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Abstract 

Unless special precautions are taken, the experimental determination of two-beam structure 
factors to better than 1 % may include contributions from neighbouring n-beam interactions. In 
any particular experimental configuration, corrections for such contributions are easily carried out 
using the modified two-beam structure factor formalism developed recently (Juretschke 1984), 
once the full indexing of the pertinent n-beam interactions is known. The method is illustrated 
for both weak and strong primary reflections and its applicability in special cases, as well as for 
less than perfect crystals, is discussed. 

1. Introduction 

The determination of two-beam X-ray structure factors relies on the possibility of 
establishing, by suitable choice of wavelength and azimuthal angle, a region free of 
multiple-beam interactions around the primary reflection under study (e.g. Mills and 
Batterman 1980). Traditionally, this condition has been assumed to be met if, for 
example, neighbouring n-beam interactions are of the order of a degree away, because 
the range of such interactions has generally been taken to be at most a few seconds of 
arc. While this is certainly true for a measure such as their half-width, this criterion 
has to be reconsidered in precision determinations of structure factors where the tails 
of these interactions may still playa role at angular distances of the order of degrees. 

This paper calls attention to a simple procedure for evaluating the level of influence 
of such neighbouring multiple-beam interactions within a measured two-beam structure 
factor, for any given experimental configuration. The procedure follows from the 
solution of the standard two-beam X-ray problem when neighbouring weak excitations 
are taken into account as a perturbation. The corresponding approach in electron 
diffraction is of long standing, where it is characterised by the Bethe potentials, but 
only recently has the method been generalised systematically and explicitly for vector 
waves. This generalisation can deal with the different polarisations of X-rays, and 
includes both changes in the structure factor and changes in extinction brought about 
by such interactions. 
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As shown below, for weak structure factors these corrections are absolutely 
essential, because they can easily produce changes in integrated intensity of the order 
of 100%. Similarly, for strong structure factors it is difficult to keep their influenCe 
below the 10-3 level. Therefore, any structure factor determinations aiming at such 
accuracy must address an evaluation of these corrections to insure that they do not 
contribute a significant systematic error. The need for such correction procedures has 
been voiced over the years (e.g. Wagenfeld 1972), although only the recent advent of 
precision experimentation has made it unavoidable. 

The correction procedures follow from a dynamical treatment for perfect crystals, 
but they apply to imperfect crystals as well, since many of the same results are also 
contained in a kinematical approach. 

2. Theoretical Background 

The perturbation treatment of the dynamical two-beam problem for X-rays was 
developed independently about five years ago by H9Iier and Marthinsen (1983) and 
by Juretschke (1982, 1984). Its method and its results are summarised here using 
the notation of Juretschke, keeping in mind that there exist fully corresponding 
expressions in H9Iier and Marthinsen. 

Both formulations start with a primary reflection OB, with a third reciprocal lattice 
point L far from the Ewald sphere. In terms of the excitation errors ~o, ~H' ~L of 
the three-beam problem, this condition is expressed by 

~L > ~o' ~H· (1) 

Because of (1), ~L is not a truly dynamical variable, but becomes a parameter in 
the three-beam problem. One can then seek solutions of the remaining (two-beam) 
dynamical problem involving ~o and ~H in a power expansion of l/~L' with the 
coefficients in the expansion involving the additional structure factors F L and 
F H-L. To order l/~L such solutions can be described most succinctly as a simple 
transformation of the original two-beam dispersion surface to a new modified or 
effective two-beam dispersion surface. The structure factor, measuring the midpoint 
separation of the dispersion surface sheets, moves from FH (PF H for ,"-polarisation) 
to the value 

CT krH1 
F HL = FH - -1:- FL FIrB' 

2':oL. 

krH6 
FHL = P FH - -- FL FIrB' 

2~L 
(2a, b) 

where P=cos28B, and H1 and H6 are geometrical factors related to polarisation 
projections. These are defined in both the original sources mentioned above. 

