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Abstract 

This paper discusses some modem techniques for the calculation of the X-ray dispersion 
corrections and compares the calculated data with experimental data taken near to, and remote 
from, the absorption edges of atoms. 

1. Introduction 

Twenty-five years ago the principal theory describing the scattering of X-ray 
photons by atoms was the nonrelativistic theory developed by Honl (19330, 1933b) 
and extended by Eisenlohr and Muller (1954) and Wagenfeld (1966, 1975). At that 
time few experimental measurements had been made, and the extent of the agreement 
between theory and experiment was poor, as can be seen by reference to James 
(1955). Because of the suggestion by Bijvoet et 01. (1953) that anomalous dispersion 
could be used by crystallographers for the solution of crystal structures, there was 
strong interest in the production of a better theory of X-ray scattering and in the 
development of better techniques for the measurement of the dispersion corrections. 

The advent of the X-ray interferometer (Bonse and Hart 1965, 1966) and its use 
for the measurement of the X-ray refractive index (and hence the real part of the 
dispersion correction) by a number of authors (Bonse and Hellkotter 1969; Creagh 
1970; Creagh and Hart 1970) gave a real impetus tQ the understanding of photon 
scattering. 

With the development of a relativistic dipole theory of X-ray scattering (RDP) by 
Cromer and Liberman (1970) crystallographers had access, for the first time, to a 
self-consistent modem theory of photon scattering. Their tabulations of both the real 
part f' and the imaginary part /" of the dispersion corrections have been actively 
used (with revisions by Cromer and Liberman in 1981 and 1983) for the last 17 years, 
and are still used as benchmark data by theoreticians and experimentalists alike. 
Their results for /" were in accord with the relativistic Hartree-Fock-Dirac-Slater 
calculations of Storm and Israel (1970) and the relativistic Hartree-Fock calculations 
of Scofield (1973). 

• Paper presented at the International Symposium on Accuracy in Structure Factor Measurement, 
held at Warburton. Australia, 23-26 August 1987. 
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The development of both theoretical and experimental techniques for the 
determination of the dispersion corrections has been outlined by Gavrila (1981) 
and Creagh (1986). The use of the dispersion corrections to enhance the measurement 
of a wide range of physical systems has been described recently by Creagh (1987 b). 

Rather than re-iterate the information given in those review articles, I want to 
discuss developments in both theory and experiment which have occurred in the past 
decade comparing the predictions of two theories [the S-matrix approach of Kissel et 
al. (1980) and the relativistic multipole with retardation approach (RMP) suggested 
by Creagh (1984) and Smith (1987)] with the RDP theory of Cromer and Liberman 
(1970, 1981, 1983). I shall then compare these theoretical predictions with the results 
of recent experiment. 

2. Theory 

The scattering power j(&l, .d) of an isolated atom relative to that of a free electron 
is 

j(&l,.d) = .IO(.d) + f'(&l, .d)+ij"(&l,.d). (1) 

Here .IO(.d) is the atomic form factor (or atomic scattering factor) for a change in 
photon momentum h.d = hko- hki' ko being the wave vector ofthe scattered photon 
and k i the wave vector of the incident wave. The other two terms are the (anomalous) 
dispersion corrections which become significant when the photon energy Ii&l becomes 
significant compared with the electron energy levels of the atom. 

In the classical and the nonrelativistic quantum mechanical theories the atomic 
form factor is given, for a spherically symmetrical atom containing one electron, by 

.IO(.d) = 41T f: p(r)(sinAr/Ar)~ dr, 

where p( r) is the electron density at a distance r from the centre of the atom. For 
an atom containing Z electrons the atomic form factor becomes 

.IO(.d) = 41T ~ Pn(r)(sinAr/Ar)r2 dr. Z foo 
n=l 0 

The real part of the dispersion correction f'(&l,.d) is given by 

f'(&l,.d) = (2/1T) ~ P foo {&lj"(&l, .d)/(&l2 -&l~) I d&l. 
n CII. 

(2) 

(3) 

Equation (3) implies that the principal value of the integral is taken and the integral 
is made over a range of photon angular frequencies from the angular frequency &l n 

of the nth energy level of the atom to infinity. The angular frequency of the incident 
photon is &l i and 

j"(&l,.d) = (&l/41T re c)u(&l,.d), (4) 

where u(&l, .d) is the atomic photoelectric scattering cross section and re is the 
classical radius of the electron. 
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In the relativistic theories the atomic form factor needs to be modified to take 
account of electron binding effects, as suggested by Franz (1935, 1936). In this 
representation, the modified relativistic form factor (MRFF) for each subshell, g( q, Z), 
is given by 

g(q, Z) = 4'IT f p(r)(sin qr/qr)[l/{ l-E- V(r)}]r2 dr, (5) 

where q = ..d. Recent tabulations by Schaupp et aL (1983) and Hubbell and 0verbj1l 
(1979) have been calculated using a screened Dirac-Hartree-Fock-Slater (DHFS) 
potential. In all the form factor theories a term !(1 +cos28) occurs because they do 
not consider the change in polarisation which occurs during the photon scattering 
process. 

