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Where density ftuctuations in a crystal are very large as a result of proximity to a structural phase 
transition, contnbutions to the diffraction data associated with critical scattering (CRS) can make 
it difficult to determine the average structure with any great precision. This matter is discussed 
on the basis of the structure factor formalism. 

1. Introduction 

In general, the X-ray or neutron diffuse scattering observed from a crystal is a 
reciprocal space representation of the density fluctuation in the crystal, whether its 
origin is static or dynamical, as is seen from the simple Fourier theory of kinematical 
diffraction. Thus, the dynamical properties of a crystal near a structural phase 
transition have been widely investigated by the measurement and analysis of the 
diffuse scattering which is usually enhanced near a phase transition point. This is 
already a well-known technique used to obtain directly the dynamical mechanism of 
a structural phase transition. 

To understand the physical nature of a phase transition on a microscopic basis it is, 
however, essential to know the exact structure below and above the phase transition, 
since knowledge of the initial and final structures can tell us what happens when 
a transformation takes place. As techniques in structure refinement by X-ray and 
neutron diffraction have been improved, refinement of the structures of some typical 
ferroelectric substances has been repeated on several occasions. The following study 
corresponds to a new attempt to follow up the gradual change of structure during a 
phase transition, especially for the second kind, by analysing the structure successively 
at several distinct temperatures close to the transition point (Sakata et 01. 1980; Hoh 
et aL 1980; ltoh 1984; Nelmes et aL 1985). 

However, it should be noted that such a structure analysis has been attempted for 
a crystal in which the density fluctuation is extremely large, since the experiment is 
carried out near a phase transition. The question arises as to whether the average 
structure is well defined by a diffraction experiment for such a critical point. In 
other words, this is equivalent to asking whether the Bragg reflection responsible for 
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the determination of the average structure is separated out from the critical diffuse 
scattering. This situation has similarities to the case of thermal diffuse scattering 
(TDS) and the problem of applying an appropriate correction. 

In discussing this problem on the validity of the structure factor formalism, we 
point out that there is a case in which the average structure is certainly difficult to 
define in the light of the present level of structure analysis by diffraction experiments. 

2. Average Structure and Density Modulation 

Within the framework of kinematical diffraction theory, the scattered intensity is 
proportional to the space-time Fourier transform of a density correlation function: 

I(K,w) = f f(p(-r,-t)(8)p(r,t»eXP{i(K.r-wt)} drdt, (1) 

where p( - r, - t)®p(r, t) represents the convolution of the density distribution and 
< ... ) denotes the thermal average of the system at temperature T. If an average 
periodic lattice is defined for a given crystal, the density distribution of the crystal 
per, t) may be given by the sum of the average periodic lattice (p(r» which should 
be time independent, with a deviation from it of ape T, t): 

per, t) = (p(r»+ap(r, t). (2) 

The Fourier transform of (1) for the density distribution (2) gives two terms: 

I(K, w) = I f (p(r»exp(i K. r) dr 1 8(W) 

+ f f<ap®ap)eXP{i(K. r-wt)} dr dt, (3) 

where <ap) = 0 by definition. The first term represents the sharp Bragg reflection at 
the reciprocal lattice points for pure elastic scattering because of the term 8(w). The 
second term shows diffuse scattering consisting of a continuous intensity distribution 
in the reciprocal lattice, instead of sharp peaks, due to the lack of the long range 
periodicity in ap. This term is essentially inelastic scattering. In this paper we 
confine ourselves to the intensity integrated over energy, corresponding to the X-ray 
scattering case, but the argument is valid for neutron scattering as far as quasi-elastic 
scattering is concerned, such as the critical scattering. 

It should be noted that the average lattice structure of a crystal, such as the 
position and mean square displacement of the atoms in a unit cell, is obtained from 
the analysis of the Bragg reflections. Therefore, it is essential to eliminate other 
scattering contributions from the observed Bragg intensity. The information about 
deviation from the average structure or density modulation is, on the other hand, 
obtained from the analysis of the second term of the diffuse scattering. As the 
origin of diffuse scattering is due to lattice vibrations, the strain distribution, which 
is usually accompanied by some types of lattice defect, and the structural fluctuation 
in connection with a phase transition could be considered. The diffuse scattering 
corresponding to those density modulations are thermal diffuse scattering, Huang 
scattering and critical scattering (CRS) respectively. 
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3. IDS Contn'bution 

Among the different types of diffuse scattering, it· is well known that first order 
TOS due to the acoustic lattice vibrations of small wave number produces sharp 
maxima at reciprocal lattice points so that, in the course of the measurement of 
the integrated Bragg intensity, a certain amount of TOS is included. In general, 
the contribution of TOS to the Bragg intensity increases. with an increase in the 
scattering vector K, and this may often amount to over 35% for higher order Bragg 
reflections. Accurate studies of the average structure by utilising a shorter wavelength 
necessarily require a correction for the TOS contribution to the Bragg peaks. There 
is no experimental way, however, to separate out the TOS contribution from the 
observed Bragg intensities. Thus,· this correction is carried out at present on the basis 
oftheoretical predictions (see e.g. Harada and Sakata 1974; Sakata and Harada 1976). 

