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In this paper we present a direct parameter fitting scheme appropriate to a linear combination 
of atomic orbitals (LCAO) model· Hamiltonian representation of the BCC transition metals 
incorporating first and second neighbour interactions. Explicit expressions are given for the 
one-electron eigenvalues at all of the important symmetry points of the BCC Brillouin zone. 
This direct parameter fitting scheme is shown to produce an excellent representation of the 
bandstructure of paramagnetic iron, and yields parameter values little different from those 
obtained from a full least-squares optimisation of the LCAO model Hamiltonian bandstructure. 
The extension of this scheme to include more distant interactions, and relativistic and spin-orbit 
effects, is also discussed. 

1. Introduction 

The electronic structure of transition metals can now be determined very accurately 
by a variety of first-principles techniques (Koelling 1981). Such methods, however, 
are not really suitable for evaluating quantities such as Compton profiles or dielectric 
constants, which involve integration over the entire Brillouin zone. For such purposes 
one needs a fast and accurate interpolation scheme. For transition metals this is 
provided by a purely tight-binding (LCAO) model Hamiltonian (Cornwell et al. 1968; 
Dempsey et al. 1978; Boyer et al. 1977; Anderson et al. 1981; Smith 1985), or by a 
hybrid LCAO-orthogonalised plane wave (OPW) representation (Hodges et al. 1966; 
Mueller 1967; Smith and Mattheiss 1974; Baker and Smith 1977). The essence of 
these model Hamiltonian interpolation schemes is to represent the various interactions 
by parameters. These are then determined by fitting to an accurate first-principles 
bandstructure calculation at selected symmetry points within the irreducible symmetry 
element of the appropriate Brillouin zone (BZ). Given that the model Hamiltonian 
contains a sufficient basis it should then reliably interpolate between these chosen 
wavevectors, and yield accurate eigenvalues for any general k point within the BZ. 

Explicit energy level expressions for determining the parameter values within the 
combined LCAO-OPW model Hamiltonian interpolation scheme have been given for 
both FCC (Smith and Mattheiss 1974) and BCC (Baker and Smith 1977) transition 
metals. To the authors' knowledge, however, a sufficiently general direct parameter 
fitting scheme has only been provided within the LCAO interpolation approach for 
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the FCC transition metals (Smith 1985). The purpose of the present paper, therefore, 
is to present such a procedure for the BCC metals. As in the FCC case, these 
directly fitted parameter values can then be employed as suitable starting values in a 
least-squares optimisation of the LCAO model Hamiltonian parameter set. Moreover, 
one can determine the dependence of each of the energy levels upon the individual 
parameters from the corresponding energy level expressions. 

In the following section, we define our tight-binding model Hamiltonian and derive 
explicit expressions for the various symmetry point energy levels within the irreducible 
symmetry element of the BCC BZ. Our proposed direct parameter fitting scheme is 
also outlined in this section. The application of this scheme to the case of paramagnetic 
BCC iron is then presented in Section 3. The final section summarises the main 
conclusions to be drawn from this work, and discusses possible generalisations of the 
overall approach. 

2. Basic Method 

The minimum basis set that will adequately represent the electronic structure of 
the BCC transition metals to order 5-10 eV above the Fermi energy consists of one 
s-orbital, three p-orbitals and five d-orbitals on each atomic site. Since there is only 
one atom per primitive unit cell, this results in a 9x9, k-dependent, LCAO model 
Hamiltonian matrix of the form 

H.p.(k) Hsd'(k)] 

Hpp.(k) Hpd.(k) 

Hdp·(k) Hdd·(k) 

Explicit expressions for the Hamiltonian matrix elements HQQ.(k>" in terms of the 
appropriate energy integrals Ei;j(/' m, n) were given by Slater and Koster (1954). 

