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Abstract 

The extinguished reflectivity curve of a Bragg single crystal reflection represents the basic 
experimental evidence for the determination of accurate structure factors. In normal measurement 
procedures of one-dimensional (ID) 'counter' profiles, information on such curves is obscured by 
the presence of other, more dominant components. It is therefore difficult to separate out these 
curves so that a realistic correction for extinction can be applied. By considering the 'shape' of 
a Bragg reflection in the plane of diffraction from the ~w, ~2e viewpoint, procedures have been 
deduced for practical zero wavelength dispersion measurement of reflectivity curves for virtually 
any e value and, with these curves, corrections can be applied to produce extinction-free structure 
factor values. Attention is drawn to the fact that the width of the experimental reflectivity curve 
(say at half maximum) can provide a valuable criterion to assist in attaining the 'kinematical 
limit'. 

1. Introduction 

'Imperfect' crystals constitute the majority of single crystals obtained in Nature or 
from chemical syntheses. It is therefore for this class that the majority of diffraction 
studies continue to be applied and, since dynamical procedures involving fringe 
measurement are not useable on such specimens, it is for this class that there is a need 
to derive structure factor values by measurement of intensity distribution diffracted 
by single crystal reflections. Despite this situation, exploration of the nature of 
Bragg reflections in more than one dimension to learn about the components which 
contribute to the intensity distribution of the reflection has received relatively limited 
attention. This is despite the increased potential for such investigations offered by 
position-sensitive detectors (PSD). So far, such detectors have been used simply to 
collect more data, more rapidly, from more specimens. 

The exploration of the subject of imperfect crystals initiated by Darwin, Bragg 
and colleagues (e.g. Darwin 1922; Bragg et al. 1921 a, 1921 b, 1926) has not really 
changed greatly in respect of experimental measurement. The focus has been on 
the estimation of integrated intensity-which necessarily includes all the components 
of the experimental set-up. Although it was realised by Robinson (1933) that one 
should determine the reflectivity curve and apply point-by-point corrections to derive 
an extinction-free result (see Fig. 1), it was not fully appreciated how much the true 
intrinsic reflectivity curve was smeared out and obscured by the other components. 

• Paper presented at the International Symposium on Accuracy in Structure Factor Measurement, 
held at Warburton, Australia, 23-26 August 1987. 
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It is only relatively recently that there has been more concern with determining this 
primary evidence, stimulated in particular by the work with 'Y-rays (see e.g. Schneider 
1976). 
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Fig. 1. Representation of a measured 
reflectivity curve (full) and its 
equivalent, corrected for extinction 
(dashed curve). [From Robinson 
(1933).] 

An important aspect of dealing with reflectivity curves is to arrive at experimental 
estimates of structure factors without undue dependence on theoretical estimates. 
This approach is needed to authenticate unexpected deformation density results, such 
as those of Dunitz and coworkers (e.g. Dunitz and Seiler 1983; Dunitz et al. 1983). 
Theoretical estimates of structure factors are inevitably based on certain assumptions 
concerning bonding electron density and so, because of this dependence, we can find 
ourselves unable to sort out the physical realities. 

2. Relevance of Dealing in 4Ct1, 428 Space 

Generally, measurements are carried out not on one but many Bragg reflections 
distributed throughout diffraction space and it is necessary to treat these on a consistent 
basis. To navigate from one reflection to another, we use the concept of reciprocal 
space. However, when we dock onto a specific reflection, our aim is to carry out 
measurements of the intensity distribution around this reflection in such a way that 
we can make as direct a comparison as possible with the measurements on the other 
reflections and hence extract the information relevant to an accurate estimate of a 
structure factor. 

The intensity distribution of a Bragg reflection arises from the convolution of 
the distributions of the various components which contribute-(say) source, the 
dispersions of the monochromator crystal (if included) and of the specimen crystal, the 
mosaic spreads of these two crystals, the distances between source/monochromator, 
crystal/detector, etc. For consistency from reflection to reflection, we need to use 
exactly the same limits for each component and we wish to extract the reflectivity 
curve but, in general, exclude the supernumerary information in the other components. 

