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A set of formulae is derived for correcting integrated diffraction intensities for surface structure 
analysis. These differ significantly from their bulk counterparts because of the diffuse nature of 
the peaks. In-plane and out-of-p1ane data collection are treated separately. Measurements of 
W(OOl) surface diffraction are used as a case study. 

1. Introduction 

In recent years there has been much progress in the application of X-ray diffraction 
techniques to surfaces and interfaces. The first experimental study of a clean surface 
in vacuum was by Eisenberger and Marra (1981), and there have been a dozen 
examples since. The basic reason for the development of the technique was that 
X-ray diffraction is highly kinematical (in this case) and intensity measurements 
could be directly interpreted by means of Fourier transformation and other linear 
methods. This opened two important avenues of research: crystallography of surfaces 
to determine structures, and lineshape analysis to study ordering and phase transitions. 
Both of these are fundamental in surface science, and in both cases the interpretation 
of X-ray results is more straightforward than for competing techniques. Because the 
cross section of a monolayer is so small, most work has been done with synchrotron 
radiation. However, this is not an absolute requirement and, indeed, all the results 
presented here were obtained with a rotating anode source. 

We are of course assuming implicitly that it is possible to make accurate 
measurements of X-ray diffraction intensities in the first place. This is certainly 
true in conventional crystallography, as witnessed by its success in the determination 
of atomic structure and bonding. This paper will consider the special problems of 
extending the methods of bulk crystallography to the surface case. No emphasis will 
be placed on sample preparation and its reproducibility, although these are certainly 
important problems (Robinson 1981). The central theme will be structure factor 
determination although many of the results are important in lineshape analysis as 
well. 

Surfaces and interfaces may be considered initially to be ideal two-dimensional (2D) 
objects, consisting of a perfectly Bat monolayer of atoms. Real surfaces sometimes 
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come close to this ideal, but more often involve a certain amount of out-of-plane 
structure, either in the form of vertical displacement or in the form of multilayer 
structures involving a small number of layers. A good example is the W(OOl) surface 
which we discuss throughout this paper. The ideal surface obtained by cutting 
the bulk tungsten crystal is shown in Fig. 1 a. This state happens to be unstable 
and the surface reconstructs at low temperature by lowering its symmetry thereby 
gaining stability. The accepted model before our work, due to Debe and King (1977), 
based on low energy electron diffraction (LEED) results, is shown in Fig. 1 b. The 
reconstruction involves lateral displacements of a single layer. The surface unit cell 
(box) is double the area of the bulk and contains two atoms. 

(a) 

T 0 
ao=3·16A 

l.. 

(b) 

(c) 

Fig. 1. Top views of the atomic positions in the W(OOI) surface: (a) without reconstruction; 
(b) in the model of Debe and King (1977). with pairwise displacements of top layer atoms; and 
(c) in, the model of Altman et al (1988) (see Section 4). where second layer displacements are 
added. 

The diffraction pattern of a 2D object, such as the surface structure of Fig. 1 b, 
is an array· of diffraction 'rods' which are sharp in the two directions parallel to 
the crystal surface and diffuse in the perpendicular direction. If the structure is 
an ideal monolayer, the intensity profiles of the rods will be featureless, continuous 
functions of perpendicular momentum transfer showing only the effects of the atom 
form factor and Debye-Waller (DW) factor. If the structure contains more than one 
reconstructed. layer, or vertical displacements, the 3D effects will·be apparent in the 
form of modulation of the rod profile intensity. The crystallographic 'data' that are 
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then required are the set of rod profiles f hk( I), where h and k are discrete and I is a 
continuous variable. These replace the traditional f hkl• 

For the reconstructed W(OOI) surface in Fig. 1 b, hand k take half-integer values 
because the surface periodicity is doubled. This readily allows measurement of the 
surface in the presence of the bulk crystal because the latter contributes only thermal 
diffuse scattering (TDS) at the fractional order positions. There are, of course, equally 
important contributions of the surface at integer h, k positions, which can also be 
measured provided I is not also an integer (bulk Bragg condition). Here, however, the 
interpretation is more complicated because of the contributions of crystal truncation 
rods (CTR) from the bulk: the abrupt truncation of the crystal broadens the bulk 
Bragg peaks along the perpendicular line. The f hk( I) profiles for h", k integer are 
measured in the same way, but their interpretation requires understanding surface 
and bulk effects simultaneously (Robinson 1986). 