In the case of the FCC transition metals it was found necessary to include only 
the nearest neighbour interactions in order to obtain an accurate representation of 
the overall electronic structure (Smith 1985). This is not the case, however, for 
the BeC transition metals, because of their different crystal structure, and one must 
incorporate second neighbour interactions to produce reliable results. This gives 
rise to a model Hamiltonian characterised by 27 independent parameters; the four 
self-energies Ea, E'p, E~ and ~a, twelve first neighbour interactions E;Jll1), and 
eleven second neighbour interactions of the form E;-jl(0), E;-jOl0) and E;-jOO1). For 
simplicity of expression these parameters are henceforth referred to as E,{1 <; ; <; 4), 
A,{1 <; i <; 12) and B,{1 <; ; <; 11) respectively, and are identified specifically in 
Table 1 below. 

In order to obtain values for these parameters we need to derive explicit expressions 
for the various energy levels at selected symmetry points of the p-reducible symmetry 
element of the BeC BZ. Since our LCAO basis functions are assumed to be comprised 
of L6wdin (orthogonalised) atomic orbitals, this simply requires the diagonaIisation 
of the LeAO model Hamiltonian matrix at each chosen wavevector k. The resultant 
expressions for the energy levels at the r, N, P, H, ii, :I, G and D symmetry points 
are as follows: 
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r point, k = 2fT / a (0,0,0): 

E(rl) = Ei +8Al +6Bs, 

E(r2S') = Ej+8~+4Bt +2~, 
E(rl2) = ~+8Al2+3~+3B4' 
E(rlS) = Ii;+8~+2Bs+4~. 

N point, k = 2fT/a (!,!,O): 

E(N,.) = Ej+8AlO-2~, 

E(Nl') = Ii;-8As-2Bs, 

E(~) = ~-3~+~, 

E(~) = Ej-8AlO-2~, 
E(~.) = Ii;+2Bs-4~. 

E(P3) = ~-3~-3B4' 
E(~) = HIi;+Ej-4Bt-2~-2Bs-4~ 

+ {(Ii; - Ej +4Bt +2~ -2Bs -4~i +256A~ J!], 
E(Pl) = Ei -6Bs· 

H point, k = 2fT/a (1,0,0): 

E(Hl2) = ~-8Al2+3~+3B4' 
E(~s') = Ej-8~+4Bt +2~, 

E(H,.s) = Ii;-8~+2Bs+4~, 
E(Hl) = Ei -8Al +6Bs· 

~ point, k = 2fT/a (!, 0, 0): 

E(~2) = ~+3~-B4' 
E(~s) = ![Ii;+Ej+2~+2Bs 

± {(Ii; - Ej -2~ +2Bs)2 +256~ J!], 
E(~2') = Ej+4Bt-2~ . 

..E point, k = 2fT/ a (1, 1,0): 

E(..E2) = Ej+4~+4AlO+2Bl' 
E(..E3) = ![Ii;+Ej+4~-4AlO+2Bt +2Bs 
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+{(Ii;-Ej+4~ -4~+4AlO-2Bt +2Bs)2+ 128(-%+ !BlO)2J!], 
E(..E4) = HIi;+~+4~+4As+4A12+2B4+2~ 

+{(Ii;-~+4~+4As-4A12-2B4+2~i+ 128(As+!v3 BtliJ!]. 
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E(G4) = HE;+E4-4A4-4As-4A12+2B4+2~ 
2 1 'n 2 1 + I (E;-E4 -4A4 - 4AS+4A12-2B4 +2~) + 128(Ag-;(V3 .Dll) P]' 

E(G3) = HE;+E3-4A4-4~+4AlO+2Bl+2Bs 
2 1 2 1 

+1(E;-E3-4A4+4~-4AlO-2Bl+2Bs) +128(~-2BlO) P], 

E(~) = E3-4~-4AlO+2Bl' 

D point, k = 2'1T/ a (t, t, i): 

E(~) = E4-3~-B4' 
E(~) = HE;+E3-4Y2As-4Y2AlO-2Bl-2~-2Bs-2~ 

+1(E;-E3-4y2 As+4y2 AlO+2Bl +2~-2Bs-2~)2 
2 1 + 128(A7 - BlO/2y2) J 2], 

E(D4) = HE;+E3+4Y2As+4Y2AlO-2Bl-2~-2Bs-2~ 

± I (E; - E3 +4y2 As-4y2 AlO+2Bl +2~-2Bs -2~i 

+ 128(A7 + BlO/2y2i J~]. 

