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A systematic study of the derivative methods for peak search analysis of X-ray powder diffraction 
data was made to evaluate the relative merits of the methods. Results of analysing computer 
simulated diffraction peaks show that the peak positions can be precisely determined by the first 
derivative of a least-squares fitted cubic polynomial. The technique has an accuracy of 0 . 00 1" 
and precisions ranging from ±0·003" to 0·02" depending on the levels of counting statistical 
noise. The study also shows that reliable resolution of overlaps has been obtained using the 
second derivative of a quadratic/cubic polynomial. A method of combining the first derivative of 
a cubic polynomial and the second derivative quadratic/cubic polynomial has thus been used for 
precision peak search analysis. The combined first/second derivative method has been tested with 
experimental diffraction patterns recorded with various step sizes, levels of counting statistical 
noise and degrees of overlaps. Analysis results agree with those obtained from the computer 
simulated data. A comparison between the peak search and the profile fitting results showed good 
matches in the peak positions but relatively poor agreements in the peak intensities especially 
for the heavily overlapping peaks. 

1. Introduction 

Peak search analysis is one of the basic data reduction processes in X-ray powder 
diffraction studies. Precision peak identification and accurate position determination 
are important in a wide variety of analyses such as phase identification, powder 
pattern indexing, lattice parameter determination, residual stress analysis, stacking 
fault calculation, etc. Techniques include a parabolic fitting to the maxima (Koistinen 
and Marburger 1959), a profile fit to an entire peak (Huang and Parrish 1975), use 
of mid-chord bisection of a peak profile (Segmuller 1969), and a derivative method 
(Sonneveld and Visser 1975). These have been used for peak determination of powder 
diffraction patterns with various degrees of success (Mallory and Snyder 1979). To 
obtain the maximum advantage of computers for routine peak search analysis, it is 
necessary to use a data reduction technique which can rapidly and precisely reduce 
the experimental data. The derivative method is well suited for this purpose. 

The aim of this paper is to report the results of evaluating the performances of 
peak search by first, second and higher order derivatives. The relative merits of the 
derivative methods in terms of accuracy, precision and resolution were determined 
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using computer simulated diffractometer peaks. The results were subsequently used 
to develop an algorithm for high precision and resolution peak search analysis of 
X-ray powder diffractometer data. The technique has been tested using experimental 
data obtained with various step sizes, overlaps, counting statistical noises and profile 
widths. Peak search results were also compared with those obtained by profile fitting 
to study the different characteristics between these two methods. 

2. The Derivative Methods 

At the peak position of a diffraction profile where the X-ray intensity reaches a 
maximum, the slope is zero. A diffraction peak can therefore be identified at the 
location where the value of the first derivative crosses zero from positive to negative, 
the second derivative reaches a negative minimum, or the third derivative crosses zero 
from negative to positive. In principle, values of derivatives can be calculated directly 
from the experimental data. However, this technique is not widely used because of 
its strong dependence on the counting statistical noise. To minimise possible errors 
caused by the random noise, Savitzky and Golay (1964) have developed an effective 
method of smoothing and differentiation of data by the least-squares technique in 
which the values of first, second and/or higher order derivatives can be calculated 
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Fig. 1. Derivatives of a seven-point cubic polynomial: (a) original Si(220) eu Ka 1 2 doublet; 
(b) the first (circles), second (crosses) and third (triangles) derivatives. ' 
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using a set of tabulated integers. The method is rapid and simple to apply, and was 
used in this study. 

Values of the derivatives and the peak search results determined from the 
Savitzky-Golay procedure depend on the order of the derivative, the degree of 
the polynomial and the number of convolute points used in the calculation. An 
experimental diffractometer Si(220) Cu Ka l ,2 doublet (see Fig. 1 a) is used to illustrate 
the differences between the first, second and third derivatives. The derivative curves 
obtained from a seven-point cubic polynomial calculation are plotted in Fig. 1 h. The 
peak positions of the Kal,2 doublet obtained from these three derivative curves are 
significantly different from one another (see Table 1). Peak search results also depend 
on the number of convolute points N used in the calculation. As shown in Table 
1, the different values of 2() have been obtained by the 7, 15 and 25 point cubic 
polynomial calculations. Results also show a failure to resolve the Ka2 peak from 
the Si(220) doublet by the first derivative method with N = 15 and 25, and by the 
third derivative when N = 25. 

