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Abstract 

We present a critical analysis of the Skyrmion model for baryons. Using model quantum field 
theories we determine the origin of meson chiral effective actions and show that Skyrmions, i.e. 
chiral topological solitons of these effective actions, cannot be related to baryons and that indeed 
Skyrmions in these models are unstable. 

1. Introduction 

In the study of the quark theory of hadrons much use is made of models which, it 
is claimed, are based on properties of quantum chromodynamics (QCD), the standard 
theory for hadrons. The chiral soliton model (CSM) (Witten 1983; Adkins et af. 1983) 
for baryons is one example which grew from the work of Skyrme (1961, 1962). In the 
CSM, static topological soliton solutions (i.e. Skyrmions) of the Euler-Lagrange (EL) 
equations for the meson chiral effective action are found, and those with unit winding 
number interpreted as baryons. The chiral effective action (Gasiorowicz and Geffen 
1969) for mesons incorporates the effects of dynamically broken chiral symmetry and 
is assumed to follow from QCD. Here we critically examine this model for baryons. 
Our approach is to consider two model field theories for Nc ® NF spinor fields 
(quarks) with an interaction, shown in (1), describing spin-1 boson exchange. The two 
models differ in the number of colours; one has Nc = 3 and the other has Nc = 1, 
and both have NF flavours. We comment later on the relevance of the Nc = 3 model 
to QCD. 

Our criticism of the Skyrmion model for baryons is based on the following 
properties of these two models. First we show that both models have colour-singlet 
qq meson bound states and we determine the effective ~ction for these mesons. An 
important point here is that spin-1 boson exchange between q and q is an attractive 
force for any number of colours. Further, it is shown that by a suitable choice of 
the coupling constant in the N c = 1 model both models lead to the same effective 
action for colour-singlet mesons (up to an unimportant overall factor of Nc), and that 
this action is the same as that used in CSM calculations. Hence the two models are 
identical as far as colour-singlet mesons are concerned. Thus, if the EL equations of 
the meson effective action were to have solutions corresponding to Skyrmions, then 
these topological solitons must arise in both models. We will in fact argue that there 
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are no such soliton solutions. The second thrust of our criticism involves qqq bound 
states, and here the two models greatly differ. In the Ne = 1 model, s~in-l boson 
exchange between q and q is well known to be repulsive. This may be established, for 
example, by considering the Bethe-Salpeter (BS) equation for bound states. Hence 
in the Ne = 1 model there can be no qqq bound states, i.e. no baryon-like states, 
since the quarks would be mutually repelled. However, in the Ne = 3 model the 
situation is very different. If we consider colour-singlet qqq states then it is well 
known that any two quarks are necessarily in a '3 colour state and in this colour state 
the exchange of spin-l colour-octet bosons is attractive. This is also easily established 
by considering the appropriate BS equation. Hence the N e = 3 model may have 
colour-singlet bound qqq states as the quarks are mutually attracted. These qqq 
bound states correspond to the baryons. Thus the colour states of the quarks playa 
critical role in the qqq sector but not in the ijq sector. 

Hence, because the two models have an identical colour-singlet meson sector but 
a completely different baryon sector, it is impossible for there to be any connection 
between any possible chiral solitons in these models and the existence of baryon-like 
states. The Skyrmion model for baryons is thus missing the key feature of QCD which 
is responsible for the binding of colour-singlet qqq states, namely the special dynamical 
role of the colour algebra in the formation of these baryon states. Further we will 
show that indeed there are no such soliton solutions to the meson EL equations, and 
thus the whole concept of baryons as Skyrmions is spurious. 

2. Two Model Quantum Field Theories 

The two models are defined by the action, in Euclidean metric, 

J J I-'AO I-'AO 
S[ij, q) = d4 x ij(l+ m)q + d4 x d4y ij(x) T q(x) D(x- y) ij(y) T q(y). 

(1) 

For Ne = 3, {!Ao; a = L.8} are the generators of SU(Ne), while we set 
!Ao -+ 2!y"3, with a = 1, for Ne = 1. The interaction is characterised by the same 
D(x) in both models, and is taken to have a form that models gluon exchange. The 
action has a global G = UdNF ) ® UR(NF ) chiral symmetry in the limit m = o. The 
key difference between the models is that the N e = 3 model has the nonabelian colour 
algebra of QCD, while the N e = 1 model has no colour algebra. A conventional 
analysis of these two models using the BS bound state equations shows that for 
Ne = 3 there can be baryon-like states, as discussed above, but that for Ne = 1 
there are no qqq bound states because in this case the boson exchange is repulsive. 