Historically, surface X-ray crystallographic work has used only fractional order 
f hk( I) data. Integer order data have been used to determine registry information 
between a reconstructed layer and its bulk (Feidenhans'l et al. 1987) or as a 
consistency check (Robinson et al. 1988), but these data are customarily ignored 
because of the problem of isolating the CTR and surface structure components. 
Another simplification has also been made in the majority of experimental studies: 
structure factors have usually been measured at or near I = 0 only and the out-of-plane 
information ignored. The fhk numbers are treated as 2D structure factors, yielding 
upon analysis a projection of the surface structure onto the plane. The measurement 
of I = 0 structure factors is relatively well understood; however, difficulties in making 
accurate out-of-plane measurements is one of the main reasons that tills kind of data 
has not been more widely used. This paper first reviews the considerations applicable 
to the accuracy of I = 0 data, then develops the necessary generalisation for fhi I). 
This is illustrated with recent new results for W(OOI) (Altman et aL 1988), which 
depend entirely on the accuracy of out-of-plane data. 

2. In-plane Measurements 

When we measure diffraction from a surface, the sample is usually the face of a 
massive crystal that would block the X-ray beam. If we require the incident and exit 
beams to enter and leave through the prepared face we have the geometry of Fig. 2. 
At small perpendicular momentum transfer (I :::: 0) we have the grazing incidence 
condition shown. The sample face is almost parallel to the diffraction plane and 
both beams make very small angles to it. Using the conventional definitions of the 
symmetric 4-circle diffractometer (Busing and Levy 1967), the sample angle is 8, the 
diffraction angle is 28, and the (small) tilt about an axis bisecting the incident and 
exit beams is X. The tilt X determines the incidence and exit angles, a and ~ (Fig. 2), 
which need to be slightly greater than zero, i.e. 

sina = sin~ = sin X sin 8 . (1) 

When a or ~ is near to ac' the critical angle for total external reflection, X-ray 
refraction takes place and modifies the intensities as discussed by Vineyard (1982). 

For in-plane fhk measurements we need to define the equivalent of an integrated 
intensity (Warren 1969) which is to be analysed as the square of the structure factor. 
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Unfortunately, such a quantity is poorly defined because the dift"raction is dift"use in 
the perpendicular direction. We must necessarily cut off some of the intensity with 
the slits of the diffractometer that define the resolution in the out-of-plane direction. 
This resolution is given by 

?ow L 
Aqy = T D' (2) 

where L is the slit height at distance D and A is the X-ray wavelength. This is one 
of the experimental parameters that appears in the master formula for the integrated 
intensity given below. 

x8-'-' 
Fig. 2. Geometry for observing 
diffraction from the surface of the 
sample (disc) using the standard 4-
circle convention of Busing and 
Levy (1967). Incident and exit 
angles a and fJ are controlled 
by the sample tilt angle X 
(see equation 1). 

Experimentally, integrated intensities are measured with an (.I)-scan in the same 
way as for bulk crystallography: the sample angle is rocked about the diffraction 
condition to obtain a certain total number of counts. Background, measured nearby 
in a similar manner, is then subtracted. The number of counts (above background) 
detected is I hk• Starting from the Thomson scattering formula, it is possible to derive 
the following expression (Robinson 1987, based on Warren 1969): 

APR IF k1 2 , 
Ihk = ~ flsin28 h 

(3) 

where the variables are defined and discussed below. This master equation defines 
the various corrections which relate the surface integrated intensity Ihk to the surface 
structure factor amplitude Fhk: 

(a) ~ contains the incident flux and a number of fundamental constants. Unless 
data are taken on an absolute scale, this will be a scale factor to emerge from 
fitting. 

(b) fl is the angular velocity of the (.I)-scan in degrees per second or related units. 
Sometimes the speed is adjusted from peak to peak to improve statistics. 