Table 1. Results of peak search by derivatives of a cubic polynomial 

Peak Convolute Order of derivative 
point N First Second Third 

Kal 7 47·302 47·294 47·293 
15 47·304 47·300 47·299 
25 47·311 47·298 47·308 

Ka2 7 47·416 47·448 47·447 
15 47·445 47·445 
25 47·462 

There are two types of error commonly generated by reduction of experimental 
data; namely, the intrinsic or systematic error introduced solely by the data analysis 
technique and the random error resulting from the counting statistical fluctuation 
obtained during an experiment. [The term 'systematic error' is not used here so 
there is no confusion with the well-known systematic errors arising from instrument 
misalignment, geometric aberration, etc. (Parrish 1965).] The accuracy of an analysis 
depends on how well we can control or compensate for intrinsic errors, and the 
precision of an experiment relies on how well we can overcome or analyse random 
errors. 

The effects of intrinsic and random errors can be properly evaluated using computer 
.simulated single diffractometer peaks. For peaks generated by a computer, the peak 
positions are exactly known and the levels of counting statistical noise can be 
precisely added. To study the effect of asymmetric profiles commonly observed in 
powder diffractometry, diffraction peaks with various degrees of asymmetry at 20°, 
50° and 80° 2() have been used. (The profile fitting method was used to generate 
diffractometer peaks whose shapes are identical to those observed experimentally.) 
Counting statistical noise was added when required. Computer simulated overlaps 
with known separations have also been used to determine the minimum resolution 
limits. A study of the relative merits of the derivative methods in terms of intrinsic 
and random errors, and the overlap resolution have provided a better understanding 
of the peak search analysis by derivatives. 
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(aj Intrinsic Error 

The intrinsic errors associated with the derivative methods were first determined 
using computer simulated peaks without random counting statistical noise. Cu Kat 
diffraction peaks at 20°, 50° and 80° with step sizes 1::..2(J = 0.01°, 0·02°, 0.03°, 0·04° 
and 0.05° were used. Analysis showed that the peak positions were dependent on 
the peak search parameters used, i.e. the order of the derivative, the degree of the 
polynomial and the product N 1::..2(J. The value N 1::..2(J represents the angular range 
used in the Savitzky-Golay calculation and is called the convolute range (CR). The 
peak positions 2(Jps obtained by the first derivative of a quadratic polynomial, the 
first derivative of a cubic polynomial, and the second derivative of' a quadratic/cubic 
polynomial as a function of CR are plotted in Fig. 2. (The term 'quadratic/cubic 
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Fig. 2. Peak search results 28 ps for the first derivative of a quadratic 
polynomial (open circles); the first derivative of a cubic polynomial (solid 
circles); and the second derivative of a quadratic/cubic polynomial (crosses). 

Table 2. Intrinsic errors .d of peak search by derivatives 

Derivative Peak Convolute range (CR) 
method (280) ~W W 

First deriv. 20' 0·001' -0·004' 
quadratic 50' 0·001' 0·004' 

80' -0·001' -0·000' 
First deriv. 20' -0·001' -0·001' 

cubic 50' -0·000' 0·000' 
80' -0·001' -0·001' 

Second deriv. 20' 0·003' 0·004' 
quad. / cubic 50' -0·005' -0·006' 

80' -0·001' -0·001' 

fW 

-0·009' 
0·014' 

_0·000' 

-0·002' 
0·002" 

-0·001' 
0·002' 

-0·007' 
-0·001' 



Precision Peak Determination 205 

polynomial' stands for either quadratic or cubic polynomial, and CR is expressed in 
units of both 026 and the full-width-at-half-maximum W.) Fig. 2 shows that the 
results obtained by each method vary systematically with CR, and values of 20ps 
determined from the first derivative of a cubic polynomial are closest to the true value 
of 200 = 200. 

Results of analysing the 200, 500 and 800 peaks are summarised in Table 2, showing 
that the discrepancies A between 20ps values and the true peak position 200 depend 
on the derivative method and the value of CR chosen. This is especially true for 
asymmetric peaks located at small 20 (e.g. 200 and 500). For nearly symmetric peaks 
at high 20 (e.g. 800), values of A gradually approach one another. Since the A were 
obtained from simulated peaks with zero counting statistical noise, these discrepancies 
were introduced solely by the derivative method used, and therefore they are the 
intrinsic errors associated with the method. Among these three methods, the results 
obtained by the first derivative of a cubic polynomial have the smallest intrinsic errors 
with A = 0.0010 on the average, and 0.0020 at maximum. 