As the TOS at a reciprocal lattice point is proportional to the Bragg intensity at 
that point, the observed integrated intensity is given by 

Jobs(B) = JBragg(B)(1 +aTDs)' (4) 

Since the TOS is proportional to the square of the scalar product of the scattering 
vector K and the phonon displacement vector ~, aTDS is given in the quadratic form 

aTDS = hap h , (5) 

where h represents the Miller indices h, k, I and ap is the tensor characterising the 
anisotropy of the TOS in the reciprocal lattice. 

4. CRS Contribution 

A problem similar to the TOS correction encountered in the usual structure analysis 
may arise when the structure refinement of a ferroelectric-like crystal is attempted 
at a temperature very close to the phase transition point. Then, the critical diffuse 
scattering due to the enhancement of a long range density fluctuation associated with 
the phase transition also produces peaks at the reciprocal lattice points. 

Ewald sphere 

ki 

Fig. 1. Ewald construction representing the scattering vector K, the reciprocal lattice point B 
and the deviation q. 
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According to the Landau (1937) theory of critical scattering due to a second order 
phase transition, the scattered intensity from a crystal above the Curie point is written 
in the form 

ICRs(K) ::::: {laFl 2 kB T / (B(T- To) + ~ Aij qi qj)} 

x 8(K+q-B), (6) 

where To is the Curie temperature, qi is the ith component of the wave number vector 
q with respect to the density fluctuation of which the anisotropy is characterised 
by a tensor Aij' and aF is the difference of the structure factors between the two 
phases, one above and one below the phase transition point. The wave number vector 
q represents the deviation of the scattering vector K from the nearest neighbour 
reciprocal lattice point B, as illustrated in Fig. 1. From (6) we see that IcRs(K) is 
enhanced when T is close to To, and peaks are also produced at the reciprocal lattice 
points where q corresponds to zero. The intensity modulation in the reciprocal lattice 
is given by laFI 2 which is usually not proportional to the Bragg intensity. 

In the course of a scan for measurement of the Bragg intensity, we see that some 
of the CRS may contribute to the integrated Bragg intensity in a manner similar to 
TDS. The contribution of the CRS is given by the integral of (6) for the volume swept 
out around the reciprocal lattice point B by a detector: 

JCRs(B)::::: f IcRs(K) d3 K = laFI 2YcRS· (7) 

There is a case in which the phase transition results from the instability of one of 
the optical phonon branches, as is often seen in the phase transition of perovskite-type 
crystals. In such a case, aF in (6) is rewritten as the structure factor for such 
phonons which is proportional to the scalar product of the scattering vector K and 
atomic displacement vector e/ 

aF(K) = ~(K .ej)ljexp{i(K. Tj)J , 
J 

(8) 

where Ij is the atomic scattering factor in which the Debye-Waller factor exp( -~) 
is corrected. In general, some of the atoms are moved relative to others in the unit 
cell for the optical phonon mode, so that ej depends very much on the mode. The 
modulation of 1 a F 12 in reciprocal space is, therefore, not simply proportional but 
even opposite to that of the Bragg scattering; i.e. laFI 2 is large at the reciprocal 
lattice point at which the Bragg intensity is weak. 

Nevertheless, it is also possible to represent equation (7) in a quadratic form by 
using (8): 

JCRs(B) = JBragg(B)(iia'Yh), (9) 

ay 1m = (FI Fm)T/ JBragg(B), (10) 

T = (2,")-3 f kB T / (B(T- To) + ~ Aij qi qj) d3 q, (11) 
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where hand h represent the Miller indices h, k, I, /::":'1 is the 3 x 3 tensor characterising 
the intensity modulation of the eRS, Fi is the Ith component of the phonon structure 
factor along one of the principal reciprocal axes, and 7' is the integral for the volume 
swept out around a reciprocal lattice point B by a detector. 

f+-i-
Fig. 2. Illustration of a Bragg peak where the integrated Bragg 
intensity consists of three components: Bragg scattering, thermal 
diffuse scattering (TDS) and critical scattering (CRS). Their two
dimensional distributions in the diffraction plane are illustrated 
in the lower part of the figure. 