(c) sin 28 is the normal Lorentz factor. 
(d) P is the polarisation factor which depends on the source,. with P 

!(1 + cos2 28) for an unpolarised source, P = 1 for a synchrotron radiation 
(SR) source and vertical scattering plane, and P = cos2 28 with a SR source 
and horizontal plane. 
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(e) A is the active surface area of the sample. This correction may depend on 
the scattering angle and sample orientation. Fora small sample bathed in 
the incident beam and fully visible by the detector, the active scattering area 
is the total sample area, i.e. constant. More commonly, however, to avoid 
edge effects and to reduce background, the beams are slit down parallel to the 
plane. If L1 and L2 are the slit widths (1 to 2 mm typically) of the incident 
and diffracted beams and the sample is sufficiently large, then 

A = 4 ~/sin28. (4) 

This is simply a formula for the area of the parallelogram of intersection of 
the two beams defined by the slits. At small 28 the parallelogram can walk 
off the sample edges and a new and more relaxed area correction is needed. 

(t) R refers to the resolution effects mentioned above; here R = Il.qy. 

Of these corrections to the integrated intensity, only the R and A factors should 
be unfamiliar to the 3D crystallographer. The former is usually constant and can be 
ignored for in-plane measurements, while the sin 28 dependence of the latter acts like a 
second Lorentz factor. The procedure implicit in equation (3) has been used in several 
in-plane surface structure determinations with success (Bohr et al. 1985; Feidenhans'l 
et al. 1987; Robinson et al. 1988). Agreement between calculated and observed 
intensities is in the 5-10% range. Almost all of this error is in the reproducibility 
of symmetry equivalent reflections and may be attributed to sample inhomogeneities. 
Systematic discrepancies that might indicate absent correction factors are not seen. 

3. Out-or-plane Measurements 

We now wish to generalise the results of the previous section to handle the collection 
of intensity data for the case of nonzero perpendicular momentum transfer. Relatively 
few attempts have been made to obtain this kind of data (Robinson 1983; Feidenhans'l 
et al .. 1987) and the question of intensity corrections has not been addressed before. 
We will limit the discussion to the 4-circle diffraction geometry of Fig. 2 in which 
the detector remains in the scattering plane and the sample is inclined· by means of 
the diffractometer angle X. Feidenhans'l et al. (1987) used a geometry in which the 
. sample remains flat and the detector moves out-of-plane; the corrections there will be 
different. 

We resolve the momentum transfer q, that spans the reciprocal lattice, into 
components (q II' ql) parallel and perpendicular to the surface. The diffractometer 
angles are then given by (Busing and Levy 1967) 

2 2; sin 8 = (qfI + ~)! , tanx = 'lL/qll . (5,6) 

The crystallographic transformation from lattice indices hkl to momentum transfer 
is made in the usual way. For example in the W(OOI) case of Fig. 1, we have 

2'71",2 2 ! 
qll = -(n-+k )2, 

~ 

where Do is the cubic lattice constant (3 ·16 A). 

2'71" 
'lL=-I, 

~ 
(7a, b) 
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Considering one by one the various factors of equation (3), we find changes 
necessary only in A and R to include the out-of-plane corrections. The former is 
easy to visualise, being the illuminated sample area that is in line of sight with the 
detector, as before. For the small beam, large sample case, we have 

A'= ~~ , 
sin 20 cos X 

(8) 

where the extra cos X accounts for the elongation of the illuminated spot due to tilting 
the sample. If the beam size in the out-of-plane direction is not sufficiently tall, the 
signal will be cut off and equation (8) will have to be modified. 

Path of 
I ., / • resolution 

function 

Scattering plane 

qll 

Fig. 3. Model of the trajectory of the resolution function (ellipse) as it passes a rod of surface 
diffraction on a radial (8-28) scan, parallel to the total momentum transfer q. Here ~IJR, ~qV 
and ~qT are the dimensions of the resolution ellipse along the principal axis directions of the 
diffractometer, which are aligned with the page; qv and qR refer to the sample coordinate frame; 
Wo is the finite-size width of the rod. 

Harder to see, however, are the effects of the resolution function, previously 
accounted for in the trivial factor of equation (2). There, R = A fJv represents the 
length of rod that is integrated in the (.I)-scan. When the rod tilts by an angle X, 
it becomes misaligned with the resolution function and intensity is lost. This can 
be a dramatic effect when the resolution function is very long and thin as in a 
high-resolution diffractometer (Robinson 1985). We are going to approximate the 
resolution function in Fig. 3 by an ellipsoid of (reciprocal space) dimensions Aqv 
perpendicular to the scattering plane, AqR parallel to the scattering plane in the 
radial direction (parallel to q) and AqT in the in-plane, transverse direction. We 
note that the surface plane is inclined at angle X with respect to the scattering plane 
(Fig. 3). Here AqR and AqT are usually made small to obtain high resolution and 
good signal-to-background for sharp peaks. Typical values are 5 x 10-4 A -1 for a 
Si(lll) resolution instrument, or 3 x 10-2 A -1 for graphite resolution. In equation 
(2), Aqy is degraded deliberately to augment the signal rates (see equation 3) and is 
typically chosen to be 10- 1 A -1. 