Analyses with higher-order derivatives and higher-degree polynomials have also 
been studied. In general, the intrinsic error decreases with the order of the derivative 
and the value of CR, but increases with a decreasing degree of the polynomial. These 
dependencies on peak search parameters are most pronounced for highly asymmetric 
peaks. 

Table 3. Random errors of peak search by derivatives (280 = 20· and CR = W) 

Derivative PIer PIB 
method 100 10 1 0·1 

First deriv. 25 19·996(2) 19·996(2) 19·996(2) 19·996(2) 
quadratic 10 19·996(4) 19·997(5) 19.997(5) 19.996(5) 

3 19·997(15) 19.995(14) 19.997(17) 19·995(17) 

First deriv. 25 20·000(3) 19.999(3) 20·000(3) 19·999(3) 
cubic 10 20·000(8) 20·000(7) 20·000(8) 19·999(8) 

3 19·999(20) 20·000(20) 20·000(21) 19·998(21) 
Second deriv. 25 20·005(5) 20·005(5) 20.005(5) 20·005(6) 

quad. I cubic 10 20·004(13) 20.005(12) 20·005(14) 20.004(23) 
3 20·000(31) 20·001(31) 19·999(98) 20·005(159) 

(b) Random Error 

The effect of counting statistical error on peak search by derivatives has also been 
studied using computer generated diffraction peaks. To simulate a wide range of 
experimental conditions, diffraction peaks at 200, 500 and 800 with values of PI B 
ranging from 100 to 0·1 and PIU' from 25 to 3 were used, where P is the net 
peak intensity above the background B and the estimated standard deviation is 
U' = (p+B)1I2. For each combination of PIB and PIU', a total of 360 peaks (120 
each for a20 = 0.010, 0.020 and 0.03j were added with different amounts of noise 
generated by a computer following Poisson statistics. Typical peak search results 
of the 20" peaks analysis with CR = Ware listed in Table 3. Results of the 360 
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20 ps values obtained from peaks having the same P/B and P/er are summarised in 
terms of the average 20 ps value and its standard deviation (in parentheses). The 
average 20 ps obtained by the derivative methods each remains approximately the 
same regardless of the levels of P/B and P/er. In other words, the averages are not 
affected by the counting statistical noise and therefore can also be used for studying 
the effect of intrinsic error. Among the three derivative methods, the first derivative 
of a cubic polynomial has the lowest intrinsic error. As shown in Table 3, the 
average of the twelve 20 ps obtained by the method is within 0·001° of the true peak 
position 200 = 20°. Both the first derivative of a quadratic and the second derivative 
of a quadratic/cubic polynomial methods have slightly larger intrinsic errors (i.e . 
..:1 = _0·004° and +0·004° respectively). It should be noted that these results agree 
with those previously obtained from noise-free diffraction peaks (see Table 2). 
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Fig. 3. Plot of the average standard deviation against P/u. 

Values of the standard deviation represent the random errors associated with the 
derivative methods. As shown in Table 3, the standard deviations of each individual 
method are approximately the same for peaks having the same levels of P/er, even 
through their P/ B values differ by three orders of magnitude. (Results on peaks with 
P/er < 3 will not be discussed here because a significant number of the noisy peaks 
are below the detection limits.) The effect of counting statistical noise can be shown 
clearly from the plot in Fig. 3 of the average value of the standard deviations against 
P/er. As shown, the standard deviation of a derivative method varies systematically 
with P/er; the larger the P/er, the smaller the standard deviation. In other words, the 
random error is smaller and the precision is higher for a peak with lower counting 
noise. Compared with other derivative methods, the first derivative of a quadratic 
polynomial consistently gives the smallest random error and the highest precision. 
On the other hand, the second derivative of a quadratic/cubic polynomial has the 
largest random errors and the lowest precision because it is most sensitive to the 
counting noise. 
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The effects of peak search parameters on both the intrinsic and the random errors 
can be summarised as follows: (1) the lower the order of the derivative, the smaller 
the intrinsic and random errors; (2) the higher the degree of the polynomial, the 
lower the intrinsic error, but the larger the random error; and (3) the larger the value 
of CR, the larger the intrinsic error, but the smaller the random error. 
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Fig. 4. Overlaps of three peaks with intensity ratios 1: 1 : ~ and separations ..:1 = W (left), ~ W 
(centre), and ~ W (right). 