The reduced scattering cross section for a photon of angular frequency wand wave 
vector q = ..d is, in the form factor approximation, 

o-(w,..d) = If(w,..d) 12. (6) 

The derivation of the dispersion corrections f'(w,..d) and f"(w,..d) is discussed in 
the following Sections for two different relativistic approximations. 

3. Relativistic Dipole Theory 

The relativistic approach developed by Cromer and Liberman (1970) is based on 
the scattering formula for the scattering of photons by bound electrons given by 
Akhiezer and Berestetsky (1959): 

51 ->f = -2'ITi 8(El +liwl -E2 -Ii(2){ 4'IT( eliC)2 12mc21i(wl (2)! If. (7) 

Here the angular frequencies of the incident and scattered photons are WI and W2 
respectively, and the initial and final energy states are El and E2. 

The scattering factor f' is a complicated expression which includes the initial and 
final polarisation states el and e2, the Dirac velocity operator ca , and the phase 
factors exp(i kl • r) and exp(i k2 • r). Summation is over all positive and negative 
intermediate states except those energy states occupied by other atomic electrons. 
The expression is not easily related to the form factor formalism and Cromer and 
Liberman manipulated it to relate more directly to the form used by crystallographers: 

f = m? l:«2Ie2.aeXP(-ik2.r)ln+) <n+ 1e1 .aeXP(ik1 .r)ll») 
+ z + + + El -En +T,Wl El -En -IiW2 

+mc- ~ + . (8) 
_2 ~ «21 e2 .aexp( -i k2• r)1 n-) <n-I el .aexp(i k 1• r)ll») 

- EI- E;+1iw1 EI-E;-1iw2 

Cromer and Liberman limited their discussion to coherent (I k 1 1 = 1 k21) forward 
scattering (..d = 0), and the electric dipole approximation exp(i k. r) = I. Using 
these assumptions they showed that 

f(w,O) = fo(0)-f+(w,0)+j~ot/mc2 +if"(w,O). (9) 
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Here 10(0) is the atomic form factor for forward scattering and the term t Etotl mCl 
arises from the application of the relativistic dipole approximation. The term j"(CJJ, 0) 
is related to the photoelectric scattering cross section u(IiCJJ) by 

and 

j"(CJJ,O) = (mc/41Tlie2)IiCJJ u(IiCJJ) , (10) 

j+ (CJJ, 0) = i1T2lire c P f'" (E+ - El)u( E+ - E1)l{ (IiCJJ)2 - (E+ - El)2} dE+ . (11) 
mel 

Equations (11) and (10) are in the mathematical form referred to as the Kramers­
Kronig transform. 

Atomic number Z 
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Fig. 1. Relativistic correction f' ( 00 ,0) in electrons per atom for the modified form factor 
approach, the relativistic multipole approach, and the relativistic dipole approach. 

Relating (10) and (11) to equation (1) we see that 

f'(CJJ,O) = j+(CJJ,O) +t~olmc2. (12) 
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The magnitude of the relativistic correction in the dipole approximation is plotted in 
Fig. 1 as a function of atomic number. 

In developing their tables Cromer and Liberman (1970) used the Brysk and Zerby 
(1968) computer code for the calculation of photoelectric cross sections. This was 
based on Dirac-Slater relativistic wavefunctions developed by Liberman et al. (1965) 
in which an exchange potential ofO.667p 1/3(r) was used. However, instead of using 
the computed energy eigenvalues in their calculations they used the experimentally 
determined values. Their values for the photoelectric scattering cross section are 
almost identical to those found by Storm and Israel (1970) using similar DHFS 
techniques and the Hartree-Fock calculations of Scofield (1973). Both of these use 
the computed energy eigenvalues. 

Stibius-Jensen (1979) drew attention to the fact that the dipole approximation was 
used at an unnecessarily early stage and that an error of - ~ Z(liw/ mc2) existed in 
the tabulated values. A more recent paper by Cromer and Liberman (1981) includes 
the Stibius-Jensen correction term. Computer programs based on the Cromer and 
Liberman (1983) program are used throughout the world. 

4. Scattering Matrix Formalism 

In an attempt to provide an accurate technique for predicting total-atom Rayleigh 
scattering amplitudes, Kissel et al. (1980) have developed a computer program based 
on the second order S-matrix formalism suggested by Brown et al. (1955). Their 
model treated Rayleigh scattering by considering second order single transitions by 
electrons bound in a relativistic self-consistent central potential of the DHFS type 
with the inclusion of the Kohn-Sham (1965) exchange model. Radiative corrections 
were omitted in their formalism. 