We now determine the effective action for the meson sector of both models. The 
spectrum of the quantum field theories (QFTs) may be formally defined by 

Tr exp( -HD = J Dij Dq exp(-S[ij, q)), (2) 

where the usual prescriptions for Grassmann integration apply and T is the Euclidean 
time interval. We now express (2) in terms of integrations over a set of local Bose 
fields. The effective action that arises for these fields will be shown to contain the 
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usual meson chiral action. We anticommute the quark fields to obtain 

Tr exp( - H T) = I Dq Dq exp( - I q(l+ m)q 

I M6 M6 ) 
+ q(x) 2 q(y) D(x- y)q(y) 2 q(x) , (3) 

in which the following Fierz rearrangements were used: 

'Y~s 'Y~u = K~u K~s; a {. i I"i I"} {K ) = 1, 1 "15' y2 "1 , y2 "1 "15 ' 

"a "a C b Cb . 
/\'af3 /\'yB aB yf3' { C b ) [{jl, ;3 "a; a=l,,,.,S}, forNc =3 

4/y3, for Nc = 1, 

[) ij [) kl = Ff, Fkj; C {I 1 N 2 -I} {F ) = --1, y2T '''., y2T F , yNp 

where {Ta) are the generators of SU(Np) and M6 = Ka <8> C b <8> F C • We now 
introduce an infinite set of real local Bose fields {</>6i(X), X E R4) and a complete 
set {r6 i( y); r 6 i( Y)* = r 6 i( - y), Y E R4) (in the limit T __ 00) for each value 
of 0 so that any 'hermitian' bilocal Bose field on R4 <8> R4 has the expansion 

B6(x, y) = ~ </>6 { x~ y) rei(x_ y). 

Now we multiply (3) by the constant 

I D</>6i exp(-! I B6(x, y) B6(y, x»), 
D(x-y) 

(4) 

change orders of integration, and finally change variables </>6i(X) __ cp,6i(X)', such that 
B6(x, y) __ B6(x, y) + D(x- y) q(y) !M6 q(x). It may be shown that the Jacobian 
for this transformation is J = 1. The choice of the multiplicative constant ensures 
that the terms quartic in the Grassmann variables disappear. Now the Grassmann 
integration may be done yielding the result, up to an (infinite) multiplicative constant, 

Tr exp( - H T) = I D</> exp( - S[ </>]) , (5) 

where the Bose local-field effective action is 

S[</>] = _ TrLn(l+ m)[)(4)(x_ y) + M6 B6(x, y»)+.! I B6(x, y) B6(y, x) , (6) 
2 2 D(x-y) 
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with BO(x, y) defined by (4). The representation (5), in terms of local Bose fields, 
of (2) which was in terms of the fundamental fermion fields, illustrates a technique 
for bosonising fermion field theories. At this stage the effective action is somewhat 
formal as it involves the functional Tr Ln. To properly complete the bosonisation it 
is necessary to obtain an explicit form for S[</>]. To do this we expand S[</>] about its 
minimum in powers of </>0; and a,.,. </>0;, corresponding to a long-wavelength expansion. 
In this way we obtain the low energy meson effective action of the spinor theory. 

The minimum is determined by 

8S[</>(Ji]/8</>0; = 0, (7) 

which gives 

BO(x,y) = D(X-y)Tr( G(x,y) ~O), (8) 

where G- 1(x, y) = (,+ m)8(4)(x- y) +iMo BO(x, y). Then (7) becomes, after using 
inverse Fierz transformations, and assuming a colour-singlet minimum, 

(,+m)G(x,z)-i f d4y D(x-y)'Y,.,. G(x,y)'Y,.,. G(y,z) = 8(4)(X-Z) , (9) 

where we have used iA a iA a = i. Hence both models have the same EL equations. 
It is important to note that (9) is the exact EL equation of the Bose effective action. 

Assuming translation invariant solutions of (9) we define 

f MO 
~(p)= d4x TBO(x) exp(ip.x), 

and (9) becomes 

f d4q 1 
~(P) ~ m +i (217)4 D(p-q)'Y,.,.; A I W~\ 'Y,.,.. (10) 

The solution of this equation has the form, in the chiral limit m = 0, 

~(q) = i! A(q2)-114 + V B(q2) , 

where V is the matrix V = exp(i Y/217 a pa'Y5)' with 117 a l arbitrary real constants, and 
the scalar functions A( q2) and B( q2) satisfying the usual coupled integral equations 
associated with (10). 