For such measurements, there is a problem in dealing in reciprocal space, in 
that most of the components alter in scale as one moves further from the origin 
of reciprocal space. If, however, we deal in angular aCtl, a28 space then, for most 
components, it is unnecessary to apply a scale factor to facilitate comparison. It is 
instructive to compare (i) a low-angle and (ii) a high-angle reflection in reciprocal 
space and in aCtl, a28 space, as in Fig. 2. In reciprocal space (Figs 2a -and 2b), the 
dimensions of the components all change with 8, being proportional to d* with a tan8 
scale expansion for the wavelength band component. In addition, the relative 
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Fig. 2. Comparison of (i) low-8 and (ii) high-8 reflections: (a) Ewald-circle 
construction for diffraction at a point P associated with a vector d* in 
reciprocal space. The angular variables 6CJl, 628 and the components p., CT, A 
are identified. (b) Enlarged scale diagrams of the details around points P 
in (a) showing how, in reciprocal space, the components p., CT, A change both 
their size and mutual disposition with a change in 8. (c) Relationships 
between the components p., CT, A and the angular variables in 6CJl, 628 space. 
The invariance of the mutual disposition of the components p., CT, A and the 
angular variables 6CJl, 628 is demonstrated as is the dimensionality of the 
components p., CT. The only component varying intrinsically with 8 is A, 
whose length is proportional to tan8. 
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dispositions ofthe component loci change with 8. By contrast, when we view the local 
diWraction space adjacent to the Bragg reflection in terms of angular measure t:..{J), t:..28 
(Fig. 2c), then the mosaic spread of the specimen crystal, the source distribution and 
the measurement across the detector t:..28 do not change with 8, nor does the relative 
disposition of the loci of these components. Only one item changes systematically 
with 8, namely that of the wavelength band and that is in a well-established way. 

So, for ease of comparison of reflections at different scattering angles, and for ease of 
detection of minor differences between them, there are obvious advantages in dealing 
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Fig_ 3. (0) Conventional experimental arrangement with the main length of 
the X-ray source Sl in the plane of diffraction and where S2' of width hand 
height v, corresponds to the effective source as seen by the specimen crystal 
C. The aperture system in front of the (scintillation) detector is narrow in the 
diffraction plane and elongated perpendicular to it. The intensity distribution 
/(Ilw, 1l26) of a Bragg reftection with local reference axes Ilw, 1l26, p is 
indicated in relation to the diffractometer plane. (b) The corresponding 
measured intensity distribution projected down p. 

in terms of local angular measure-the specimen local angular movement aCJ) and 
the detector angular dimension a2(J. With the resultant 2D array of measurements 
(data points), one can carry out appropriate affine transformations (Mathieson and 
Stevenson 1985) so that components can be more readily recognised, appreciated and 
measured. 

3. Intrinsic Reflectivity Curve 

Most of the components involved in determining the shape of a Bragg reflection are 
there only to supply measurable intensity and, in a sense, need to be discarded 
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Fig. 4. (a) Experimental arrangement with the main length of the X-ray 
source Sl perpendicular to the plane of diffraction and where S2, of width 
h and height v, corresponds to the effective source as seen by the specimen 
crystal C. The aperture system in front of the detector is narrow in the 
diffraction plane and sufficiently elongated perpendicular to it to collect the 
total height of the signal. The intensity distribution [(aw, a28, p) of a Bragg 
reflection, with local reference axes aw, a28, p, is indicated in relation to 
the diffraction plane. (b) The corresponding measured intensity distribution 
projected down p. 
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or, at least, have their effect minimised in order to extract the essential information 
contained in the experimental reflectivity curve. However, we must be able to establish 
and use the same truncation limits for all components of all reflections if we are to 
achieve exactly comparable estimates for all reflections. Again, from this viewpoint, 
dealing in aCd, a2(} space is advantageous. 

Ideally, we should aim for measurement procedures where we can recognise the 
wavelength component and separate it from the reflectivity curve or devise procedures 
where the wavelength dispersion makes zero contribution. 
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4. Zero Wavelength Dispersion 

In classical terms, only one procedure is available to provide a measured reflectivity 
curve which is essentially free of the wavelength component (see Compton and Allison 
1935). With a two-crystal system (first crystal M and second C), where the rotation 
axes of the two crystals are parallel and the measurements are carried out in the 
so-called 'parallel' configuration, the 'counter' profile measurement of the second 
crystal yields its reflectivity curve. The zero wavelength dispersion (ZWO) reflectivity 
curve can only be determined for one Bragg reflection, i.e. when Oc = OM' Away 
from that setting, the wavelength dispersion component makes a contribution which 
convolutes with the reflectivity curve. So the classical procedure is highly selective 
and severely limited in its application. 