In the photon scattering process both momentum and polarisation changes can 
occur. The complex polarisation vectors e satisfy the conditions 

e*. e = 1; e.k = O. (13) 

Scattering is described in terms of the differential scattering amplitude 

M-M1(e1' e2*)+M2(e1' k2)(e2' k 1), (14) 

where the subscripts 1 and 2 refer to the initial and final states of the photon. If 
polarisation is not an observable then the expression for the differential scattering 
cross section takes the form 

d<1>/dl1 = ~r~(IM112+IM212). (15) 

All tabulations have, to date, assumed that polarisation is not an observable. However, 
recent experiments using synchrotron radiation sources show that, particularly in the 
neighbourhood of an absorption edge, the full equation (14) should be used in the 
calculation of the dispersion corrections. 
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The principle of causality implies that the forward scattering amplitude M(ru, 0) 
should be analytical in the upper half of the ru-plane and that 

ReM(ru,O) = (2ru2/1T) J: {1m M(ru',0)/ru'(ru'2_ ru2)] dru', (16) 

with the consequence that 

Re M(oo,O) = -(2/1T) J: (lmM(ru',O)/ru'] dru'. (17) 

This may be rewritten as 

M(ru,O)-M(oo,O) = f'(ru, 0) +if"(ru, 0) , (18) 

with the value of f'(ru, 0) defined by equation (1). Using the conservation of probability 
we have 

1m M(ru, 0) = (ru/4'7Tcre)u, 

which is to be compared with equation (10). 
If one starts with Furry's extension of the Feynman and Dyson formalism for the 

total Rayleigh scattering amplitude, the value of the scattering amplitude of the nth 
level is 

Mn = ~ «nl Tf Ip)<pIIi I n) + <nl12lp)<nl TJ IP»), (19) 
p En-Ep+liru En-Ep+liru 

where 

Ii =a.elexp(ik1·r), 12 = a. eJexp(i k 2 • r). 

The I p) are the complete set of bound and continuum states in the external field of 
the atomic potential. Singularities occur at all photon energies which correspond to 
transitions between bound I n) and bound state Ip). These singularities are removed 
if the finite widths of these states are considered and the energies E are replaced by 
i E r /2, where r is the total radiative plus nonradiative width of the state. 

Using the approach suggested by Brown et al. (1955), Kissel et aL (1980) were 
able to reduce the numerical problems to the solution of one-dimensional radial 
integrals and differential equations. The required multipole expansions of Ii and 
the specification of the radial perturbed orbitals has been discussed by Kissel (1977). 
Finally, all the angular dependence on the photon scattering angle is written in terms 
of the associated Legendre functions and all the energy dependence is written in terms 
of multipole amplitudes. 

Solutions to the inhomogeneous radial wav'e equations were not, however, found. 
Rather, Kissel (1977) expressed the solution as the linear sum of two solutions of the 
inhomogeneous equation, one regular at the origin and the other regular at infinity. 

Although the S-matrix approach is by far the most sophisticated of all the 
techniques for computing Rayleigh scattering amplitudes, it is also by far the most 
demanding in terms of computer time. To reduce the computer time Kissel and Pratt 
(1985) used the S-matrix formalism for the inner subshellS and estimates for the outer 
shell contributions based on the modified form factor approach. A recent tabulation 
of modified relativistic form factors has been presented by Schaupp et al. (1983). 
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5. Relativistic Multipole Approach 

It has been pointed out earlier that the relativistic dipole approach has some 
limitations to its accuracy. The error in estimating the scattering amplitude at infinite 
frequency made by using the dipole approximation was thought to have been taken 
into account by use of the Stibius-Jensen correction. This, however, is not the case, 
and many authors (Kissel and Pratt 1985; Ornote and Kato 1987; Creagh 1980, 
1984, 1986) have shown that a major source of the discrepancies between the modern 
theories lies in the inaccuracy in determining the scattering amplitude at infinite 
frequency 1'( 00, ~). 

Table 1. Comparison of the imaginary part of the forward scattering amplitude j"«(J),O) 
computed using dUferent theoretical approaches 

Atom Radiation /,,«(J),O) 
RDPA Storm & Scofield S-matrix RMpC 

Israel (1970) (1973) formalismB 

C CrKal 
CuKal 0·0091 0·0091 0·0093 0·0091 
AgKal 0·0009 0·0009 0·0009 0·0009 

AI CrKal 0·522 0·513 0·514 0·512 
CuKal 0·246 0·244 0·243 0·246 
AgKal 0·031 0·030 0·031 0·031 

Si CrKal 0·694 0·694 0·692 
CuKal 0·330 0·331 0·332 0·330 
AgKal 0·043 0·043 0·043 0·043 

Cu CrKal 1·194 1·189 1·193 
CuKal 0·589 0·586 0·588 
AgKal 0·826 0·826 0·826 

Zn CrKal 1·373 1·371 1·370 1·371 
CuKal 0·678 0·678 0·678 0·678 
AgKal 0·938 0·938 0·932 0·938 

A Cromer and Liberman (1981). 
B Kissel et aL (1980). 
C Relativistic multipole approach. 