We have shown (Cahill and Roberts 1985; Roberts and Cahill 1987; Roberts et of. 
1987; Praschitka et of. 1987) by numerical calculations that a choice for D(x) that 
models the infrared slavery and asymptotic freedom properties of the gluon propagator 
leads to B( q2) =1= 0 and that this solution of (10) gives an absolute minimum for 
S. The matrix V indicates that the manifold of minima of S[</>] is the coset space 
G/H = U A(NF ), where H = UV(NF ) C G. Hence the chiral symmetry becomes a 
hidden symmetry. To properly account for this in expanding S[</>] it is convenient 
to make V a matrix valued field defined by 117 a(X) 1 now space-time dependent, and 
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with the <f>6i redefined implicitly by writing (4) in the form 

1: M6 B6(x,y) = V(X+Y)B(X_ Y) + 1: <f>6i(X+Y)rei(X_Y) M6. (11) 
6 2 2 6i 2 2 

Here .B(x) is the Fourier transform of B(q) and is one member of the pseudoscalar 
set {r} which is now implicitly excluded in the sum in (11). The bosonisation is 
now in terms of the local fields {'lTQ(x)} and {<f>6i(x)}, and the functional measure 
in (5) now includes a Haar measure for U(x) where U(x) = exp{i y2'ITQ(x)FQ} 
and V(x) = PL U(x)t +PR U(x), where PL = !(1-'Ys) and PR = !(1+'Ys)' The 
degenerate minimum of S is now: U(x) = constant field, <f>6i = O. . 

If m =1= 0 then the solution of (9) is, for small m, i{ Am(q2)-lJ 4+ Bm(q2); 
Bm z m+ B imd Am Z A, i.e. U = 1. In this case (11) is still useful. 

The explicit form of S[ U, <f>] is now obtained by expanding the Tr Ln in (5). 
Here we consider only the U(x) dependence, which describes the Narnbu-Goldstone 
(NG) bosons. The {<f>} describe the massive boson states, such as p, (.I), ai' .... The 
expansion gives 

S[ U, <f>] = {J d4 x(:; Tr(o", UO", ut) +K1 Nc Tr(02 U 02 ut) 

+K2 Nc Tr([o", UO", Ut]2)+K3 Nc Tr(o", UOv uto", UOv ut») + ... } R (12) 

. {'AY 2NC J 4 } +1 6O'lT2 E",vpa- d x Tr('IT. Fo", 'IT. Fov'IT· Fop 'IT. F0a- 'IT. F) + ... I' 

where { ... } Rand { ... } I indicate the real and imaginary parts of S, and 

j2 _ 2N. J d4 q B2 {3A2 2B dB 3 (dB)2 
'IT - C (2'IT)4 (sA2+B2)2 + ds + s ds 

_ S(A2+22BdB:dsi +SBd2~} ... , 
sA +B ds 

where dAids terms are not shown, s = q2, and where explicit expressions for {Kd 
are given in Roberts et al. (1987). 

In the Nc = 3 model there are also colour-octet fields in (12) (not shown) which 
are a manifestation of the nonabelian structure of this model, and which are coupled 
to the colour-singlet fields. In the CSM these colour-octet fields are neglected. 

The imaginary part of S[ U, <f>] in (12), which includes all the chiral anomalies, is 
evaluated for small 'IT only. The coefficient 'A[A, B) may be evaluated exactly in these 
model QFTs as 

'A = 12 s ds -------=---::--::-----f oo A4 B6 +2sA3 B6dAlds -2sA4 BSdB/ds 

o (SA2 + B2)S 
(s= ~). (13) 

Following Witten (1983) 'A[A, B) must be an integer to avoid exp( - S[ U)) in (5) 
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becoming multivalued for topologically non-trivial configurations of U(x). The A in 
(13) appears to depend on A and B and thus on the choice of D(x). But changing 
variables to e(s) = B2(s)/ SA(s)2, we obtain 

f oo e2 
A[A. B] = 12 0 de (1 + e)' = 1. 

The exact bosonisation of the model QFfs has led to the effective action S[ U, cpl. 
The cp parts of this action and their couplings to U(x) may be explicitly calculated 
by expansion. The usual chiral effective action is included in this expansion. If only 
the low mass states are retained then an optimal choice for the corresponding r6i(x) 
needs to be made. One choice is to determine these ro i by minimising the mass 
functionals m<j>[F] which arise in the expansion. We have shown (Cahill et of. 19870) 
that this is equivalent to solving the BS bound state equations. An important property 
of the bosonisation is that there exists a class of D(x) such that the vacuum has 
hidden chiral symmetry and the consequent masses imd coupling constants arising in 
the effective action are given by divergence free integrals involving A(q). B(q) and 
{ F( q)}. The r( q) play the role of meson form factors. while B( q) is automatically 
the NG boson form factor and. as expected. mNo[B] = O. 

