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Abstract 

The unbound states of a nucleus C may be studied in elastic scattering A + a -+ C -+ A + a, and in reactions of the type B+b -+ C+c, in which C is an unstable product nucleus. Expressions for the scattering cross sections or phase shifts, and for the dependence of the reaction cross section on Ee, have been derived from R-matrix theory, and it is argued that consistent values of the R-matrix parameters should be used in describing the two types of data. This requirement has been disregarded, however, in a recent paper concerned with the 2+ states of SBe. On the other hand, support for the consistency argument comes from theoretical and experimental work done recently in Canberra on the low-lying states of SHe and sLi. 

1. Introduction 

Unbound states of a nucleus C may be studied in different ways. In elastic 
scattering 

A+a_C_A+a, (1) 

C is formed as an intermediate nucleus, and a state of C may be indicated by a peak 
in the cross section or more specifically, for a state of given J1T, by a rapid increase 
in the nuclear phase shift [) J' expressed as a function of the bombarding energy Ea or of the excitation energy Ec of the nucleus C. For simplicity, it is assumed that there 
is only one open decay channel for C. In reactions of the type 

B+b_C+c (C-A+a), (2) 

C is a product nucleus and, for fixed bombarding energy, the yield NJ attributable to 
states of definite J1T may show a peak as a function of the energy Ee of the emitted 
nucleus or of Ec. This paper is concerned with the problem of obtaining a consistent 
description of [) A Ec) and NA Ec)· 

As an example, which will be useful later on, the case of sBe is considered. The 
accepted energy level diagram is shown in Fig. 1, for levels below the 7 Li + P threshold. 
All levels are unbound with respect to breakup into two alphas. Level energies, 
widths and J1T values are shown, together with the scattering cpannels and some 
of the reactions by which sBe has been studied. Some information about the 
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levels come from elastic scattering 

(3) 

and the nuclear phase shifts 8J (E;,) are shown in Fig. 2. Due to the small width of the 0+ ground state, the rapid rise of 80 through 1800 could not be measured as such; 
however, the energy and width of the level were determined from the interference 
pattern between the s-wave nuclear and the Coulomb scattering amplitudes (Benn et 
al. 1966, 1968). The 2+ level at about 3 MeV is associated with the rapid rise of 82 at Ea ::::: 6 MeV. The sl()w rise in 84 is attributed to the broad 4+ level at about 
11 MeV. The 2+ levels at 16·6 and 16·9 MeV (not shown in Fig. 2) each contribute 
a rise in 82 of about 1800 (Bacher et al. 1972). 
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Fig. 3. A deuteron spectrum from 9Se(p,d)8Se with Ej, = 33·6 MeV 
and Blab = 60° (from Kull 1967). 

As typical of the reactions producing 8Be, we consider 9Be(p, d)8Be: 

(4) 

A measured deuteron spectrum is shown in Fig. 3, where the observed peaks are each attributed to definite 8Be levels. 
The yield of the reaction (2), as a function of Ec, is often separated into two factors, 

(5) 

where P J( Ec) is a generalised density-of-states function (Phillips et al. 1960) depending 
only on the properties of the nucleus C [for sharp states p(E) = :Ix 8(E - Ex)], and 
G,(Ec) is a feeding function that depends on the reaction producing C. An early 
way of presenting the problem of a consistent description of scattering and reaction 
data was by posing the question: 'Can p(E) be simply expressed in terms of 8(E)?' 
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2. One-level Approximation 

(a) Sequential Decay 

Based on the assumption that reaction (2) proceeds sequentially as indicated, 

formulae have been proposed and used for peE) in the one-level, one-channel (for 

decay) approximation. These include 

r2 

peE) ex: (Er - E)2 +(! F)2 ' 
(Bethe 1937) (6) 

r 
peE) ex: (Er-E)2+(iF)2' 

(Wheeler 1941) (7) 

peE) 
peE) ex: (Er - E)2 +(i F)2 ' 

(Bonner et 01. 1948) (8) 

rl(E) 

peE) ex: IEt+Al(E)-EJ 2+li r l(E)J2· 
(Treacy 1953) (9) 

In the formulae (6)-(8), By is the resonance energy and r the (constant) width, 

so that as far as energy dependence is concerned, (6) and (7) are the same. The 

energy-dependent penetration factor peE) in (8) was introduced in order to give a 

better fit to data. Treacy (1953) proposed the form (9) by analogy with the R-matrix 

formulae of Wigner and Eisenbud (1947) for two-stage reactions in which C is an 

intermediate nucleus, and only later was it derived rigorously by Lane and Thomas 