There are not any significant systematic discrepancies between the several different 
methods for computing the photoelectric scattering cross section (see e.g. Table 1). 
The computation of I'(O),~) follows from the use of the causality relation (15) using 
the values I"(O),~) derived from the photoelectric cross-section data. The chief 
difference between the relativistic dipole and the relativistic multipole approach lies 
in the evaluation of the scattering amplitude at infinite frequency. The most detailed 
formal exposition of the multipole approach results from the series expansion for 
a single Dirac electron in a Coulomb field. Florescu and Gavrila (1976) derived a 
corrected version of the Goldberger and Low (1968) expression for I'(oo,~) of an 
electron bound in the ground state to a nucleus having atomic number Z: 

I'(oo,~) = 1-!t?+Ha4 +O(as), (20) 

where a = Z t? /lic. The second term evidently corresponds to the. Stibius-Jensen 
correction. 
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When the multipole expansion is performed the magnitude of 1'(00,0) is Etotlmc2 
to the fifth order multipole expansion. This is three-fifths of the magnitude of that 
calculated using the relativistic dipole approach. [The relativistic multipole results 
reported here are due to Creagh and McAuley and are to be published in 'International 
Tables for Crystallography' (Volume C).] 

6. Comparison of Theories 

In comparisons between the theories it is possibly best to commence with the 
imaginary part of the dispersion correction 1"(w,O), which is directly proportional 
to the photoelectric scattering cross section. Table 1 compares the values of I"(w, 0) 
for the relativistic dipole, the S-matrix, and the relativistic multipole cases for the 
elements carbon, aluminium, silicon, copper and zinc at the wavelengths of Ag Kat, 
Cu Kat and Cr Kat. Also shown are relativistic calculations from Storm and Israel 
(1970) and Scofield (1973). Despite the great differences which exist in making 
the various calculations there is, overall, close agreement between the results. No 
significant systematic differences appear to exist. 

The real part of the dispersion correction l'(w,O) is related to 1"(w,O) through 
the causality relation (15) and its limiting condition (17). Given that there are no 
significant differences between the I"(w, 0) values predicted by the three models, the 
value of the integral would be expected to be the same in each case. Differences do 
exist in the value of the limiting condition. That these are significant can be seen in 
Fig. 1 which shows the variation of the relativistic correction I'(w, 0) as a function 
of atomic number for the relativistic dipole, relativistic multipole, and modified form 
factor models. 

Table 2. Comparison between the S-matrix calculations and the form factor 
calculations for the noble gases and several common metals 

j'(w,O) values are given for two frequently used photon energies 

Energy (ke V) Element RDPA S-matrixB RMpC 

17·479 Ne 0·021 0·024 0·026 
(Mo Kat) Ar 0·155 0·170 0·174 

Kr -0·652 -0·478 -0·557 
Xe -0·684 -0·416 -0·428 

22·613 Al 0·032 0·039 0·041 
(Ag Kat) Zn 0·260 0·323 0·324 

Ta -0·937 -0·375 -0·383 
Pb -1·910 -1·034 -1·162 

A Cromer and Liberman (1970, 1981, 1983). 
B Kissel (1987). 
C Creagh and McAuley (unpublished). 

Table 2 compares the predictions of the three models for the rare gases and some 
common metals. For the rare gases the RMP and S-matrix models are in good 
agreement with one another for neon, argon and xenon. There is no agreement 
between the models for krypton. For the common metals aluminium, zinc, tantalum 
and lead, the RMP theory is in better accord with the S-matrix theory than the RDP 
theory. 
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Considering the very significant differences in the techniques used for computing the 
RMP and S-matrix values, the agreement between the theories is surprisingly good. 
Because the S-matrix approach is the more complete of the three, it seems logical to 
use it as the bench-mark against which comparisons are made. Large amounts of time 
are required to compute S-matrix values with the result that relatively few results have 
been reported (see e.g. Creagh 1987 b). In contrast the code for the RMP calculations 
has been compressed to enable it to run on a (large) personal computer. It would be 
therefore a more useful data set for experimentalists, if substantial agreement can be 
shown to exist between theory and experiment. In the following section comparisons 
will be made between the predictions of the RMP theory and experimental data. 

7. Experimental Results 

Most modem techniques for the measurement of f'(CJJ,O) make use of devices 
for determining the X-ray refractive index n, which is related to the dielectric 
susceptibility X by 

where 

I 

n = (I+X)i, 

X = -(r: A2/1r) ~ ~i.J(CJJ,.Ii). 
j 

(21) 

(22) 

It is not my intention here to describe these techniques since I have reviewed the 
subject recently (Creagh 1986). Suffice to say that direct measurements of f'(CJJ, 0) 
using X-ray interferometers have been made by, inter alia, Cusatis and Hart (1975), 
Siddons and Hart (1983), Begum et al. (1986), Bpnse and Materlik (1975), Bonse and 
Hartmann-Lotsch (1984), Bonse and Henning (1985) and Creagh (1984). 

An alternative approach is the measurement of refractive index by the deviation 
of the prism method and recent measurements have been ,made by Deutsch and Hart 
(1985) and Katoh et aL (1985a, 1985 b). Another technique uses measurements of 
/"(CJJ, 0). The deficiencies of this approach have been discussed by Creagh (1980, 
1984, 1986). However, serious attempts to determine f'(CJJ, 0) through measurements 
of f"(CJJ, 0) have been made by Gerward et al. (1979), Dreier et al. (1984), Creagh 
(1980), Bonse and Henning (1985), Bonse and Hartmann-Lotsch (1984), Kawamure 
and Fukamachi (1978) and Fukamachi et aL (1978). 