By fitting these expressions to the corresponding eigen-energies of an accurate 
first-principles bandstructure calculation we can now determine specific values for 
the LCAO model Hamiltonian parameters. Whilst there is some arbitrariness in the 
choice of energy levels to employ in this direct parameter fitting scheme, the resulting 
parameter values are nonetheless fairly well prescribed. In order to determine the d 
self-energies, and the d-d energy integrals, for example, we have chosen to fit to the 
r 2S" r 12, ~s" H12, ~, ~, 14, .::12 and .::12' energy levels, although thj:: I 2, G2, P3 

and ~ levels would serve equally well. The resulting parameter values are, in fact, 
little different. Similarly, to determine the x-xy parameters, ~ and Bto' we have 
elected to use the I~l) and G~l) energy level expressions, rather than the .::1~1) level, 
as this choice seems to give a better overall fit to all three levels. Determining values 
for the parameters via the remaining energy level expressions, however, is more or 
less unique. Values for the s self-energy and the s-s energy integrals, Ai and Bs, are 
derived from the r l , Hi and Pi energy level expressions. The p self-energy and the 
p-p interaction parameters ~, As. Bs and ~ are determined from the F 1S' HiS' 

Nl , and 14, levels, and the sum of the p~l) and p~2) energy levels. Finally, the p-d 
parameters A7 , Ag and Btl are calculated from p~l), I~l) and ~l). 

This leaves just the five parameters A2, A3, All' ~ and B, to be determined. 
None of these particular parameters appears explicitly in any of the above energy 
level expressions, and hence must be determined independently. The parameter All 
can be calculated from the derived values for the other d-d energy integrals using the 
two-centre approximation: 

All = 2Y!(~-AlO-A12)' 

The s-d parameters A3 and B, can be determined most readily by fitting to the !ltl ) 
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and lIt2) energy levels. These are defined by the 3 x 3 determinantal equation 

det 

-8A3 

~-4Bt+2~-A 

-8All 

4~ 

= o. 
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For the two remaining parameters, the s-p Hamiltonian matrix elements A2 and ~, 
we fit the ..d~l) and A~l) energy levels. These are given by the smallest roots of the 
determinantal equations 

E,. +2B,-A -8A2 -4~ 

det -8A2 ~-2Bs+4~-A 16Aghl3 =0, 

-4~ 16Aghl3 E4-B.J+3B4 -A 

E,. +2'\1'2 Al-A -2'\1'3('\1'2 C;+~) -2'\1'6G 

det -2'\1'3('\1'2 C;+~) ~+2'\1'2(A.. -2As)-A 2'\1'2 (2 C6 +'\1'2 AIO - c,) = O. 

-2'\1'6 CJ 2'\1'2(2C6+'\I'2AlO- c,) ~+2'\1'2(C9-2qo)-A 

It should be noted that, in each case, we have elected to fit to the lowest energy levels, 
as our primary objective is to obtain a good representation of the occupied (valence) 
bandstructure. 

3. Application to Paramagnetic Bee Iron 

We now turn to consider the application of this direct parameter fitting scheme to the 
case of paramagnetic BCC iron. For our first~principles bandstructure we have chosen 
the augmented plane wave (APW) calculation of Wood (1962). This well-established 
bandstructure is known to be in good agreement with other determinations of the 
electronic structure of paramagnetic iron. Moreover, Wood's paper contains a very 
comprehensive list of one~electron eigenValues for incorporation into either a direct 
parameter fitting or least~squares optimisation routine. 