(1958). Here, the width rl(E) and level shift Al(E) are given by 

Al(E) = -IS(E)-BI'YL (10) 

where peE) and SeE) are the energy-dependent penetration factor and shift factor, 

and B the constant boundary condition parameter; El is the eigenenergy an4 'Y~ the 

reduced width. Each of these is a real quantity in R-matrix theory (Lane and Thomas 

1958). 
The nuclear phase shift can be written in terms of the resonant phase shift (/3) and 

the hard-sphere phase shift (-<f», 

8(E) = f3(E)-<f>(E) , 

and in the one-level, one-channel approximation of R-matrix theory, one has 

!r (E) 
f3(E) = arctan Et ;All(E)_E 

(11) 

(12) 

where Et, r l and Al are the same as in equation (9) (Lane and Thomas 1958). Then 

one can write 

sin2 f3(E) 
= 

peE) 

sin2 {8(E)+<f>(E) J 
peE) 

(13) 

In this approximation, p( E) can therefore be expressed in terms of 8( E), together 
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with the calculable functions P( E) and <1>( E). The latter can be written 

P(E) - ka 
- £2(a)+ G2(a) , 

F(a) 
<1>( E) = arctan G( a) , 
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(14) 

where F( r) and G( r) are the energy-dependent regular and irregular Coulomb radial 
wavefunctions, k is the wave number and a the channel radius. The latter is a 
distance beyond which there is no polarising interaction between the particles A and 
a. The dependence on a is significant and is discussed below. 

In some applications, Griffy and Biedenharn (1960) and Paul et aL (1977) used a 
modified form of equation (13), 

p(E) a: sin2 8(E)/ P(E), (15) 

on the grounds that it gave a better fit to the data, but other justification for this 
formula is lacking (Fowler and Preist 1961; Alburger et aL 1963). 

A somewhat different derivation by Phillips et al. (1960) led to 

p(E) a: df3(E)/dE, (16) 

which reduces to equation (9) in the one-level approximation (12) under certain 
restrictive conditions, but equation (16) was criticised by Barker and Treacy (1962) 
'as being unsuitable for general use. 

(b) Final-state Interactions 

An alternative approach to the problem of relating p and 8 was based on the 
assumption that the reaction (2) proceeds essentially by three-body breakup, 

(17) 

but with strong final-state interactions between particles A and a. These interactions 
modify the phase-space distribution of energies that would otherwise occur. In this 
way Watson (1952) and Migdal (1955) derived 

(18) 

for a channel with relative orbital angular momentum I, but several approximations 
were made that were particularly appropriate to the systems in which they were 
interested (including low energies and no Coulomb interaction in the decay channel). 
In the same approach but more generally, Hamburger and Cameron (1960) found 
exactly the relation (13). They explicitly assumed an energy-independent shape of the 
interior wavefunction, and this is equivalent to the one-level approximation. 

Relations of the type (13), (15) or (18) are often referred to as the Watson-Migdal 
relation; they essentially involve the one-level approximation. . 

(c) Inadequacy o/the One-level Approximation 

There is considerable evidence that the one-level approximation of R-matrix theory 
given by (9), (12) and (13) is not adequate to account for much experimental data 
involving states of 8Be, in which we are particularly interested: 
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16·9 MeV), its nonzero width for decay into two alphas being due to some 
T = 0 admixture. 

(iii) lOB(d, a)8Be. A measured a-spectrum from lOB(d, a)8Be is shown in Fig. 6 
for the 8Be excitation energy range from about 16 to 18 MeV. The spectrum 
in the region of the 16· 6 and 16· 9 MeV levels cannot be explained by an 
incoherent sum of two one-level approximations, but indicates that coherence 
is necessary with destructive interference in the region between the levels. 
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Fig. 6. An a-spectrum from lOB(d,a)8Be (from Browne et aL 1966). The solid curve is a 
two-level fit to the experimental points (see Section 3). The dashed curves show the shape and 
position that would have been observed for each level in isolation. 