One other approach uses refinement of the diffraction pattern of crystal structures, 
for which the structure is known, to determine f'(CJJ,.Ii) and /"(CJJ, .Ii). This 
technique has been used by, inter alia, Engel and Sturm (1975), Templeton and 
Templeton (1978), Phillips et aL (1978), Phillips and Hodgson (1985) and Chapuis 
et aL (1985). Inherent in this approach is the assumption that f'(CJJ,.Ii) is not 
a function of the scattering vector.li. Fortunately, it has been demonstrated 
theoretically by Kissel et aL (1980) using the S-matrix theory, and experimentally 
by Suortti et al. (1985) and Ornote and Kato (1987), that f'(CJJ,.Ii) is not a function 
of .Ii. 

The experiment by Ornote and Kato (1987) used X-ray pendellosung techniques to 
determine the atomic form factor for silicon. They showed that, not only is there no 
dependence of f'(CJJ,.Ii) on .Ii, but that the Stibius-Jensen correction is not appropriate. 
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8. Comparison of Experimental Results with Theoretical Predictions 

In this section discussion focusses on: 

D. C. Creagh 

(i) the scattering of photons having energies considerably greater than that of the 
K-absorption edge of the atom from which they are scattered; and 

(ii) scattering of photons having energies in the neighbourhood of an absorption 
edge of the scattering atom. 

Table 3. Comparison of measurements of f" (CLI, 0) for C, Si and Cu with theoretical predictions 
The measurements are from the IUCr X-ray Attenuation Project Report (Creagh and Hubbell 

1987) corrected for the effects of Compton, Laue-Bragg and small angle scattering. 

Sample Reference I"(CLI,O) 
CuKal MoKal AgKal 

6C Theory 
RMP 0·0091 0·0016 0·0009 
RDP 0·0091 0·0016 0·0009 
Experiment 
mCr Project 0·0093 0·0016 0·0009 

l4Si Theory 
RMP 0·330 0·070 0·043 
RDP 0·330 0·0704 0·0431 
Experiment 
mCr Project 0·332 0·0696 0·0429 

29Cu Theory 
RMP 0·588 1·265 0·826 
RDP 0·589 1·265 0·826 
Experiment 
mCr Project 0·588 1·267 0·826 

The imaginary part of the dispersion correction f"(w,O) is proportional to the 
photoelectric scattering cross section. In Table 1 a comparison was made between the 
predictions of the various theories of scattering, and it was shown that the theories 
yielded results in substantial agreement. In Table 3 the predictions of the relativistic 
dipole (RDP) and the relativistic multipole (RDM) approaches are compared with 
measurements made by laboratories participating in the IUCr X-ray Attenuation 
Project (Creagh and Hubbell 1987). The results have been corrected for the effects of 
Compton, Laue-Bragg thermal diffuse, and small angle X-ray scattering. Experiment 
and theory are in excellent agreement. 

Let us consider first the real part of the dispersion correction J' (w, 0) for the 
case where w/wK --.0, i.e. the high energy limit. In Table 4 measurements of 
J'(w,O) for lithium fluoride, silicon, aluminium and germanium are presented for 
the characteristic Kal wavelengths of copper, molybdenum and silver. Summarised 
are measurements using a variety of X-ray interferometer, deviation by a prism, 
pendellosung and Kramers-Kronig experiments. The theoretical predictions of the 
relativistic multi pole and relativistic dipole theories are shown. 

In general the agreement between theory and experiment is good, but the predic­
tions of the RMP theory are in better accord with experiment than the RDP theory. 
Exceptions occur for Si and Al for the wavelength of Cu Kal. The discrepancy 
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Table 4. Comparison of measurements of the real part of the dispersion correction for LiF, 
Si, AI and Ge with theoretical predictions 

The experimental accuracy (m per cent) claimed for the experiments is given in parentheses 

Sample Reference 1'(0),0) 
CuKal MoKal AgKal 

LiF Theory 
This work 0·075 0·017 0·010 
Cromer & Liberman (1981) 0·068 0·014 0·006 
Experiment 
Creagh (1984) 0·085(5) 0·020(10) 0·014(10) 
Deutsch & Hart (1985) 0·0217(1) 0·0133(1) 

Si Theory 
This work 0·254 0·0817 0·052 
Cromer & Liberman (1981) 0·242 0·071 0·042 
Experiment 
Cusatis & Hart (1975) 0·0863(2) 0·0568(2) 
Price et aL (1978) 0·085(7) 0·047(7) 
Gerward et aL (1979) 0·244(7) 0·099(7) 0·070(7) 
Creagh (1984) 0·236(5) 0·091(5) 0·060(5) 
Deutsch & Hart (1985) 0·0847(1) 0·0537(1) 

AI Theory 
This work 0·213 0·0645 0·041 
Cromer & Liberman (1981) 0·203 0·0486 0·020 
Experiment 
Creagh (1984) 0·065(20) 0·044(20) 
Takama et aL (1982) 0·20(5) 0·07(5) 0·035(10) 

Ge Theory 
This work -1·089 0·155 0·302 
Cromer & Liberman (1981) -1·167 0·062 0·197 
Experiment 
Gerward et aL (1979) -1·04 0·30 0·43 

between the theories is about 5%. Neither theory appears in reasonable agreement 
with experiment for Ge, although the RMP theory is in better accord than the RDP 
theory. 

