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Abstract 

A new least squares computational method for the scattering amplitude is proposed. This may be 
applied without difficulty to atomic and other scattering computations. The approach is expected 
to give converged results of high accuracy and also to be free from major numerical instabilities. 
As an example a numerical computation is carried out following the method and some results 
are presented in partial support of the claim. 

1. Introduction 

A computational method (see Das 1978, 1979; Das et al. 1981; Das and Biswas 
1981) has been successfully applied in several electron-atom and positron-atom 
collision problems (see Das 1979, 1981; Das et al. 1981; Das and Biswas 1981; 
Das and Saha 1981, 1982; Das and Bhattacharyya 1983, and references therein). 
The method always leads to results of moderate accuracy for intermediate and high 
energies. There have been attempts to improve the method (see Das et al. 1982; 
Khare and Kusum Lata 1984; Khare and Satya Prakash 1985), but little success has 
been achieved so far. In the present work we propose a new computational method 
following a somewhat different path. This approach, for obvious reasons, is expected 
to give converged results of high accuracy. The method is, moreover, expected to be 
free from major numerical instabilities. We first describe the method in connection 
with a potential scattering problem, and then extend it to an electron-atom scattering 
problem. 

2. New Computational Method 

(a) Scattering by a Yukawa Potential 

We first consider the computation of the scattering amplitude by the Yukawa 
potential 

VCr) = gexp(-"Ar)/r. 

Here the scattering state may be expanded in the form 

f 3 a(q) Iq>, It/J~+» = Ik i>+ d P E-E(q)+iE (1) 
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where the expansion coefficient a(q) is unknown and is to be determined. So that 
a least squares approach is applicable, we must first find some suitable set of basis 
functions for an expansion of a( q), which is a function of q and 0 only for a local 
central potential. Now for simple reasons well known basis functions such as the 
Laguerre functions for q and the Legendre polynomials for 0 are unsuitable. We 
propose instead to use 1/ { (q -I-t 1 kD2 + A;" J, with a discrete set of values for the 
parameters A m and I-t I' as basis functions in the momentum space. These are nothing 
but the Fourier transform of exp(-Am r)exp{il-tlki.r)/47Tr. It may be seen that 
a combination of these functions for different values of A m and I-t 1 is sufficient to 
represent a function of the form l:n R~+)(r) Picos 0) in which R~+)(r) - rn near 
the origin. Now a choice of the parameters Am is rather simple. As 1/1.. is the range 
of the potential one may choose the set 1..,21..,31.. etc. as values of Am. A good choice 
for the I-t 1 is not so obvious, but some values including the value one may be chosen 
for these. Thus, a trial scattering state may be taken as 

f 3 I q) - - - _. , Il/J~+» = Iki)+; Cml d q {E-E(q)+iEJ!(q-1-t1kY+A:;'J (2) 

where Cml are complex variational parameters. 
Next we operate on equation (2) by (E - H): 

f 3 1 
(E-H)Il/J~+» = - VI k i) + ; Cml d q I q) (q -I-tl kY+A:;' 

f 3 VI q) . (3) 
- ;Cml d q {E-E(q)+iEJ!(q-1-t1kY+A:;'J 

The states Ip) for different p form a complete set. Thus equations for the Cml may 
be obtained by taking the scalar product of equation (3) with Ip) and putting the 
result equal to zero: 

1 
-<pi VI k i ) + ; Cml (D -I-tl kY+A:;' 

f 3 <pIVlq) =0. (4) 
-; Cml d q {E-E(q)+iEJ!(q-1-t1kY+A:;'J 

These equations may be solved by the least squares method. 
Thus, we write the equations as 

~ Cml Fml(P) - Y(p) = 0, 
ml 

and minimise 

f I ~ Cml Fml(P) - Y(p) 12 dpdilp. 
ml 

The corresponding minimising equations are 

; f dpdilp F':rz'l'(P) Fml(P) Cml - f dpdilp F!n'(P) Y(p) = 0, (5) 
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for all pairs (m' n. This gives the estimated values of Cml which we denote by C~l· 
Finally, the approximate T-matrix element is obtained from 

T = <kr I V It/l~+», 

where I t/l~ +) is given by equation (2) with Cml repillced by the estimated values C~l· 
Thus, we have 

J 3 <krl Vlq) . (6) 
T = <krl Vlk j)+; C~l d q IE-E(q)+iEH(q-/-Llky+A~j 

Next we illustrate the quality of the trial scattering state by considering its asymptotic 
behaviour. For this we have 

t/l~+)( r) = < rl t/l~+) 

J 3 <rl q) 
= <r1k j)+; Cml d q IE-E(q)+iEH(q-/-Llky+A~j 

- exp(ikj.r) + ~ C Jd3q exp(iq.r)expl-i(q-/-LlkJ.r'j 
- 3 ~ ml 

(21T)i ml 

x exp(-Am r')/(21T)~41TIE-E(q)+iEj 

= exp(i k j • r)/(21T)i - l: Cmt Jd3 qd3 r' exp(i q 0 R) 
ml 

x expli/-LlkjOr'j exp(-Amr')/(21T)~(q2-k2-iE)r'. 

The q integration gives a factor 21T2 exp(i kR)/ R, where R = I r- r'l. Thus for 
r ---+ 00 we have R ::::: r- r' cos 0, where 0 is the angle between rand r'. So for 
large r we have 

t/l~+)(r) - _1_3 (exp(i k j 0 r) - l: Cml 1T exp(i kr)/ r 
(21T)i ml 

x J d3 r' exp( - i k r' cos 0) exp(i /-L I k r' cos 0') exp( - Am r')l r') . 