3. Many-level Approximation 

The fit to the lOB(d, a)8Be data shown in Fig. 6 is a suggested two-level 
approximation designed to produce interference (Browne et al. 1966; Barker 1966): 

1 
1 1 t 1 12 N(E) Gl n G2 r~ 

ex: . ". E t·r +".~ E t·r ' ~ - -21 1 ~- -21 2 
(19) 

. i.e., the square of the sum of two R-matrix one-level approximation amplitudes (with 
neglect of the level-shift terms), with real feeding amplitudes G!'2 (X = 1,2). The 
yield is no longer separated into the factors G and p as in equation (5). A formula with 
some of the features of (19) had previously been proposed by Griffy and Biedenharn 
(1960). In the case of n levels of given r, and with the inclusion of level shifts, the 
formula (19) would generalise to 

I I 

\ 
n G2 r2 \2 

N(E) ex: ~ Abc At. 
A=l E1.. +.:1A -E-'-21 r A 

(20) 

What seems to be a more reasonable R-matrix form for the yield in the many-level 
approximation has been obtained as follows (Barker 1967). For the two-stage reaction 

A'+a' _C_A+a (21) 

proceeding through n levels of the compound nucleus C with the same J1r, the 
R-matrix formula for the cross section (in the many-channel approximation) can be 
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written as (Lane and Thomas 1958) 

I

n 1 1 

(T a'a a:: ~ rIa' r~a A"Jl. 
",Jl.=1 

(22) 

where 

(23) 

the summation over c being over all decay channels (including a and a'). In the 
one-level approximation this becomes 

r 1a, r 1a 
(Ta'a a:: (Ej +..11-E)2+(jr1)2· 

(24) 

For the reaction (2), the yield in the one-level R-matrix approximation, given by 
equations (5) and (9), can be written as (Lane and Thomas 1958) 

N(E) G1be r 1a 
a:: (Ej +..11-E)2+(jr1)2 

(25) 

The procedure that leads from equation (24) to (25) in the one-level case, namely 
replacement of r la' by G1be, can be followed in the n-Ievel case, namely replacement 
of r1j.~ in (22) by G~~, to give the n-Ievel R-matrix formula for the yield of reaction 
(2) that was proposed by Barker (1967), i.e. 

(26) 

Note that A"Jl. is unchanged, and is still given by equation (23). 
If only the one channel a is contributing to the decay of C, as was assumed above, 

then the yield can be written as (Barker 1967) 

From the many-level form for the resonant phase shift (Lane and Thomas 1958) 

{3(E) = arctan {(! "~1 r,,/(E; - E») / (1 + "~1 ..1,,/(E; - E»)} , (28) 

one then has (Barker 1967) 

A significant difference between the formulae (20) and (27) (or 29) is that, if a 
particular level A is not fed in the reaction, so that G"be = 0, then that level has no 
effect on N(E) given by (20) but does affect N(E) given by (27). Some evidence in 
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favour of the latter form concerns the ground state of 8Be, which was observed in 
both scattering and reactions at the same energy within experimental errors (Benn et 
al. 1966, 1968; Reichart et al. 1966). This is what is expected from (27), but follows 
from (20) only if B = S(E1), which is not a reasonable requirement for a many-level 
approximation. Fits to the 10B(d, a)8Be data of Fig. 6 with the appropriate two-level 
form of (26) are of comparable or better quality than those given by (19) (Callender 
and Browne 1970). 

It is to be noted that N(E) given by equation (27) or (29) involves feeding 
amplitudes G~~ (A = 1, ... , n), in addition to the R-matrix parameters that occur in 
the description of the phase shift 8(E). These feeding amplitudes are real and may 
be energy-dependent; e.g. for p-decay, GAbc is proportional to the integrated Fermi 
function. 

A two-level approximation with the form of equation (19), but with G~12 / G~12 
possibly complex, was derived by Kirilyuk et al. (1970) on the basis of complex
eigenvalue theory. For consistency, this should be used in conjunction with the 
complex-eigenvalue expression for the phase shift. 

4. Application to 8Be 

As some justification for the repeated reference to 8Be, it may be pointed out that 
each of the formulae (6)-(9), (15), (16), (19), (27) and (29) was first proposed or applied 
in connection with levels of 8Be. Similar reasons presumably led Louis Brown to give 
the subtitle 'A History of Nuclear Physics' to a book that he wrote (but never 
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Fig. 7. Calculated (solid curve) and measured (histogram) spectra of deuterons at 10" from 
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pUblished) on 'Beryllium-S'. In particular, he said 'We can hope to see the growth 
of nuclear physics through studies of a particular isotope or mass system. Given this 
point of view, 8Be is a worthy choice, very likely the best.' 