(c) Overlap Resolution 

Detection of overlapping peaks is an important process in X-ray powder diffraction 
analysis. In this study, the resolution limits are determined from computer generated 
overlaps with known separations. The degree of overlap between two peaks depends 
on the separation and the relative intensity ratio. Fig. 4 shows the severity of overlaps 
for clusters of three peaks with separations .1 = W, ~ Wand i W, and relative 
intensity ratios 1: 1 :!. In the case of .1 = W (left of Fig. 4), the two stronger peaks 
with equal intensities are clearly visible from the cluster, but the third weaker peak 
appears only as a shoulder next to the stronger peak. As the separation decreases to 
.1 .;;;; ~ W (centre of Fig. 4), the overlaps become much more severe. At .1 = i W, the 
peaks are so close to each other that no visible evidence of overlap can be observed 
from the cluster. 

Peak search results show that all three methods are successful in resolving overlaps 
when the separations are large. As.1 decreases, the first derivative of a quadratic 
polynomial is the first to fail, followed by the first derivative of a cubic polynomial. 
The second derivative of a quadratic/cubic polynomial has the highest resolution. The 
minimum separation for a successful resolution obtained by the second derivative of a 
quadratic/cubic polynomial and CR = i W is .1 = i W. The minimum separations 
for the first derivative methods are twice as large, i.e . .1 = W. The minimum 
resolution increases with CR. A detailed discussion of the resolution limits of the 
derivative methods and their dependencies on CR have been given elsewhere (Huang 
and Parrish 1984) and will not be repeated here. A resolution better than i W, in 
principle, can be obtained using higher orders of derivative (e.g. quartic, quintic etc.). 
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However, these methods are too sensitive to the counting noise and probably give 
false peaks. Taking into account both resolution and reliability, the second derivative 
of a quadratic/cubic polynomial is most effective for the detection of overlapping 
peaks. 

(d) Combined First! Second Derivative Method 

The above results show that the peak positions of an X-ray powder diffraction 
pattern can be accurately and precisely determined by the first derivative of a cubic 
polynomial. The analysis also shows that overlaps are best resolved by the second 
derivative of a quadratic/cubic polynomial. An algorithm combining these two 
methods has therefore been used for high precision and resolution peak search of 
X-ray powder diffraction data (Huang and Parrish 1984). In the method, peak 
identifications and 26 locations are first determined by the first derivative of a cubic 
polynomial, and the unresolved overlaps are then re-examined and identified by the 
second derivative of a quadratic/cubic polynomial. The technique is capable of 
determining peak positions with an accuracy of 0·001° and precisions ranging from 
+0·003° to 0·02° depending on the levels of counting statistical noise, and resolving 
overlaps with separations>! W. 
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Fig. 5. Diffraction pattern of a mineral mixture recorded with ~26 = 0.010 

and ~ t = 10 second per step. Peaks identified by the combined first/second 
derivative method are also marked: CR = ! W and the first derivative 
(pluses); CR = ! Wand the second derivative (crosses); CR = Wand the 
first derivative (open circles); CR = W and the second derivative (solid 
circles); CR = 2 W and the first derivative (open diamonds); CR = 2 W and 
the second derivative (solid diamonds). 

3, Analysis of Experimental Patterns 

The combined first/second derivative method has been used to analyse experimental 
patterns and to illustrate its use to analyse difficult cases occurring in peak search 
analysis of X-ray powder diffractometer data (Huang et al. 1984). 
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(a) Peak Identification 