Fig. 3 shows what happens when a radial (0-29) scan is made through a rod 
tilted by angle X. The observed width w is given by the convolution of the gaussian 
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resolution function (of widths I1qR and I1qv) with a tilted line: 

w = _1_ (l1qi cos2 X +l1iv sin2 X)t . 
cos X 

If the finite width of the rod 1lb is included as well, this adds in quadrature as 

, 1.2 2 2 2 . 2 ! 
W = -- (Wi) +l1qR cos X +l1qvsm X)2. 

cos X 

365 

(9) 

(10) 

It is clear how rapidly this changes, even for modest values of X, since 11 qv is so 
much bigger than I1qR' 

Now we can calculate the effects of this on the integrated intensity obtained in an 
{.t)-scan: The resolution function passes perpendicular to the page in Fig. 3 and gives 
an intensity proportional to the length of its intersection with the tilted rod. The 
general result, including the effects of the finite rod width, is 

R' = I1fJR I1qy 
(wij + 11 rl cos2 X + 11 q~ sin2 X)t 

(11) 

In practice, the resolution parameters must be evaluated carefully to make this 
correction. A good consistency check is to verify the predictions of equation (10) 
first, as we demonstrate in the next section. 

4. Application to the W(OOl) Surface 

A full account of the crystallographic analysis ofthis surface has appeared elsewhere 
(Altman et al. 1988). The surface was prepared by heating a crystal to 2400 K 
in 10- 10 Torr vacuum (1 Torr == 133 Pa) in a special enclosure that mounts on a 
4-circle diffractometer. Integrated intensities of the (i, i, I), (!,!, I), (i,!, /) and 
(!, ~,I) rods of diffraction were measured in the range 0 < 1< 1· 5 (approx.) to 
study multilayer reconstruction effects. A 60 kW rotating anode source was used 
with a graphite monochromator and analyser. A maximum of 14 counts per second 
above background was seen in the surface peaks. A preliminary analysis of the 
data (Robinson et al. 1987) showed good agreement with the model of Fig. 1 c with 
displacements in two layers instead of one. A puzzling result was that the DW 
factor was very anisotropic, being ten times bigger perpendicular to the surface plane 
than within it. The Bl value of 4 A 2 was unrealistically large for purely vibrational 
motion. We now consider this value to be spurious because we had not appreciated 
the importance of the R' correction (equation 11). 

The radial linewidths of three of the surface diffraction rods are plotted in Fig. 4 
as a function of tilt angle X, defined by equation (6). Also shown is a fit to equation 
(10) showing good agreement. The value of I1qR = 0·0122 reciprocal lattice units 
(1 rIu == 1· 99 A -1) was known from the widths of bulk peaks. The fit values of 
1lb = 0·0150 rIu and I1qv = 0·043 rIu were obtained. When these numbers were 
used to correct the intensity data according to equations (11) and (3) the need for a 
large Bl disappeared (Altman et al. 1988) indicating the improvement. An isotropic 
B of 0·2 +0·3 A 2 then described the data very well. 

In conclusion, we have derived out-of-plane corrections to the intensity correction 
formula appropriate for surface X-ray crystallography, where the diffuse nature of the 
peaks affects the problem in a fundamental way. We have shown these to be valid for 
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Fig. 4. Measured radial widths of surface diffraction rods for W(OOI) 
as a function of tilt angle x. The fit is equation (10). 

W(OOI) data. The new resolution correction (equation II) is important with graphite 
resolution, but will be ten times more so for high-resolution instruments, such as 
commonly found at SR facilities. It may become necessary to measure surface 
dift'raction intensities with both radial and Crl-scans to make reliable integrations. This 
need is even more pressing when additional sources of error such as surface miscut 
or sample misorientation are considered. 
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