Applying the direct parameter fitting scheme outlined in the previous section to this 
APW bandstructure of Wood yields the parameter set given in Table 1. The ability 
of this direct parameter fitting scheme to reproduce Wood's APW bandstructure for 
paramagnetic iron is shown in Fig. 1. With the exception of the one energy band from 
Nt· to r 2S' via .2i2), the reproduction of Wood's valence bandstructure by our LCAO 
model Hamiltonian with directly fitted parameters is clearly excellent. Levels well 
above the Fermi energy are not so well reproduced, however, as one would expect. 

The accuracy with which our LCAO model Hamiltonian can reproduce the overall 
electronic structure can, of course, be improved by optimising the parameters using 
a least~squares fitting routine. In fact, one of the main advantages of our direct 
parameter fitting scheme is that it provides an excellent set of starting parameters 
from which to begin such an optimisation procedure. In order to obtain optimum 
values for our 27 parameters we have performed a least-squares fit to 131 levels at 
the r, A, P, F, H, G, Nand ..d symmetry points, and their intermediate k points. 
The resulting set of optimised parameters is also given in Table 1. Comparison 
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Table 1. Values (iJl Ryd) for the 27 parameters deftJ1iDg oar LCAO model Hamiltonian obtaiDed 
from both direct parameter tittiDg, and least-squares optimisation, of Wood's banclstraetare for 

paramagnetic iron 

Symbol Energy integral Directly fitted Optimised 
parameters parameters 

El E. 1·35450 1·31320 
~ ~g 1·75775 1·77397 

E3 0·71300 0·68123 
~ ~ 0·68400 0·68327 
Al E.;.(111) -0·13388 -0·13438 
A2 ~;x(111) 0·10151 0·11296 
A3 ~;xy(I11) -0·04712 -0·01577 
A4 Ex;x(111) 0·10344 0·09991 
As EX;y(111) 0·08141 0·09072 
-% Ex;xy(111) -0·02538 -0·00008 
A7 EX;yz(I11) -0·03947 -0·02927 
A8 Ex;x2 _(.(111) 0·02520 0·02241 
~ Exy,xy 111) -0·01313 -0·01235 
A10 Exy,xz(111) -0·02075 -0·02149 
All Exy,3z2 _ ",(111) -0·01638 -0·02010 
A12 Elz2 - ""3z2 _ ",(111) 0·02181 0·02223 
Bl Exy,xy(iOO) 0·00750 0·02033 
B2 Exy,xy(OO1) 0·00100 -0·00813 
B3 Elz2 - "';3z2 _ ",(001) -0·03379 -0·03488 
B4 Ex2 _ r;x2_y2(OOI) 0·00163 0·00287 
Bs £.;.(100) -0·02925 -0·02476 
B6 ~;x(100) 0·08383 0·05143 
B7 ~;3z2 _ ",(001) -0·03440 -0·02299 
B8 Ex;x(100) 0·17925 0·15845 
B9 Ey,y(I00) 0·03656 0·03297 
B10 Ex;xy(010) 0·00992 0·03248 
Bll Ez;3z2 _ ",(001) -0·03699 -0·03455 

with the parameter values obtained from the direct parameter fitting scheme shows 
excellent correlation. With the exception of the nearest-neighbour s-d parameter A3• 

the two p-d Hamiltonian matrix elements ~ and Bto, and the second neighbour 
xy-xy parameters Bt and B,z. the optimised parameter values are little different from 
the directly fitted parameters. 

The bandstructure which results from employing these optimised parameter values 
in our second-neighbour LCAO model Hamiltonian is shown in Fig. 2. The overall 
agreement with Wood's APW bandstructure is seen to be extremely good, even for 
energies 10 eV above the Fermi energy. Whilst the most poorly reproduced energy 
level is .12' with an error of 0·037 Ryd, the largest deviation within the valence 
band is 0·023 Ryd at ~l). The average r.m.s. deviation over all ofthe least-squares 
fitted levels is only 0·0124 Ryd. This compares well with the accuracy obtained by 
other LCAO-OPW (Baker and Smith 1977) and LCAO (Cornwell et al. 1968) model 
Hamiltonian calculations on paramagnetic BCC iron. 