A diffraction pattern of a mineral mixture of quartz, orthoclase and albite, recorded 
with a step size a2() = 0.01° and count time at = 10 second per step, was used for 
the study of peak detection and overlap resolution (see Fig. 5). Peak search analyses 
by the combined first/second derivative method were done with CR = ! w, Wand 
2 W. The diffraction peaks identified by first and second derivatives are marked in 
Fig. 5. In general, peaks that are easily visible from the pattern were found by the 
first derivative. The remaining peaks and the unresolved overlaps were then detected 
by the second derivative. The resolution achieved depends on the value of CR. The 
smaller the value of CR, the better the resolution; for example, a weak peak (marked 
by the cross at 20.89° in Fig. 5), which is separated by Li = ! W or 0.06° from the 
strong peak at 20· 83°, was resolved by the second derivative when a small CR = ! W 
was used. Another peak at 21 .00°, which is separated by Li = W or O· 11 0 from the 
20·89° peak and by Li = ~ W or 0·16° from the 20·83° peak, was identified by the 
first derivative with both CR = ! Wand W. However, when CR increases to 2 W, 
only the second derivative could detect the peak at 21·00°. Similar resolution limits 
have been obtained previously from computer simulated data (Huang and Parrish 
1984). The number of peaks identified by the first and second derivatives as well as 
their sums are also listed in Table 4, which shows that the larger the value of CR, the 
smaller the number of identified peaks. The successful resolution of Ka1 and Ka2 

overlaps with separation Li -! W by the second derivative was mainly responsible for 
the large increase in the number of peaks from 26 at CR = W to 38 at ! W. 

Table 4. Effect of CR on the number of identified peaks 

CR First deriv. Second deriv. Total 
cubic quad. / cubic 

~W 20 18 38 
W 19 7 26 

2W 15 5 20 

Table S. Effect of step size on the maximum number of identified peaks 

A26 N CRmin No. of peaks 
(deg.) °26 W identified 

0·01 5 0·05 0·5 38 
0·02 5 0·10 0·9 29 
0·03 5 0·15 1·3 25 
0·04 5 0·20 1·7 23 

The step size used to record an experimental pattern also has an effect on the 
resolution of the peak search analysis. As the step increases, details of overlaps wash 
out and fewer peaks become visible. In addition, the smallest value of CR which 
can be used in a peak search analysis is limited by the minimum requirement of five 
convolute points in the Savitzky-Golay calculation. Diffraction patterns similar to 
Fig. 5 obtained with steps of 0·01 ° to 0.04° have been used to illustrate its effect on 
resolution. As shown in Table 5, the smallest value of CR which can be used varies 
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from 0·05° or 0·44 W for 6.2(J = 0·01°, to 0·20° or 1·74 W for 6.2(J = 0·04°. The 
maximum number of peaks possibly obtained by using the minimum CR decreases 
from 38 to 23 when 6.2(J increases from 0·01° to 0·04°. 

Table 6. Effect of counting noise on peak position 

Peak Plu Convolute range (CR) 
!W W !W 2W 

A 28 22·002(4) 22 ·003(3) 22·006(3) 22·005(2) 
9 21· 996(11) 22·002(8) 22·003(6) 22·003(4) 

B 8 22·276(13) 22·278(8) 22·277(6) 22·275(5) 
2·5 22·264(20) 22·276(20) 22·280(14) 22·273(15) 

(b) Peak Position Determination 

Diffraction patterns of the three-mineral mixture recorded with a count time of I 
and o· 1 s were used to evaluate the peak search precision in 2(J determination. Results 
of two Kal peaks at 22·00° and 22·28° (marked A and B in Fig. 5 respectively) 
are summarised in Table 6, where the average of twenty 2(Jps (ten for CR = ~ W) 
is listed first and its standard deviation is given in parentheses. The average values 
of 2(J are approximately the same for the same peak, while the standard deviation 
which is a measurement of the random error increases as the ratio of P / (j' decreases. 
For example, the standard deviation obtained with CR = W increases from 0·003° 
to 0.020° as P / (j' decreases from 28 to 3. The results agree with those obtained 
previously from synthesised peaks (see Table 3). The standard deviation for peaks 
having the same value of P / (j' decreases with increasing CR. In other words, the 
larger the value of CR, the smaller the random error and the higher the precision. 
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Fig. 6. Diffraction pattern of the fosterite (222), (402) and (231) reflections: experimental data 
(circles); individual reflections resolved by the profile fitting method (dashed curves); and sum of 
profile fitted data (solid curve). 
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(c) Comparison with Profile Fitting Method 

A section of three overlapping fosterite reflections was used to study the differences 
between the peak search and the profile fitting method. The diffraction pattern of 
the six peak cluster is plotted in Fig. 6. The experimental data are shown as open 
circles and the solid curve was determined by profile fitting. The individual reflections 
obtained by profile fitting are shown as dashed curves. The six Ka, and Ka2 peaks 
of the (222), (402) and (231) reflections in the cluster have approximately equal 
separations and .J - W. Since the separations between peaks are within the resolution 
limit of the first derivative of a cubic polynomial, precise peak search results can 
therefore be obtained and compared with the profile fitting results. 