Expansion of the exponential terms in· the integral and subsequent integration leads 
to the asymptotic form 

( ) 1 (. exp(i k r) ) t/lt+ (r) - --3 exp(l k j 0 r) + l: Pn(cos O)a n , 
(21T)i r n 

(7) 

where the an are functions of the parameters Cml, Am and /-Ll and may be considered 
arbitrary. Thus, the assumed form of the trial function has the nice property that 
asymptotically it also has the correct form. If one remembers the power of the least 
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squares principle and looks to the quality of the assumed trial form of the scattering 
state, it may be said that the present computational approach will give accurate 
converged results without meeting any major numerical instabilities. The method 
also is not very complicated and computations with a large number of terms in the 
trial function may readily be performed. Preliminary results of such a computation 
are reported in Section 3. 

(b) Elastic Scattering of Electrons by Hydrogen Atoms 

To illustrate how the computational scheme considered in Section 2a may be 
extended to other scattering problems of practical interest we consider here the 
computation of the direct scattering amplitude for elastic scattering of electrons by 
hydrogen atoms. The total Hamiltonian H in this case is decomposed as 

H = HO+ V = {(-\7~/2-1/r1)-\7~/2J+(1/r12 -1/r2)' 

The direct scattering amplitude is expanded as 

IljJ~+» = lIs ko) + 1:. fd3 q an(q). I nq). 
lin E-Eiq)+1E 

(8) 

A convenient basis set for expansion of 0n(q) may be {(nql VAml1sILI ki)J, where 
< n q I VA m 11 sILl k i) contain two real parameters A m and IL I and in explicit terms 

<nql VAml1slLlk) = _1_3 feXP(-iq.T2)cf>n(T1) 
(21T) 

x {exp( -Ar12)/ r12 - exp( -AT2)/ r2 J cf>1s(T1) exp(i ILl k i • T2) d3 T1 d3 T2' (9) 

where the cf>n(T) are hydrogenic states, and the Am may be chosen as 1,2,3, etc. (a.u.) 
and the ILl may be chosen conveniently. The calculation then proceeds as before. 
Thus, one operates on equation (8) by (E - H) giving 

(E-H)lljJ~+» = - Vilsk i)+ ~ f an(q)lnq)d3q 

-1: f an(q). VI nq) d3q 
n E-En(q)+lE 

= - Vllsk i)+ 1: Cnm,f,nq)<nq, VAmllslLlki)d3q 
nml 

_ 1: Cnm,f Vlnq)<nql VAmlls~lki)d3q. (10) 
nml E-En(q)+lE 

The states I P1 P2) form a complete set. We take the scalar product of equation (10) 
with I P1 P2) and set the result equal to zero for determining the unknown variational 
parameters C nml' So we have equations of the form 

1: CnmIFnmt<P1'P2)- Y(P1,P2) = 0 
nml 

(11) 
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for parameters C nml. Since integrations over a six-dimensional space will be very 
difficult and time consuming we propose choosing a large number of suitable points 
(PI i' P2) in equation (11) and solving the resulting equations 

l: CnmIFnml(Pli'P2j)- Y(Pli,P2) = 0, 
nml 

(12) 

for different points (PI i' P2) by least squares principles. Thus we minimise 

l: Il: Cnml Fnml(Pli'P2) - Y(pli,P2)1 2 . 
ij nml 

(13) 

The minimising equations become 

l: {~F~'m'l'(Pli'P2)Fnml(Pli'P2)}Cnml = ~ F~'l'm'(Pli'P2)Y(Pli,P2)' (14) 
nml IJ IJ 

for different (n' m' 1'). The solution of these equations gives the estimated values 
C~ml of Cnml. Finally the T-matrix element is given by 

T = <Is kcl VIIs k i) + l: C~ml Jd3 q <Is kcl VI nq) 
nml 

x<nql VAmllsl-l-lki)· (15) 

An analysis similar to that described in Section 20 shows that the assumed trial wave 
function also has the correct asymptotic form. 

Table 1. Comparison of the differential cross section in the present calculation for ten basis 
terms with those of other calculations 

Iq e First Second Das Present Exact (Holt and 
Born Born (1978) work Santoso 1973) 

0·663 0 5·59 13·22 4·73 4·18 4·09 
!1T 1·58 6·04 2·00 2·28 2·28 
1T 0·74 3·92 1·41 2·28 2·29 

1·816 0 5·59 7·08 4·96 5 ·41 5·33 
!1T 0·097 0·293 0·126 0·123 0·127 
1T 0·028 0·118 0·051 0·044 0·048 

3·000 0 5·59 6·16 5·28 5·49 5·50 
!1T 0·016 0·038 0·022 0·0189 0·0184 
1T 0·004 0·013 0·007 0·0058 0·0052 

3. An Application of the Computational Method 

To study how the present least squares computational method works we undertook 
a computation of the scattering amplitude and the differential cross section for the 
Yukawa potential V(r) = -1·1825 exp(-r)/r. For this case exact results are 
also known (Holt and Santoso 1973) for certain values of the momentum and the 
scattering angle. We made a few different choices for the values of the parameters 
Am and 1-1-1· In one of these choices we have Am = m and 1-1-1 = I where m and I 
take the values 1,2,3, ... etc. 