The corresponding excitation errors also shift from their original ~o' ~H to 

CT (kri 
~o = ~O---H1 FLFLo 

4~L 

11 (kri 
~o = ~O---H4FLFL' 

4~L 

(kri 
~H = ~H- 4~L H1 F~HFIrB' (3a, b) 

11 (kri 
~H = ~H--I:- Hs F~HF~Ii' (3c, d) 

4':oL 

indicative of shifts of the Lorentz point, i.e. the centre between the sheets of the 
dispersion surface. This implies a change in the average value of the index of 
refraction. It is different for the two polarisations. 
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In terms of (2) and (3), the transformation has completely reduced the approximate 
three-beam problem to a standard two-beam case. Hence, the entire arsenal of the 
two-beam literature can now be applied to treat the primary OH diffraction in the 
presence of L. Conversely, experimental results must be interpreted as referring to 
the parameters of the modified or effective two-beam case . 
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Fig. 1. Experimental Renninger chart for Ge 222/ L, eu Ka. [From Nicolosi (1982).] 
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Fig. 2. Theoretically predicted Renninger chart for the four peaks of Fig. 1 using the modified 
two-beam approximation. The integrated intensity for unpolarised incident radiation is normalised 
to the pure 222 intensity for u-polarisation. The dashed line is the level expected in the absence 
of all n-beam interactions. 
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Two additional comments are in order: (a) some of the limitations of the above 
conclusions were discussed by Juretschke (1984), and cases requiring special treatment 
were also taken up (Juretschke 1986a, 1986b); (b) the transformation to a modified 
two-beam case can actually be extended to second order in l/~L under appropriate 
conditions (Juretschke 1986c), although this is only of interest if the separation 
between n-beam points becomes small. 

Finally, the generalisation of (2) and (3) to include more than one additional 
reciprocal lattice point near the Ewald sphere is straightforward. To order l/~L these 
effects are simply additive so that, for example, the modified structure factor in such 
a situation becomes 

U kFnf krnf 
FHLM ... =FH- 2~L FLFL-fl- 2~M FMFSl-fl-···· (4) 

Thus, a six-beam case is merely the superposition of four three-beam cases. 

3. Illustrative Examples 

We illustrate the effect of n-beam interactions with two examples, one dealing with 
a weak, the other with a strong primary reflection. 

(a) Ge(222) for Cu Ka 

This case has been discussed extensively by Juretschke (1984, 1986a), and the 
figures above are adapted from the first reference. The Renninger scan shown in 
Fig. 1 exemplifies the difficulty of finding a region between interaction peaks that 
can be identified with the true F 222. While the integrated intensity may remain 
constant over a given range of azimuthal angles, this constant value is not the same 
between different neighbouring peaks. On the other hand, the theoretical prediction 
of the modified two-beam method shown in Fig. 2 is capable of giving a quite faithful 
reproduction of the experimental data. In this case it includes five interaction peaks 
L, the four of Fig. 1 plus the image 351 of the point L = 711 beyond ~ = 30°. In 
principle, therefore, it is possible to correct the measured intensity between peaks 
by calculating the contribution of the neighbouring peaks. As shown in Table 1, 
though, it is not sufficient to just consider nearest neighbours. The net effect is a 
sum of contributions of both signs, and even the occurrence of a true two-beam 
structure factor in some angular region of Fig. 1 may, in fact, be due to the accidental 
cancellation of such terms. Obviously, a systematic correction can be carried out only 
if all possible multiple interaction points, as shown on a Renninger chart, are properly 
known and indexed, so that they can be included in equation (4). Indeed, from this 
point of view, the entry for the total 6.F at ~ =30° shown in Table 1 is deficient. 
It takes into account only the five interaction peaks listed. But since ~ = 30° is a 
mirror plane, there should be four additional contributions besides L = 351 from 
beyond the mirror. If they are taken into account we obtain twice the sum of the 
first four interactions, to give 6.Fu = 0 and 6.F7T = 0·010. A similar deficiency is 
probably present at the other extreme of the angular range, ~ = 21°. Therefore, at 
these extremes there remain additional corrections to the theoretical curve shown in 
Fig. 2. 