To explore whether there are alternative and more general approaches, let us 
consider measurements on a small single crystal in aw, a20 space. One particular 
problem is that, under normal circumstances, we are involved with too many 
components. Some, of no great relevance to our purpose, make too gross a 
contribution and swamp the reflectivity curve, even in the 20 presentation. As 
shown in Fig. 3 a, we have a standard squarish source which dominates the overall 
distribution of Fig. 3 b, so that it is difficult to extract sufficiently detailed information 
on the mosaic distribution,." (= reflectivity curve) and the wavelength distribution 
A. 

If, however, we use a different source, 'tall and narrow', as in Fig. 4a, its angular 
contribution in the diffraction plane is small but its out-of-plane shape matches that 
of the detector aperture so, overall, measurable intensity is not lost. With this set-up, 
the effective source component is much reduced in its dimension (Fig. 4b). Also, 
since there are only two dominant functions in this 20 presentation, ,." and A, one can 
readily sort out one from the other. We are mainly interested in the,." distribution, 
but can utilise the A distribution to check on the general smearing effect by comparing 
with the known distribution for the characteristic or selected wavelength band (in the 
case of synchrotron radiation). Since the source distribution is small relative to the 
reflectivity curve, it can be removed by deconvolution.· 

The measurement procedure detailed above (see Mathieson and Stevenson 1984) 
does, of course, require 20 data collection from which one can extract information 
concerning,." and A. The reflectivity curve is intrinsically 10'for anyone reflection 
in a certain orientation about its pole so one may ask whether, using the aw, a20 
viewpoint, one can arrive at an essentially 10 procedure which would have ZWO 
across the full range of O. 

We consider the 'film' 10 profile 

fa"'2 

I(a20(2» = I(aw, a2o(2» d(aw) , 
a,., I 

(1) 

which involves integration parallel to aw while operating in the wl20 scan mode 
(Mathieson and Stevenson 1986a). Fig. 5 shows (a) a low-angle and (b) a high-angle 
case using synthetic distributions for the individual components. The aw, a20(2) 
distributions are shown and the 'film' profiles corresponding to integration vertically 

• One may note that the combination of a tall and narrow source and a small crystal can have 
angular divergence which, for appropriate distances, is comparable with that available from a 
synchrotron source. 
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Fig. 5. Synthetic distributions presented in the wl28 scan mode, i.e. I(l1w, 1120(2»), for (a) 
low-angle reflection and (b) a high-angle reflection with the resultant 10 'film' profile below the 
respective 20 distribution. [Note that (b) is half the scale of (a).] 

appear below the respective 20 distributions. The 10 'film' profiles do not involve 
the A component, and hence are ZWO. They are directly comparable without scalar 
change despite the gross change in angular dispersion of the wavelength component, 
which is about 10: 1 in the case shown. This procedure is applicable, using the 
w/2() scan mode, for non-monochromator and monochromator situations and has no 
restrictions in respect of (). Its suitability for PSO application is evident. 

The second possible procedure which can be derived from examination of the 
situation in aw, a2() space relates to the following 'counter' 10 profile (note that in 
a non-monochromator case, there is no means of eliminating the A dispersion from 
the 'counter' profile for general (): 

f<l29<O) 

I(aw) = 2 I(aw, a2()(O» d(a2()(O». 
<l29~O) 

(2) 

This is applicable, as in the classical case, only to a two-crystal situation, i.e. involving 
a monochromator crystal and a small specimen crystal. However, it does involve 
additional complexity over the classical situation, in that it requires the flexibility 
of a five.circle system since the specimen crystal four-circle diffractometer must be 
capable of rotating in a cradle about the beam diffracted from the monochromator 
crystal. 
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With this arrangement, which has been treated in detail elsewhere (see Mathieson 
1987), it is possible to carry out a ZWD measurement over the range from 8e = 0 
to 8 M , It thus expands the capability of the classical procedure. In this arrangement, 
use of a high 8 M monochromator would be advantageous. 

5. 'Kinematical Limit' 

The procedures outlined above can yield measures of extinguished reflectivity 
curves after deconvolution to allow for the source component. We should note that, 
although monochromated synchrotron sources do have a small wavelength band, 
its contributions cannot simply be ignored (Mathieson 1988) and use of a ZWD 
procedure or appropriate correction for the A component is advisable. 

