 ) 1 -- AIT - q JiQ JS~ + 2 - - JiQ Al AI~ + - P2~ 
If/ JiQ R2 q If/ JiQ R2 If/ JiQ If/ 

p,RI 
q JiQ R2 1f/2 AI~~' (17) 

RI A2 +R2P2 = O. (18) 

Substituting (18) into (16), we get 

( RI) RI{ 1 (AoRI )} q-Ao- AIT+2- JiQ+- ---1 AIAI~ 
R2 R2 If/ JiQ q R2 

+qAo JiQ( q ~: -Ao)P2~ = O. (19) 

Eliminating the terms in P2~ we obtain the single equation for the first-order perturbed 
quantity PI . 

PIT +/3PIPI~ +apI~~ = o. 

The nonlinear /3 and dissipative a coefficients are described by 

/3 = (1- If/ V6)(qR2 +Ao RI ) +2Ao RI , 
2q JiQ If/(Ao RI - qR2) 

4. Solution of Burgers' Equation 

p, 
a = - 2q If/ 

(20) 

(21) 

The travelling wave solution of Burgers' equation is well known and may be 
obtained, for instance, from the linear heat equation (Lamb 1980) to which Burgers' 
equation is transformed by the Cole-Hopf transformation (Hopf 1950). Here we look 
for a stationary wave solution of the form (see e.g. Bhatnagar 1979) 

PI = PIG=~-CT). (22) 

In a new corodinate system moving with speed c, equation (20) may be rewritten as 

- cPI~ +/3PI PI~ +apI~~ = O. (23) 

Upon integration of (23) we get 

_ 1/3 2 I 
apI~ - -2" PI+ cPI+2" al' (24) 
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where a l is a constant. Integrating this equation once more, we get 

(
C- f3 PJ.) y atanh =, - - ~ + ~ , 

y 2a 
y = (f3 al + c2)i, (25a, b) 

where a2 is another constant of integration. Finally, equation (25a) may be rewritten 
in the more convenient form 

f3Pl = c-ytanh( - 2: ~+~). (26) 

5. Shock-wave Velocity and Young's Modulus 

Equation (26) contains two integration constants, al and a2 , which should be 
determined by boundary conditions. In our model the pressure disturbance should 
be created by an electronic system (see Moodie et al. 1984) at, say, the left-hand side 
of the corn sample. Let us denote the amplitude of this disturbance by Pd' For other 
initial conditions, solutions may be found from the heat equation (Karpman 1975). 
At the right-hand side, the internal air pressure is equal to the outside pressure q. 
Let us assume that the sample length tends to infinity, with the ends at x = 0 and 
00. At these limits, Plg = 0 and 

P = Pd at x = 0 and P = q at x = 00. 

Using (8) these equations may be rewritten in the relevant form 

q+EPl = Pd at x = 0 

Then from (24) it follows that 

al = 0, 

and Pl = 0 at x = 00. 

f3 
c = - (Pd-q). 

2E 

(27) 

(28) 

(29) 

The constant a2 may be calculated from initial conditions, but is not required here. 
Weare now in a position to estimate the shock velocity c calculated in the laboratory 
frame. We have to write ~ in the original coordinates x and t as 

~ = ~-CT = E(X- 1'0 t)-E2ct = E{X-(1'o+EC)tJ. (30) 

Substituting (29) into (30), we obtain the velocity of the shock wave 

( E h )i 1 
V = I[/(Eh+2aq) +zf3(Pd-q)· (31) 

This is the main result of this paper. Young's modulus E may be easily described by 
this formula. When the nonlinear effects are neglected, f3 = 0 and the wave velocity 
is equal to 1'0. Then Young's modulus of the corn stalk may be described by 

2aq 1[/ V6 
E = ---=------", 

h(l- 1[/ V6) . 
(32) 

We stop at the first order of E, although the next order of approximation of V may be 
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estimated. In this case, however, higher order nonlinear differential equations appear, 
but with these next order terms causing diminishing changes to the measured velocity 
v. 

6. Summary 

This paper considers weakly nonlinear long pressure waves in an infinite tube with 
elastic compliant walls. Using the Taniuti-Wei method, Burgers' equation is derived 
to describe the waves. Although the shock-like solution of this equation is well known, 
we have repeated the calculations in order to obtain a formula which describes the 
velocity of pressure waves. This formula allows the calculation of Young's modulus 
in the circumferential direction of the corn stalk, given measurements of the required 
physical quantities including the wave velocity. 

Describing Young's modulus both in the longitudinal direction of the corn stalk by 
different methods (Gawda and Haman 1983) and in the circumferential direction by 
the method presently proposed, one can find the anisotropic coefficient of the material 
of the stalk. It is equal to the quotient of these quantities. 

Finally, it is worth noting that other models of the stalk may be applied and tested 
against experiment. Wave propagation in a medium with memory (Mooney-Rivilin 
material) has been discussed by Tait and Moodie (1984). Radial motion of a nonlinear 
viscoelastic tube has been studied by Tait et al. (1985). Two-dimensional analysis 
has been employed to study pulse propagation in thin-walled circularly cylindrical 
elastic tubes containing an inviscid and incompressible liquid (Barclay et al. 1984). 
The Korteweg-de Vries equation has been modified to include both the dissipative 
and dispersive effects of viscous boundary layers (Miles 1976). Also, model equations 
have been derived for thin wall tubes (Murawski 1986). 
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