Exactly the same correction technique has recently been applied by Shen (1986) in 
describing the weak Si 442/111 reflection, using eight interaction peaks. 
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Table 1. Contributions to structure factor F 222 from neighbouring n-beam interactions L, at 
selected angles <I> of Fig. 2 between the n-beam peaks 

For each value of <I> the first and second rows give the U' and 7T polarisations respectively 

<I> L Total 
(deg.) 30 111 133 711 351 llF 

21 0·013 -0·035 0·001 0·006 -0·004 -0·019 
0·008 -0·028 0·003 0·003 -0·002 -0·016 

23 -0·020 -0·079 0·001 0·009 -0·005 -0·094 
-0·012 -0·063 0·005 0·004 -0·002 -0·068 

26 -0·004 0·091 0·010 0·024 -0·007 0·114 
-0·003 0·071 0·037 0·010 -0·003 0·112 

27 -0·003 0·053 -0·010 0·054 -0·008 0·086 
-0·002 0·038 -0·037 0·022 -0·003 0·018 

30 -0·002 0·023 -0·001 -0·020 -0·020 -0·020 
-0·001 0·019 -0·005 -0·008 -0·008 -0·003 

(b) Si(12120) for Ag Ka 

This example was chosen to explore the possible influence of multiple interactions 
in the recent high precision measurements by Deutsch and Hart (1985). Since no 
azimuthal position was reported in this work, we selected two particular regions of </>. 
The first is around the azimuthal point of (12 66), which would be encountered if the 
crystal is cut relative to a common growth direction. The second is the most extensive 
angular range free of significant multiple peaks. The results for both polarisations are 
shown in Table 2, where the influence of all the neighbouring interaction points listed 
is included to find the relative change of the structure factors for points in between. 
In the first region, it appears that the effects can be sufficiently large, depending 
critically on the precise azimuthal angle chosen, to have to be taken into account at 
the 0·1 % level of accuracy. In the second region, the effects stay below 5x 10-4, so 
that their influence at this level will be margina1. While (in the absence of a known 
</» not having a direct bearing on the reported results, Table 2 clearly illustrates 
the desirability of having a record of the azimuth, or of all (well-indexed) multiple 
interactions in the neighbourhood of the chosen scattering plane in all high accuracy 
experiments, so that an assessment of their influence can be carried out. 

The question has been raised of how the correction effect of multiple interactions 
scales with wavelength. A first order argument may go as follows: The product 
kr/~L varies as ')..2, while the number of interaction points goes like 11')..2, so that 
at best, the effect is independent of ')... However, since contributions of both signs 
are more and more equally likely, their cancellation will be more complete at shorter 
wavelengths, so that there the net correction should become less important (see e.g. 
Graf and Schneider 1986). In any case, it would probably still be prudent to verify 
this conclusion by a detailed evaluation of the corrections as they apply to the specific 
experimental configuration at hand. 

4. Discussion 

These illustrations exemplify both the need for assessing the influence of 
neighbouring multiple-beam interactions and the ease, via (4), with which a quantitative 
measure of this influence can be calculated, once a full and consistent indexing of the 
pertinent reciprocal lattice points is known. 
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Table 2. Relative changes of F 12 12 0 for Si Ag Ka due to neighbouring interactions L in two 
ranges of cjl 

All interactions L shown are included with their weight proper to all equivalent three-beam 
points as indicated 

cjl (IJ.F/ F)u L (IJ.F/ F)1T cjl (IJ.F/ F)u L (IJ.F/ F)1T 
(deg.) (xlO- 4) (xl0-4) (deg.) (xl0- 4) (x 10-4) 