5. Integrated Bragg Intensity 

In an attempt to determine the average structure of a crystal as accurately as 
possible at a temperature very close to its phase transition point by analysing the 
diffraction data, we must pay attention to the fact that the integrated Bragg intensity 
which is measured by scanning around a reciprocal lattice point consists of three 
parts; that is, the TDS and eRS contributions are included as well as the true Bragg 
intensity. Such a situation is illustrated in Fig. 2. On the basis of equations (4), (5) 
and (7), the integrated Bragg intensity is given by 

Jobs(B) = JBragg(B)(l + hMJh) + laFI'YCRS. (12) 

If the eRS originates from the soft phonon mode, the observed intensity is written 
on the basis of (9) as 

Jobs(B) = JBragg(B){1+h(M~+a'Y)h}. (13) 

In these expressions the TDS tensor afj is well represented in terms of a set of elastic 
constants for the crystal and the experimental conditions under which the Bragg 
intensities have been measured. There is, therefore, no particular difficulty at present 
in estimating afj in equations (12) and (13). However, it is rather difficult to evaluate 
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y CRS or ay, as all the parameters (see equation 6) which are necessary to evaluate 
them are only obtained by a full understanding of the critical scattering of (6). But 
we see qualitatively from (13) that the additional correction term ay modulates afj in 
a different manner. In the case of expression (12), we notice that the TOS correction 
(1 + iiafjh) should always be made after correcting the CRS contribution laFI 2 YCRS 
to the observed intensity JobS<B), if that is possible. 

6. Discussion and Conclusions 

The consequences of neglecting the TOS correction for structure analysis have 
been discussed by Harada and Sakata (1974) and Stevenson and Harada (1983) on 
the basis of the general formalism of TOS correction. According to their predictions, 
the thermal parameters are modified in such a way that the principal axes of the 
thermal ellipsoids change their directions, while the position parameters are little 
affected. Presumably this conclusion continues to be valid as a general tendency even 
in the case where the CRS correction is necessary, because JcRs(B) itself is a small 
correction term for the strong Bragg intensity. 

It is very interesting to obtain even a rough idea about the CRS contribution 
to the Bragg intensity, although a theoretical estimation is extremely difficult, as 
mentioned in Section 5. According to the experimentally observed value of the CRS 
for NaN02, at a temperature about two degrees above the phase transition point 
(Hoshino and Motegi 1967), the phase transition is of antiferroelectric type, and it is 
estimated to be 25% of the weak Bragg intensity. Similar estimations for K02P04 

and CS02P04 have been obtained from neutron scattering experiments (Skalyo et al. 
1970; Semmingsen et al. 1977). However, we note that the CRS is stronger than 
TOS near a weak Bragg reflection, but not at the reciprocal lattice point at which 
the Bragg reflection is strong (Shibuya and Mitsui 1961). Such a tendency has also 
been observed in the X-ray photograph of BaTi03 above the phase transition point in 
which the soft optical phonon mode is known to contribute to the diffuse scattering 
(Harada and Honjo 1967). This is a characteristic of CRS and these experimental 
results are in good agreement with the theoretical prediction. 

Such a characteristic of the CRS modulation can be understood as resulting from 
the density modulation which arises from the displacement of specific atoms, or 
the change of the orientation of particular molecules in the unit cell, in connection 
with the phase transformation. Therefore, it is easily understood that the thermal 
parameters of the atoms or molecules involved directly in the density fluctuation 
are largely modulated as the consequence of the neglect of the CRS correction to 
the Bragg intensity. Since no standard method to correct this CRS has yet been 
established, this should be kept in mind for structures determined especially near 
a phase transition point. It should also be noted that the CRS intensity and its 
modulation in reciprocal space depends very much on the phase transition which 
changes from crystal to crystal. 

In this paper we have confined ourselves to the influence of the CRS, but it 
is also conceivable that Huang scattering can influence diffraction data if a strain 
distribution exists in a sample crystal. An example can be seen in the X-ray study 
of the electron-density distribution of K2(PtCI4) by Ohba et al. (1983). They noticed 
that spurious peaks are produced in the difference Fourier maps if diffraction data 
including Huang scattering are used and they identified them as due to the existence 
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of strain in the crystal. Therefore, we may say that there is a crystalline state for 
which an average structure is difficult to define by diffraction experiments, as a result 
of large density fluctuations. 
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