In the chiral limit m = 0 the NG fields {1T} are massless. but if we consider 
NF = 3 and a small diagonal quark mass matrix with elements mu' md and ms' 
with mu = . md' then the above meson effective action acquires mass terms for the 
NG pseudoscalars. For the octet {1T} we identify the members as the three pions. 
four kaons and one eta. Their masses are m; = J-Lmu' mic = J-L(mu+ ms)/2 and 
m~ = J-L(mu+2ms)/2. where 

J-L = <qq) 
f~ , 

f d4q B 
<qq) = 8Nc (21T)4 A2 q2+B2' 

with f; given above. Specifying D(x) and the m allows these masses to be calculated. 
It is easy to check that these masses satisfy the Gell-Mann-Okubo mass formula 
4mic = 3 m~ + m;. The good agreement with experimental data for these and other 
results from the N c = 3 model suggests that conclusions of the model analysis here 
are relevant to QCD. 

We have shown that. in both models. the low energy colour-singlet meson sector 
is described by the familiar chiral effective action. If we were to now invoke the 
usual CSM argument for topological solitons we would consider finite energy static 
configurations for which U(x) _1. as I xl - 00. This U(x) may be considered as 
a mapping from S3 (compactified R3) into G/H. The homotopy group in this case is 

, {Z. NF :> 2 
1T3(G/H) = 1T3(SU(NF) ® U(I» = 1TlSU(NF» = 

O. otherwise. 

Thus. for NF :> 2 there exists the possibility of topological soliton solutions of the EL 
equations. 8S[ U]/8 U(x) = 0, which may be characterised by a conserved integer 
charge Z. Of course this homotopy group analysis in no way guarantees that any 
such solitons actually exist-it only raises a possibility. We will now show that no 
such solitons exist. i.e. the Skyrmions fail the stability test. 
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We consider the EL equations for the meson effective action, 

oS[U,cf>] = 0, 
oU(x) 

oS[ U, cf>] = 0, 
ocf>(x) 

U(x) E G/H. 
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(14) 

In the extensive Skyrmion literature (see Zahed and Brown 1986 for a recent review) 
many truncated versions of these equations are used. The truncation always amounts 
to keeping only some of the long-wavelength parts. Even then the terms in S[ U, cf>] 
are carefully selected as some of the terms shown in (12) are known to de-stabilise 
the soliton. Soliton solutions of these equations are then found, usually by using the 
hedgehog ansatz for U(x). The fundamental question is whether or not we get solitons 
when all the terms are retained. This might appear to be an impossible question to 
answer. However, we have an explicit expression for the equations in (14), because 
(14) is nothing more than (7). (we have changed variables since equation 7), and for 
colour-singlet states (7) has the form in (9). Thus the equations of motion which are 
supposed to have soliton solutions are, without the various drastic truncations that 
are usually employed, nothing more than the Dyson-Schwinger equation (9), which 
is a matrix equation in spin and flavour space. Of course no soliton solutions of this 
equation are known. 

3. Conclusions 

Hence we reach the conclusion, from several lines of argument, that the Skyrmion 
model for baryons is a spurious model. First we showed, using our two models, 
that the colour-singlet meson effective action 'forgets' whether or not the original 
quark action had a nonabelian colour algebra. This we did by constructing the meson 
effective action for the two models and demonstrating that they were identical (up 
to an overall factor of Nc), and also identical to that used in phenomenology. In 
contrast we showed that the nonabelian colour algebra is essential for baryon states, 
with the N c = 1 model not capable of producing baryon states. Hence there can 
be no connection between the meson effective action and baryon states. Finally, 
we showed that Skyrmions are spurious solutions whose stability and thus existence 
depends critically on which terms are retained in the meson effective action and 
which are discarded. Keeping all the terms was shown to lead to the conclusion that 
Skyrmions, if they exist, would have to be soliton solutions to a Dyson-Schwinger 
equation, which itself has also 'forgotten' whether or not the quarks carried a colour 
index, and no such solutions are known. 

A proper modelling of baryons clearly demands a careful treatment of the colour 
algebra in such a way as to retain a unique feature of QCD, namely that in a 
colour-singlet baryon any two quarks are in a "3 colour state and that for these states 
colour-octet gluon exchange leads to mutual attraction between the quarks. Progress 
towards such a model, one which is covariant and preserves the consequences of 
hidden chiral symmetry, has been reported by Cahill et al. (1987 a, 1987 b). 
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