Remote from the edge the RMP theory successfully predicts the experimental 
values of f'(OJ,O) to within 5% for all the elements of the periodic table. Close 
to the absorption edge of an atom, processes other than photoelectric scattering 
occur and extended X-ray absorption fine structure (EXAFS) and X-ray near-edge 
structure (XANES) are observed in I" (OJ, 0) and (consequently) in I' (OJ, 0). Although 
the origins of these processes are well known, there are still some problems in 
making quantitative predictions (Creagh 1980). It is a tribute to the techniques of 
experimentalists that measurements can be made in the neighbourhood of the edges 
where the scattering powers of the atoms vary quite considerably from the classically 
expected values. 

In Table 5 data from many different experiments are collated. Measurements 
for Cu, Ni and Nb made at, or near, an absorption edge, are compared with the 
predictions of both the RDP and RDM theories. For Cu a considerable range of 
experimental values (-7 ·84 to -10.0) exists although - 8·3 appears to be a 
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Table 5. Comparison of /'(WK,O) for copper, nickel and niobium for theoretical and 
experimental datasets 

Reference MethodA f'(w,O) 
Cu Ni NbB 

Experiment 
Freund (1975) BR -8·2 
Begum et aJ. (1986) IN -7·84 -7·66 
Bonse & Materlik (1975) IN -8·1 
Bonse et at. (1983) IN -8·3 
Siddons & Hart (1983) IN -9·3 -9·2 -4.396t 
Kawamura & Fukamachi (1978) KK -7·9 
Dreier et at. (1984) KK -8·2 -7·8 
Bonse & Hartmann (1984) { IN -8·3 -8·1 

KK -8·3 -7·7 
Fukamachi et at. (1978) {KK -8·8 

CA -10·0 
Bonse & Henning (1985) { IN -7·37;· -7·73· 

KK -7 ·21;· -7 ·62· 
Theory 
Linewidth calculationC -13·50 -9·45 -4.20;t -7·39· 
This work -13·45 -9·40 -4·04;t -7·23· 

A Here BR is the Bragg reflection, IN the interferometer, KK the Kramers-Kronig, and CA the 
critical angle. Measurements have been made for the K-absorption edges of copper and nickel 
and near the K-absorption edge of niobium. Oaimed experimental errors are not worse than 5%. 
B Here t and • are used to indicate values which are to be compared, the former were taken near 
the absorption edge of niobium, the latter at the absorption edge of niobium. 
C Calculation made in conjunction with the Cromer-Liberman (1981) program by replacing the 
energies in equation (11) by i Er12, where ris the total radiative plus nonradiative linewidth. 

commonly found value. These are not in accord with theory, even when account is 
taken of the radiative linewidth. A recent measurement by K. Ishida (1987, personal 
communication) gives a value of -10·5. A similar situation occurs for Ni, although 
the range in the measurements is not so great ( - 7·66 to - 9.2) and the disagreement 
between theory and experiment not so pronounced. 

A variety of explanations have been given for the discrepancies between theoretical 
and experimental values for f'(CIl, 0). They range from theories concerning the band 
pass of the measuring equipment (Creagh 1986) to theories based on the fact that the 
XANES structure overlaps the edge. No completely satisfactory explanation exists at 
present. 

Slightly away from the edge in Nb agreement between theory and experiment 
is better than 10%, and at the edge somewhat better (about 5%) agreement is 
found. Four values are given for the measurement at the edge. One set is for 
the interferometer measurement of f'(CIl, 0) and the other for the Kramers-Kronig 
transform of f"(CIl,O). The two values for each set correspond to two different 
polarisation states of the incident and scattered photon. The S-matrix theory takes 
account of polarisation changes in scattering. Both the RDP and RMP theory, 
however, are derived only for the case of averaged polarisation. Polarisation effects 
can apparently be quite significant, a fact pointed out by Chapuis et aL (1985) and 
Templeton and Templeton (1986). Note that when the Kramers-Kronig integral 
was performed the relativistic correction term was not incorporated into the final 
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expression for 1'( w, 0). The difference between the two could be construed to be an 
estimate of 1'(00,0) which is related to Etotlmc'l, which is 0·20 in this case. This 
brings the two sets of measurements into close agreement. 

9. Conclusions 

In this paper I have described briefly three modern techniques for calculating 
the dispersion corrections for photon scattering from isolated, spherical atoms, for 
averaged polarisation states. It has been demonstrated that, for the imaginary part 
of the dispersion corrections, !"(w,O), there is little to choose between the theories, 
and in particular agreement between theory and experiment is excellent. 

Remote from an absorption edge the results of the relativistic multipole theory are 
in slightly better agreement with experiment than the relativistic dipole theory. At 
the absorption edge the choice of theory does not appear to be so clear. One must 
point out, however, that in most cases the RMP theory gives better agreement with 
experiment away from the edge. 