The curve for the density of spin states obtained from our second neighbour LCAO 
model Hamiltonian with optimised parameters is shown in Fig. 3. This has been 
obtained by sampling at 106 random k-points within the irreducible symmetry 
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1·5 

r, 
O~~--~--~--~--~~---L--~--~~ 

r " p F H G N r H 

803 

Fig. 1. Comparison between Wood's APW bandstructure for paramagnetic iron (full curve) and 
that derived from the LCAO model Hamiltonian with directly fitted parameters (dashed curve). 
It should be noted that the latter has only been plotted when it deviates from the first-principles 
bandstructure by more than 0·005 Ryd. (1 Ryd - 13·606 eV.) 

1·5 

o~~---L--~--~~--~--~--~~--~ 

r " p F H G N r H 

Fig. 2. Comparison of the paramagnetic iron bandstructure of Wood (full curve) with that 
obtained from the LCAO model Hamiltonian employing least-squares optimised parameters 
(dashed curve). 
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Ep = 0·684 Ryd 
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Fig. 3. Density of spin states curve resulting from our second neighbour LCAO model 
Hamiltonian with optimised parameters. 

element of the BCC BZ. Whilst the overall curve is in good agreement with that 
obtained by Cornwell et al. (1968) for paramagnetic BCC iron, our calculated Fermi 
energy of 0·684 Ryd is more than 0·02 Ryd higher than the values of 0·662 and 
0·660 Ryd determined by Wood (1962) and Cornwell et al. (1968) respectively. This 
discrepancy, however, arises almost entirely from the lowering of the r 1 energy level 
by our optimisation procedure and could thus be easily remedied by either assigning 
this level greater weight, or simply keeping it invariant. 

It should be pointed out that in this paper we have optimised the parameters 
in our LCAO model Hamiltonian so as to give a good representation of Wood's 
bandstructure up to 10 eV above the Fermi energy. An even more accurate description 
of the valence band electronic structure could have been achieved by least-squares 
fitting to just the occupied energy levels. We would expect the parameter values 
derived from such an optimisation procedure to demonstrate an even closer correlation 
with the parameters derived from our direct parameter fitting scheme. 

4. Discussion and Conclusions 

In this paper we have presented a direct parameter fitting scheme appropriate to a 
LCAO model Hamiltonian representation of the BCC transition metals, incorporating 
all first and second neighbour interactions. When applied to the case of paramagnetic 
BCC iron, this direct parameter fitting scheme has been shown to yield an excellent 
description of the overall electronic structure. Moreover, the parameter values 
obtained via this direct parameter fitting scheme have been shown to be little different 
from those derived by least-squares optimisation of the LCAO model Hamiltonian 
bandstructure. The bandstructures of other BCC metals such as tungsten, tantalum 
and molybdenum may· also be represented by the scheme. The APW calculation of 
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Petroff and Viswanthan (1971) provides detailed lists of the appropriate energy levels 
for these metals. It thus follows that the parameter sets obtained from our direct-fitting 
LCAO model Hamiltonian scheme can provide both an accurate representation of 
the BCC transition metal bandstructures in their own right, and provide a reliable 
starting point for further refinement of those bandstructures via a suitable optimisation 
routine. As stated earlier, a further advantage of such a direct parameter fitting 
scheme is that it enables one to determine the actual dependence of any particular 
energy level upon the various LCAO parameters from the explicit energy expressions. 