Table 1. Dependence of properties of the second 0 + state of 8Be on the 
channel radius ao (from Barker et Ill. 19(8) 

ao (fm) 

6·5 
7·0 

(a) 0+ States 0/ 8Be 

Ex(ot) (MeV) 

8 
6 

11 
9 

1·4 
1·4 

In the one-level R-matrix approximation, 80 for a-a scattering cannot be well 
fitted for E ~ 3 Me V (Barker and Treacy 1962). 

In the three-level approximation, Barker et al. (196S) fitted 80 for E ~ 17 MeV 
by equations (11) and (2S) for a wide range of values of the channel radius ~. 
When 9Be(p, d)8Be data (Hay et aL 1967) were simultaneously fitted using equation 
(27), with physically-reasonable constraints imposed on the feeding amplitudes for 
the upper two levels, the best overall fit was obtained with ~ ::= 7 fm (Barker et aL 
1965). More recent 9Be(p, d)8Be data obtained at higher beam energies, which confer 
certain advantages, are shown in Fig. 7. The 0+ ground state of 8Be contributes not 
only the sharp peak at zero excitation energy (with natural width about 6 eV), but 
also the peak at Ex ::= 0·6 MeV, which is referred to as the ghost of the ground state 
(Barker and Treacy 1962) (the peak at Ex ::= 3 MeV is due to the 2+ first-excited 
state). For parameter values that fit 80, the predicted magnitude and position of the 
ghost peak depend on the value of 00. As 00 increases, the ghost peak moves to lower 
energies and becomes smaller. The best simultaneous fit to 80 and the ghost peak was 
obtained for ~ ::= 6·5 fm (or a larger value if a nonzero background contribution 
was included) (Barker et aL 1976). The strong correlations between the value of 00 
and the excitation energy and FWHM of the second 0+ state are shown in Table '1. 
The dimensionless reduced width 82 of this state is about 1·4 for all values of ao; this 
large value indicates that the state must belong to higher shell model configurations, 
and therefore be classified as an intruder state. 

Table 2. Properties of 0+ intruder states in light even nuclei (from 
Ajzenberg-Selove 1984, 1985, 198611, 1986b) 

Nucleus Ex(ot) (eV) 

6·18 
7·65 
6·59 
5·92 
6·05 

8·5 1·4 

Table 2 lists similar 0+ intruder states occurring in neighbouring even nuclei, also 
at excitation energies of about 6-S MeV. Of these, only the 12C state is a-unstable; 
the value 82 = 1·4 given for it (Barker and Treacy 1962) is the same as for the 8Be 
state, even though the FWHM of the states differ by six orders of magnitude! 
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Thus the properties of the 0+ intruder state in 8Be deduced from the R-matrix fits 

seem reasonable when compared with those in other light nuclei. 

(b) 2+ States of 8 Be 

Combined three-level R-matrix fits to the d-wave a-a phase shift82 up to 17 MeV 

and to various reaction data have been made by Barker (1969). Fits involving the 

deuteron spectrum from 9Be(p, d)8Be gave ll.l ::::; 7· 1 fm, while more recently similar 

fits to the 2+ contribution shown in Fig. 7 required ll.l ::::; 6·0 fm (or greater with 

a nonzero background) (Barker et al. 1976). Fits involving the 8 Li(J3 -) 8 Be( a)4 He 

a-spectrum of Alburger et al. (1963), with contributions from the 16·6 and 16· 9 MeV 

levels included in the fit, led to ll.l ::::; 6·7 fm (Barker 1969), while Clark et al. (1969) 

obtained ll.l ::::; 6·0 fm from similar fits to their a-spectrum from 8B(J3+) 8 Be(a) 4He. 

These values of a2 imply a low-lying broad second 2+ state with the properties given 

in Table 3. The large values of (j2 identify this as an intruder state; similar 2+ 

intruder states are found in other light even nuclei, about 1-2 MeV above the 0+ 

intruder state (Ajzenberg-Selove 1984, 1985, 1986a, 1986b; Barker 1969). 