The difference between the RDP and the RMP theory lies chiefly in the evaluation 
of 1'( 00 ,0), the matrix element for the scattering at infinite energy. The inclusion of 
the higher order multipoles reduced this from j~otlmc2 to ~tlmc'l. The effect of 
the inclusion of still higher order multipoles may alter this value somewhat, and it 
is estimated that there is an inaccuracy of 0·25 Etotl in c'l in the RMP calculations. 
Errors in calculating 1'( 00, 0) shift the I' (w, 0) versus w graph up or down the vertical 
axis. 

It should be appreciated by users of tables of dispersion corrections that the 
absorption edge energy of an atom varies with its oxidation state. This shifts the 
graph along the w-axis. This can have a significant effect on the value of I'(w, 0) 
particularly in the neighbourhood of the edge where l'(w,O) is varying rapidly with 
w. Attention is also drawn to the fact that it has been demonstrated that I'(w,.d) is 
not a function of .d. 

The excellent agreement which exists between the RMP and S-matrix theories 
indicates that RMP is more reliable than the RDP theory. When this was considered 
in conjunction with the good agreement it has with experimental results for a wide 
range of atoms and photon energies, it was decided to use the RMP formalism to 
produce the tables of the dispersion corrections in the forthcoming 'International 
Tables for Crystallography' (Volume C). It is hoped that programs for computing 
the dispersion corrections, capable of running in a (large) personal computer, will be 
available in the near future. 

Acknowledgments 

This work was supported in part by the Australian Research Grants Scheme. The 
author is very grateful to Professor Richard Pratt, Professor David Templeton and 
Dr John Hubbell for their encouragement and advice. 

References 
Akhiezer, A. I., and Berestetsky, V. B. (1959). In 'Quantum Electrodynamics' (T.E.S.E.: Oak 

Ridge). 
Begum, R., Hart, M., Lea, K. R., and Siddons, D. P. (1986). Acta Cryst. A 42, 456-64. 



500 D. C. Creagh 

Bijvoet, J. M., Peerdeman, A. P., and Van Bommel, A. J. (1953). Nature 168, 27l. 
Bonse, U., and Hart, M. (1965). Appt. Phys. Lett. 7, 238-42. 
Bonse, U., and Hart, M. (1966). Z. Phys. 188, 151-65. 
Bonse, u., and Hartmann-Lotsch, I. (1984). Nuc/. Instrum. Methods 222, 185-8. 
Bonse, u., Hartmann-Lotsch, I., and Lotsch, H. (1983). In 'EXAFS and Near Edge Structures', 

Vol. 27 (Eds A. Bianconi et at.), pp. 376-7 (Springer: Berlin). 
Bonse, u., and Hellkotter, H. (1969). Z. Phys. 223, 145-52. 
Bonse, U., and Henning, A. (1985). Nuc/. Instrum. Methods A 246,814-16. 
Bonse, u., and Materlik, G. (1975). In 'Anomalous Scattering' (Eds S. Ramaseshan and 

S. C. Abrahams), pp. 107-9 (Munksgaard: Copenhagen). 
Brown, G. E., Peierls, R. E., and Woodward, J. B. (1955). Proc. R. Soc. London A 227, 51-63. 
Brysk, H., and Zerby, C. D. (1968). Phys. Rev. 171,292-8. 
Chapuis, G., Templeton, D. H., and Templeton, L. K. (1985). Acta Cryst. A 41, 274-8. 
Creagh, D. C. (1970). Aust. J. Phys. 23, 99-103. 
Creagh, D. C. (1980). Phys. Lett. A 77, 129-32. 
Creagh, D. C.(1984). Phys. Lett. A 103, 52-56. 
Creagh, D. C. (1986). Aust. J. Phys. 38, 371-404. 
Creagh, D. C. (1987a). NucL Instrum. Methods A 255,1-16. 
Creagh, D. C. (1987 b). In 'Recent Advances in the X-ray Characterisation of Materials' 

(Ed. R. Krishna), Ch. 7 (Pergamon: Oxford). 
Creagh, D. C., and Hart, M. (1970). Phys. Status Solidi 37, 753-8. 
Creagh, D. C., and Hubbell, J. H. (1987). Acta Cryst. A 43, 102-12. 
Cromer, D. T., and Liberman, D. (1970). J. Chem. Phys. 53, 1891-8. 
Cromer, D. T., and Liberman, D. (1981). Acta Cryst. A 37, 267. 
Cromer, D. T., and Liberman, D. (1983). J. Appt. Cryst. 16,437. 
Cusatis, c., and Hart, M. (1975). In 'Anomalous Scattering' (Eds S. Ramaseshan and 

S. C. Abrahams), pp. 57-67. (Munksgaard: Copenhagen). 
Deutsch, M., and Hart, M. (1985). Acta Cryst. A 41, 48-55. 
Dreier, P., Rabe, P., Matzfeldt, W., and Niemann, W. (1984). J. Phys. C 7, 3123-36. 
Eisenlohr, H., and Muller, G. L. (1954). Z. Phys. 136,491-510; 511-33. 
Engel, D. H., and Sturm, M. (1975). In 'Anomalous Scattering' (Eds S. Ramaseshan and 

S. C. Abrahams), pp. 95-100 (Munksgaard: Copenhagen). 
Florescu, V., and Gavrila, M. (1976). Phys. Rev. A 34, 211-35. 
Franz, W. (1935). Phys. Rev. 95, 652-68. 
Franz, W. (1936). Phys. Rev. 98, 314-20. 
Freund, A. (1975). In 'Anomalous Scattering' (Eds S. Ramaseshan and S. C. Abrahams), 

pp. 69-86 (Munksgaard: Copenhagen). 
Fukamachi, T., Hosoya, S., Kawamura, T., Hunter, S., and Nakano, Y. (1978). J. Appl. Phys. 

