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In records of the atmospheric pressure in Oslo, at 60' latitude, a one-day oscillation caused by the 
lunisolar tide has been detected. The amplitude has a mean value of O· 17 mb. This oscillation 
appears during intervals when the declination of the Moon has high numerical values. When the 
Moon passes through the equator, the one-day oscillation disappears and only the half-day mode 
continues. If a maximum coincides with upper culmination, it reappears during the next fortnight 
at lower culmination. This means that the phase changes approximately 180' or 12h every time 
the Moon crosses the equator, and this is the main reason why it has not been detected by 
means of traditional harmonic analysis of the atmospheric pressure oscillations. By means of the 
correlation between the pressure variation and the magnitude of the tidal acceleration, it was 
possible to separate the dynamic one-day oscillation from terms of thermal origin. 

1. Introduction 

Tides in the atmosphere have been observed in the past. An extensive review 
is found in Chapman and Lindzen (1970). Solar terms are designated 51 and 52 
with periods of 24 and 12 hours. They are of thermal origin, and they have been 
demonstrated on a global scale. The dynamic tide is mainly due to the Moon, 
but also to the Sun. The corresponding lunar terms have been designated 4 and 
~, representing oscillations with periods of one lunar day and one-half lunar day 
respectively. The term ~ has been found in the data (Chapman and Lindzen 1970, 
p. 94; Haurwitz and Cowley 1969, p. 125), with amplitUdes decreasing from about 
0·070 mb at equatorial stations to about 0·007 mb at 60° latitude. The term 4 has 
not to my knowledge been detected before. 

The method used to search for lunar terms in the pressure data has been to group 
together data belonging to the same lunar hour, counting from the lower culmination 
of the Moon. Sometimes the true lunar culmination is used, but mean lunar time 
where a mean Moon circles the Earth at the equator has also been used extensively. 
In order to avoid the inaccuracies arising from the use of mean lunar time, and also 
to be able to compare the pressure variations with the tidal acceleration, the true 
Moon has been used in the following. 

The formulae used in the computation are derived as follows: In Fig. I the Earth 
is represented by a sphere. The north pole is shown in the direction P, the plane of 
the equator is x-y, Q is the position of the observer and m marks the position of 
the celestial body, Sun or Moon, and also its mass. The position of m is determined 
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Fig. 1. The Earth as a sphere, where P is the direction to the north pole, x-y is the equatorial 
plane, m represents the position of the disturbing body, Moon or Sun, and Q is the position of 
the observer. 

by the hour angle H, the declination I> and the distance R. The tidal acceleration A 
operating in Q equals the acceleration in Q minus the acceleration at the centre of 
the Earth. 

With the notation of Fig. 1 we have 

A = m(A'..::13 _RIR3) = m{(R-r)/..::13 _RIR3}, 

..::12 = R2{1-2(rIR)cosz+(rIRi}, 

where z is the geocentric zenith distance of m. With 

we find that 

..::1- 3 = R-3{1+3(rIR)cos z-I.5(rIR)2(1-5cos2 z)}, 

A = mR-3[R{3(rIR)cosz-l.5(rIRi(1-5cos2 z)} 

- r{ 1 +3(rl R)cos z}]. 

(1) 

Division of the expression for A by the acceleration due to the gravity of the Earth, 
M I r2 (where M is the mass of the Earth), introduction of the parallax of the Moon or 
Sun by sin II = r I R, and separation into a vertical V and a horizontal W component 
yields 

V = (ml M)sin3 II{ -1 +3cos2 z - sin II 1·5cos z(3-5 cos2 z)} , 

W = (ml M)sin3 II sin z{3 cos z - sin II 1·5(1-5 cos2 z)} . (2) 
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The zenith distance z is computed from 

cos z = sin <f> sin I> + cos <f> cos I> cos H , (3) 

where <f> is the latitude of the station. The terms included in (2) are sufficient to 
produce results with an accuracy of to-3• 