The scheme that we have presented here could presumably be extended to 
incorporate more distant interactions if greater accuracy were required. Cornwell et 
al. (1968) and Boyer et al. (1977), for example, have both included four additional 
parameters in their LCAO model Hamiltonian descriptions of the BCC transition 
metals in order to represent the third neighbour s-s, s-p and s-d interactions. 
In more recent work, Papaconstantopoulos and his co-workers (Anderson et al. 
1981; Johnson et al. 1984) have incorporated all 17 third neighbour interactions 
into their least-squares optimisation procedure in order to obtain extremely accurate 
bandstructure fits for some of the BCC transition metals. The extension of our 
direct-parameter fitting scheme to progressively larger parameter sets, however, will 
always be bounded by the number of linearly independent energy level expressions 
that can be obtained from diagonalisation of the LCAO model Hamiltonian. 

Finally, it is worth noting that our direct-fitting LCAO model Hamiltonian 
scheme can also be used to describe relativistic and spin-dependent features in the 
bandstructures of the BCC transition metals. Neglect of the spin-orbit interactions, 
as assumed in recent calculations of the bandstructure of ferromagnetic iron (Tawil 
and Callaway 1973; Johnson et al. 1984), leads to two separate sets of spin-up and 
spin-down energy bands. These two completely independent sets of bands can then 
each be described, as in the paramagnetic case, by a 9x9 LCAO model Hamiltonian, 
and the parameters defining these tight-binding representations determined by our 
direct parameter fitting set. The extension of this scheme to take into account 
the spin-orbit interactions, however, would be much more difficult. In order to 
satisfactorily describe the role of the spin-orbit interactions in the BCC transition 
metals we would now need to diagonalise an 18x 18 complex Hermitian LCAO 
model Hamiltonian (Abate and Asdente 1965). While this is still feasible with 
the introduction of suitable group theoretical techniques (Friedel et al. 1964), the 
resulting energy level expressions would be considerably more complicated than we 
have obtained above for the paramagnetic case, as a result of the coupling of the 
electron spins. 

Acknowledgments 

The authors would like to acknowledge the Australian Government for their 
support of this work via a grant from the Australian Research Grants Scheme 
(ARGS). 

References 

Abate, E., and Asdente, M. (1965). Phys. Rev. 140, A1303. 
Anderson, J. R., Papaconstantopoulos, D. A., and Schirber, J. E. (1981). Phys. Rev. B 24, 6790. 
Baker, S. K., and Smith, P. V. (1971). J. Phys. F 7, 781. 



806 B. I. Craig and P. V. Smith 

Boyer, L. L., Papaconstantopoulos, D. A., and Klein, B. M. (1977). Phys. Rev. B 15, 3685. 
Cornwell, J. F., Hum, D. M., and Wong, K. G. (1968). Phys. Rev. Lett. A 26,365. 
Dempsey, D. G., Grise, W. R., and Kleinman, L. (1978). Phys. Rev. B 18, 1270, 1550. 
Friedel, J., Lenglart, P., and Leman, G. (1964). J. Phys. Chem. Solids 25,781. 
Hodges, L., Ehrenreich, H., and Lang, N. D. (1966). Phys. Rev. 152, 505. 
Johnson, W. B., Anderson, J. R., and Papaconstantopoulos, D. A. (1984). Phys. Rev. B 29, 5337. 
Koelling, D. D. (1981). Rep. Prog. Phys. 44, 139. 
Mueller, F. M. (1967). Phys. Rev. 153,659. 
Petroff, I., and Viswanthan, C. R. (1971). Phys. Rev. B 4, 799. 
Slater, J. C., and Koster, G. (1954). Phys. Rev. 94, 1498. 
Smith, N. V., and Mattheiss, L. F. (1974). Phys. Rev. B 9, 1341. 
Smith, P. V. (1985). Phys. Status Solidi (b) 128,563. 
Tawil, R. A., and Callaway, J. (1973). Phys. Rev. B 7, 4242. 
Wood, J. H. (1962). Phys. Rev. 126, 517. 

Manuscript received 14 April, accepted 30 June 1988 