Table 7. Comparison between peak search (PS) and profile fitting (PF) results 

Method (222) (402) (231) 
Ka, Ka2 Ka, Ka2 Ka, Ka2 

Peak position ("28) 
PS 52·144 52·282 52·431 52·574 52·731 52·864 
PF 52 ·144 52·435 52·735 
PS-PF 0 -0·004 -0·004 

Peak intensity (counts) 
PS 13774 8127 5216 2815 1308 680 
PF 13550 4477 1033 
(pS-PF)/PF 2% 17% 27% 

Results obtained by both the peak search and the profile fitting methods are listed 
in Table 7. Peak search analysis successfully resolved the cluster into six peaks. 
Values of 20ps were determined by the first derivative of a cubic polynomial with 
CR = Wand the peak intensities were estimated by fitting a Lorentzian curve to 
the top three experimental data of each peak. The main difference between the two 
methods is that the profile fitting method can resolve individual reflections and gives 
results as though there were no overlaps (Parrish and Huang 1979), while the peak 
search method cannot correct for the overlap interferences. Consequently, the results 
obtained by peak search are different from those by profile fitting by an amount 
depending on the degree of overlap. For example, the peak positions of the (222) 
Ka, peak obtained by both methods are the same because it is relatively free of 
interference from the adjacent reflection. However, the peak search angles of both 
the (402) and the (231) Ka, peaks are O·O(W smaller than the profile fitting values 
due to the interferences from the Ka2 tails of the stronger overlapping reflections. 
The effect of overlap on peak intensity is much larger and increases rapidly with the 
degree of overlap. A 2% increase in the peak search intensity over that of the profile 
fitting has been obtained for the (222) Ka, peak. The increase in the peak search 
intensity reached 27% for the severely overlapping (231) Ka, peak. 

4. Conclusions 

A comprehensive study of the derivative methods for peak search analysis of 
X-ray powder diffraction patterns has been made to evaluate the relative merits of 
the methods. The accuracy, precision and overlap resolution of the methods were 
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determined using computer simulated diffraction patterns in which the peak positions, 
the levels of counting statistical noise and the degrees of overlap were exactly known. 
The study showed that the results are dependent on the peak search parameters as 
follows: (1) the lower the order of the derivative, the smaller the intrinsic and random 
errors; (2) the higher the degree of the polynomial, the lower the intrinsic error, but 
the higher the random error; and (3) the larger the value of CR, the larger the intrinsic 
error, but the smaller the random error. Taking into account both the intrinsic 
(or accuracy) and the random (or precision) errors, the first derivative of a cubic 
polynomial is most effective for the peak position determination. The analysis also 
showed that reliable overlap resolutions have been obtained by the second derivative 
of a quadratic/cubic polynomial. The method of combining the first derivative of 
a cubic polynomial for peak position determination and the second derivative for 
detection of unresolved overlaps has been used for peak search analysis. The method 
is capable of determining peak positions with an accuracy of 0·001° and precisions of 
+0·003° to 0·020° depending on the levels of counting noise, and resolving overlaps 
with separations .J ;;;. i w. 

The combined first/second derivative method has been used to analyse complex 
experimental diffraction patterns of a mineral mixture of quartz, orthoclase and albite. 
Results agreed with those obtained from the computer simulated data. A comparison 
between the peak search and the profile fitting analyses of the fosterite diffraction 
pattern showed that good agreements in the peak position have been obtained and 
the matches in 2() were <;;0.004°. However, the agreements in the peak intensity 
were relatively poor, and a maximum discrepancy of 27% has been obtained for the 
severely overlapping (231) Kat peak. 

The results of analysing both the computer simulated and the experimental patterns 
showed that the combined first/second derivative method has been used effectively 
for analysing X-ray powder diffraction data. The method should also be applicable 
to the analysis of other spectra such as 'Y-rays, X-ray fluorescence, optical, infrared, 
Mossbauer, etc. 
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