Table 3. Dependence of properties of the second 2 + state of SBe on the 

channel radius 01 

6 
7 

12 
8 

14 
9 

(c) A Recent Paper on 8Li(f3- )8Be(a)4He and 8B(f3+ )8Be(a)4He 

1·7 
1·6 

A paper published recently by Warburton (1986) is now discussed at some 

length. There are two main features of this paper. First, Warburton made available 

previously unpublished data of Wilkinson and Alburger (1971) on the a-spectra from 

8Li(P-) 8Be(a) 4He and 8B(P+) 8Be(a) 4He. These data are shown in Fig. 8-they 

have far better statistics and apparent accuracy than previous spectra. Second, 

Warburton fitted these a-spectra and also the d-wave a-a phase shift, using the 

many-level R-matrix formulae discussed above. He used a channel radius a2 = 
4 . 5 fm, and concluded that satisfactory fits to the data can be obtained without 

introducing intruder states below 26 MeV excitation. The essential difference between 

his approach and the earlier work was that he did not require the R-matrix parameters 

to have the same values in the fits to the a -spectra as in the fit to the phase shift. 

Because of his small value of a2' he found values for the eigenenergy and reduced 

width amplitude of the 3 MeV level that differed appreciably in the fits to the different 

data. 
It seems of some importance to decide which approach is better, not only in 

connection with the structure of 8Be, but also because the requirement of consistency 

in fitting scattering and reaction data has been imposed in other cases, including the 

calculation of the 12C(a,1)160 cross section at low energies (Barker 1971, 1987), 

and a study of the low-lying levels of SHe and sLi (Barker and Woods 1985; Woods 

et al. 1988), which is discussed in the next section. Consistency is also implied in 

the widely-used one-level relation (13), which directly relates p and 8. This relation 
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Fig. 8. The a-spectra from BLi(,8-)BSe(a)4He and BS(,8+)BSe(a)4He 
measured by Wilkinson and Alburger (1971). The solid curves are drawn to 
guide the eye. [From Warburton (1986).] 
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would be unjustified in the approach advocated by Warburton. Presumably he would 
have to regard as a coincidence the observed equality of the energies of the BBe ground 
state as seen in a-a scattering (Benn et al. 1966, 1968) and in the 9Be(p, d) BBe 
reaction (Reichart et aL 1966). 

Warburton gives various arguments against the large channel radii (low-lying 
intruder states) found earlier (Barker et aL 1968; Barker 1969), and in favour of 
his small channel radius (high-lying intruder states). He implies (by his use of the 
words 'adopted', 'assumed', 'postulation') that the large values of ao and a2 in the 
earlier work were an arbitrary choice, rather than a consequence of the requirement 
of consistency. He points out that the usual prescription for the channel radius 
a = 'o(AF3+~/3), with '0 = 1.4fm, gives a z 4·5 fm, and that this choice of,o 
is suggested by electron scattering; it is the r.m.s. charge radius, however, that one 
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With a channel radius of a = 5·5 fm, the sll2 n-a and Jr"<l phase shifts require 

! + levels of sHe and sLi at about 5·4 and 5·1 MeV respectively (Barker and Woods 

1985). The reason why previous fits to the phase shifts had located the! + level above 

the deuteron threshold was that they had assumed small channel radii (a ~ 3 fm). 

Similarly !+ and ~+ levels are required at about 12 MeV for a = 5·5 fm, but 

at 25 MeV or above for a = 3 fm. These positive-parity levels are too broad to 

be directly observed in reactions. Nevertheless, a check is possible by comparing 

these results from the phase-shift fits with the results of shell model calculations for 

the A = 5 levels. Van Hees and Glaudemans (1983, 1984) performed a (0+ I)1iCtl 

calculation, fitting properties of both normal and nonnormal parity levels of nuclei 

throughout the 1 p shell and, in general, obtained good agreement with observed 

energies and electromagnetic properties. For sHe (and sLi), they predicted the lowest 

! + state at an excitation energy of 7·4 MeV, with! + and ~ + states at about 15 MeV. 

An interaction chosen specifically to fit the properties of light nuclei gave somewhat 

lower energies (Barker and Woods 1985). Thus the shell model calculations support 

the value of the channel radius found by requiring a consistent fit to the scattering 

and reaction data on the low-lying A = 5 levels. Additional support for the large 

channel radius comes from a comparison of the excitation energy of the ! - level, 

and of the spectroscopic factors of all the levels (Barker and Woods 1985). 

6. Summary 

This paper has attempted to show that there are no substantial arguments against, 

and that there is empirical evidence for, the reasonable proposition that the values 

of the R-matrix parameters used to describe the unbound states of a nucleus should 

be the same when it is formed as a product nucleus in reactions as when it is the 

intermediate nucleus in elastic scattering (or two-stage reactions). 
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