Jpn 17, 326-8. 
Gavrila, M. (1981). In 'Inner-shell Processes' (Ed. B. Craseman), pp. 357-88 (plenum: New 

York). 
Gerward, L., Theusen, G., Stibius-Jensen, M., and Alstrup, J. (1979). Acta Cryst. A 35, 852-7. 
Goldberger, R. L., and Low, F. E. (1968). Phys. Rev. 176, 1778. 
Honl, H. (1933a). Z. Phys. 84, 1-16. 
Honl, H. (1933b). Ann. Phys. (Leipzig) 18, 625-57. 
Hubbell, J. H., and 0verb~, I. (1979). J. Phys. Chem. Ref. Data 8, 69-105. 
James, R. W. (1955). 'The Optical Principles of the Diffraction of X-rays' (Cornell Univ. Press). 
Katoh, H., Shimakura, H., Ogawa, T., Hattori, S., Kobayashi, Y., Umezawa, K., Ishikawa, T., 

and Ishida, K. (1985a). 'Activity Report' (KEK: Tsukuba). 
Katoh, H., Shimakura, H., Ogawa, T., Hattori, S., Kobayashi, Y., Umezawa, K., Ishikawa, T., 

and Ishida, K. (1985b). J. Phys. Soc. Jpn 54, 881-4. 
Kawamura, T., and Fukamachi, T. (1978). J. Appl. Phys. Jpn 17, 224. 
Kissel, L. (1977). Rayleigh scattering, elastic scattering by bound electrons. Ph.D. Thesis. Univ. 

Pittsburgh. 
Kissel, L. (1987). In 'Workshop Report on New Directions in X-ray Scattering' (Eds N. Kerr 

Del Grande and R. H. Pratt), p. 9 (Lawrence Livermore Lab. CONF-870459). 



X-ray Dispersion Corrections 501 

Kissel, L., and Pratt, R. H. (1985). In 'Atomic Inner-shell Physics' (Ed. B. Craseman), Ch. 9 
(plenum: New York). 

Kissel, L., Pratt, R. H., and Roy, S. C. (1980). Phys. Rev. A 22, 1970--2004. 
Kohn, W., and Sham, L. S. (1965). Phys. Rev. A 40, 1133-8. 
Liberman, D., Waber, J. T., and Cromer, D. T. (1965). Phys. Rev. A 137, 27-34. 
Omote, K., and Kato, N. (1987). Acta Cryst. A 43, 255-60. 
Phillips, J. C., and Hodgson, K. O. (1985). In 'Synchrotron Radiation Research' (Eds S. Winick 

and S. Doniach), pp. 505-604 (plenum: New York). 
Phillips, J. C., Templeton, D. H., Templeton, L. K., and Hodgson, K. O. (1978). Science 201 

257-9. 
Price, P. F., Maslen, E. N., and Mair, S. L. (1978). Acta Cryst. A 34, 183-93. 
Schaupp, D., Schumacher, M., Smend, F., Rullhugen, P., and Hubbell, J. H. (1983). J. Phys. 

Chern. Ref. Data 12, 467-511. 
Scofield, J. (1973). Lawrence Livermore Lab. Report UCRL 51326. 
Siddons, D. P., and Hart, M. (1983). In 'EXAFS and Near Edge Structure' (Eds A. Bianconi 

et 0/.), pp. 373-5 (Springer: Berlin). 
Smith, D. Y. (1987). Phys. Rev. A 35, 3381-7. 
Stibius-Jensen, M. (1979). Phys. Lett. A 74, 41-4. 
Storm, E., and Israel, H. (1970). Nucl. Data Tab/es A 7,565-8. 
Suortti, P., Hastings, J. B., and Cox, D. E. (1985). Acta Cryst. A 41, 417-20. 
Takama, T., Kobayashi, K., and Sato, S. (1982). Trans. Jap. Inst. Meta/s 23, 153-60. 
Templeton, L. K., and Templeton, D. H. (1978). Acta Cryst. A 34, 368-73. 
Templeton, L. K., and Templeton, D. H. (1986). Acta Cryst. A 42, 478-81. 
Wagenfeld, H. (1966). Phys. Rev. 144, 236-46. 
Wagenfeld, H. (1975). In 'Anomalous Scattering' (Eds S. Ramaseshan and S. C. Abrahams), 

pp. 12-23 (Munksgaard: Copenhagen). 

Manuscript received 25 August, accepted 5 November 1987 