When one obtains a well-defined ZWD reflectivity curve for a single reflection, one 
can use power-transfer relationships as a first approximation to apply point-by-point 
corrections (cf. Schneider 1977; Mackenzie and Mathieson 1979). With this approach, 
one has no absolute check as to how far the corrected curve has to be raised to attain 
the zero-extinction limit. When one obtains reflectivity curves for a set of Bragg 
reflections, then one is in a rather more powerful position in that the correction for 
a given reflectivity should be applicable to all reflections, i.e. a universal correction 
procedure is used for that particular set-up. However, we have no criterion to check 
whether the correction used is adequate, too small or too large. 

Let us remind ourselves of the situation in 1926. Bragg et al. (1926), in dealing 
with the 'kinematical limit', observed that it represented an upper limit of integrated 
intensity. The difficulty was that they had no guideline to establish how far the 
measured extinguished value for a given reflection lay below the limit, nor how far 
it had to be lifted to reach the upper limit for that reflection. So, it was at that 
point, regrettably, that they proposed reliance on the theoretical structure factors to 
establish how far below the limit they were. By implication they assumed (and it 
may have been true then) that the theoretical values, crude as they were at that time, 
were more significant, i.e. more accurate, than the experimental values. We have 
tended to follow this lead for some 60 years. The basic problem, then and for long 
afterwards, was that there was no other test--except for very limited measurements 
on reflectivity curves of rather scarce 'perfect' crystals. 

We can now see that if we turn from integrated intensity-which in terms of 
measurement is zero-dimensional although formally it has the dimension of angle--to 
the reflectivity curve, we obtain valuable additional information in terms of its shape 
and we can use this extra information. The point is that the 'shape' of the reflectivity 
curve is differentially modified by the operation of extinction; it becomes wider at 
(say) the half maximum level. So, here we have an experimental criterion concerning 
the 'kinematical limit' whose trend is opposite to that of the extinguished integrated 
intensity. In other words, this provides a criterion which has a defined lower limit 
as one moves to zero reflectivity. 

Each point in a reflectivity curve is extinguished and has to be corrected upwards; 
however, only so that the width of the reflection at half maximum does not go beyond 
the limit set by the weak reflections. We can illustrate this point with some recent 
results by Schulz and coworkers (HOche et al. 1986), where the data on width at half 
maximum were collected on the synchrotron DESY. Fig. 6a shows the results for a 
CaF2 crystal of size 90 J.Lm at A = 1· 714 A. The more intense reflections are 



Single Crystal Reftectivity Curves 401 

20 

f 
220 .i f 

331 
f 
", f 

16 

311 

12 

I- 200 

~ 
(0) 

o 10 20 30 40 

I-

111 
220 

·1 

I f 
8 

I~ 
a 

"" ..,"'" '111 !Xl 

~ 
200 

222 420 "0 533 

1;; 41-
~ 
ii [ , 

(b) 

0 10 20 30 40 

(c) 
, , , , , 

o 10 20 30 40 

Bragg angle (deg.) 

Fig. 6. Measured values of width at half maximum (a) for a 90 p.m CaF 2 crystal at A = 1· 714 A, 
(b) for the 90 p.m CaF2 crystal at A = 0·917 A and (c) for a 6 p.m CaF2 crystal at A = 0·917 A. 
Note that for (c) the experimental set-up from which these results were derived involved 'crossed' 
crystals and so differed from the set-up relating to (a) and (b). 
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significantly wider. When the wavelength is reduced to 0·917 A (Fig. 6b), the values 
fall more closely together with the more intense reflections still high. With a 6 ,."m 
crystal (Fig. 6 c), the differences are much reduced. Even so, I would conjecture 
that close inspection of the shapes of individual reflections, rather than averaging 
equivalents, might yield significant differences.· 

It is evident that, to establish reflectivity curves of sufficient precision to use for 
this purpose, angular displacements will need to be established to the order of 0 . 00 1 ° 
or even 0·0005°. Given that such reflectivity curves can be obtained, corrected, and 
tested against width at half maximum, then there seems every reason to expect that 
we can indeed achieve for X-rays of conventional wavelengths what Darwin hoped 
for in the early 1920s and what Robinson sought to achieve in 1933. 
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• Equivalent reflections need not have identical reflectivity curves, unless the extinction effects 
are isotropic (see Mathieson and Stevenson 1986 b). Further, as observed above, even with 
synchrotron sources, wavelength dispersion makes itself felt. 