34·46 2(7159) 59·06 2(008) 
34·56 4·4 3·3 59·17 2(195) 
34·66 2·4 1·2 59·40 4·5 6·7 
34·76 1·7 0·4 59·50 3·4 5·2 
34·86 1·3 0·4 59·60 2·7 4·2 
34·97 1(397) 59·70 2·3 3·7 
35·06 -1·4 -7·7 59·80 2·1 3·6 
35·16 -5·4 -13·7 59·90 1·9 3·3 
35·26 4(1260) 60·00 1·8 3·2 
35·36 12·3 17 ·1 60·10 1·9 3·5 
35·46 9·5 10·2 60·20 2·4 4·7 
35·56 8·9 9·3 60·34 2(1220) 
35·67 1(3151) 60·40 2(175) 
35·76 18·8 16·2 60·47 1(75l3) 
35·84 2(313) 60·68 2(31m 
36·30 2(911) 60·71 2(122'2) 

In addition, these examples emphasise that if the experiment uses an unpolarised 
source the traditional polarisation correction is not applicable, and such corrections 
must be done separately for each mode. This is brought out most strongly in those 
cases where the corrections for the two polarisations caused by the same peak have 
opposite sign, which can occur under certain conditions (Juretschke 19860). 

Along the same lines, a further comment is in order. It would appear from (2) 
that if one or the other of the connecting structure factors FL or F L-H vanishes, there 
is no correction whatsoever. This is certainly true as far as F HL is concerned, but the 
shift in the Lorentz point implied in (3) carries with it also a correction of the linear 
absorption coefficient (Juretschke and Wagenfeld 1986), given for u-polarisation in 
centrosymmetric crystals by 

( " kr I " I ") #Lu = kr FO-nl eL (FLFL+FL-HFL-H) . (5) 

Modifications in this term alter any correction of the integrated intensity for primary 
extinction (Juretschke 1986b). In most situations, this adjustment may be negligible 
but, in any case, it can easily be taken into account using (5) for any specific 
experimental configuration. 

Finally, one may ask about the extent of the usefulness ofthe proposed corrections, 
derived essentially from dynamical theory for perfect crystals, when dealing with 
realistically less than perfect materials. While a complete answer is not yet available, 
two recent studies suggest that the modifications discussed here can be incorporated 
directly into the typical averaging procedures used to interpret di1fraction from 
mosaic structures. In other words, the modified structure factors (2) and absorption 
coefficients (5) truly characterise diffraction near L, and any mosaic structure merely 
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broadens but does not destroy this response. It may, of course, be important to take 
into account that these modified parameters are also functions of the angles over 
which the mosaic spread is to be averaged. 

One study bearing on this conclusion is the recent work by Shen (1986), who 
carried the kinematic response in the presenc~ of L to second order and found 
precisely the same answer as given in (2). [Being purely kinematical it, of course, 
cannot incorporate absorption, and say anything about equation (5).] The other 
study is a generalisation of the modified two-beam approach to include phonons 
(Juretschke 1988). There, it is found explicitly that the same transformed structure 
of the dispersion surface described for perfect crystals above persists fully, and is 
merely broadened by thermal effects characteristic of the primary reflection. In 
the sense that phonons and weak mosaic structure have similar consequences in 
diffraction, the same argument should apply to weakly imperfect crystals. Thus, with 
the corrections having justification both in the kinematical limit, and in the limit of 
weak imperfections in perfect crystals, it is very likely that they apply equally well 
also over the intermediate range of mosaicity. 

This conclusion is further reinforced by the fact that in the closely related problem 
of invariant phase determination using the neighbourhood of multiple-diffraction 
peaks, it has been possible to observe effects due to (2) in highly mosaic crystals 
(Thorkildsen and Mo 1983). More recently Kshevitskii et al. (1985) have shown, by a 
deliberate roughening of a Ge surface, that many of these effects are indeed enhanced 
and broadened when the crystal becomes less than perfect. 

In conclusion, we want to re-emphasise that, apart from many other corrections 
necessary at the O· 1 % level of accuracy of structure factors, those arising from 
neighbouring mUltiple-beam interactions may not be negligible, and that in any 
particular experimental two-beam configuration their influence can be assessed rather 
simply. This, of course, is possible only if the geometry of the two-beam experiment is 
fully embedded in reciprocal space, so that all other interactions are fully indexable. We 
end with a plea that experimental reports on accurate structure factor determination 
should at least provide such indexing information. 
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