From the theory of the Moon and Sun (see Meeus 1962) the positions of the two 
bodies were computed to an accuracy of 1 arcminute for every half-hour through the 
period covered by the data series. We note that only geocentric values are needed. As 
regards the vertical components the two values of solar and lunar origin are summed. 
However, for the horizontal components they must be further separated into two 
components, for the north-south and the east-west directions. By considering only 
the principal terms in (2), we have V a:: 3 cos2 z-1 and W a:: 3 sin zcos z, and the 
total acceleration becomes proportional to (3 cos2 z+ l)L Also the principal term 
in the potential is proportional to (1- 3 cos2 z). Consequently, the rapidly changing 
zenith distance enters the expressions in a similar way to the vertical component V. 
For these reasons the vertical component V will be used in the search for a possible 
connection between the tidal acceleration and variations in the air pressure. 

OSLO JUNE 1963 
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Fig. 2. Computed values of the vertical component of the tidal acceleration of Moon + Sun 
(multiplied by -107) for June 1963 in Oslo. T.N. is the moment of the principal maxima 
(minima of the curve). The horizontal lines following indicate the intervals when the acceleration 
is decreasing to the next minimum. 

In Fig. 2 the computed curve for V is shown during June 1963. Apart from a 
scale factor of to7, the curve has been multiplied by -1, and therefore the minima 
of the curve represent maxima in V, or the curve shows the variation in gravity. The 
phases of the Moon are shown, and in this summer situation the one~day variation 
is prominent around new and full Moon, while the half-day variation manifests itself 
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with shallow minima in between. This is easy to explain. At upper culmination the 
zenith distance is Zu = cf>-8, whereas at lower culmination it is 2i = 180"-(cf>+8). 
This means that 

cos Zu/ cos 2i = cos(cf>-8)/ cos(cf>+8). (4) 

With the latitude cf> = 60" this results in close to obliteration of the half-day oscillations 
when the declination has high numerical values. If 80 is the maximum declination of 
the Moon, it will change in the course of half a month from + 80 to - 80• Therefore, 
the principal and secondary maxima will change position relative to the time On a 
clock showing lunar time, meaning that in harmonic analysis where the data from 
corresponding lunar hours are grouped together, a jump of one-half lunar day will 
occur twice a month. This means that, whereas a half-day oscillation can be found 
by the method, a one-day term cannot. However, the half-day term is also present. 
In Fig. 2 it is seen that in between the larger one-day oscillations some days when 
only the shorter period occurs are found. 

The combination of the lunar and solar terms also complicates the picture. For 
instance at equinoxes the full and new Moon occur when the declination of the Moon 
is close to zero, and it is seen from formula (4) that the combined effect of Sun 
and Moon will produce maxima twice a day with nearly the same magnitude. In 
equatorial regions this is different. With cf> = 0 in (4) it is seen that only the half-day 
oscillation can be present. 

Consequently, a one-day lunisolar tide in the atmosphere comes into existence only 
at high latitudes, north or south. Another complication becomes apparent by a study 
of Fig.· 2. The principal maxima (minima in the curve) on the 7th when the Moon 
is full, and on the 21st when it is new, occur close to the same time of day, at noon. 
Therefore the thermal tide, caused by the insolation could be mixed up with the 
one-day dynamical tide during some days each month. 

The Norwegian Meteorological Institute provided measurements of the air pressure 
observed at Oslo (Blindem) every 2 hours during the 2-1 year period 1957-77. In the 
present investigation measurements for the 13 years 1957-67, 1969 and 1977 have 
been used. The years 1968 and 1970-76 were omitted solely because the data were 
difficult to read as the two first digits were not always recorded. 

2. Gradient of the Pressure 

In the search for a one-day pressure wave we concentrate on the gradient, and 
we need a method which enables us to remove the much larger variations caused by 
the weather, and also short-period variations which would be noise. Several methods 
were tried, but only the following survived the test .in Section 6. 

We select 25 observed values, covering 50 hours and determine the coefficients in 
a Fourier series: 

ak = -l: ljcos -U-l)k , 2 n (2~ ) 
nj=l n 

bk = ~ i ljsin(2~ U-l)k), 
nj=l n 

1 n 

~ = -l: lj, 
nj=l 
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where n = 25, k = 1,2, ... , 12, and lj are the 25 observed values. Then the function 

(5) 

will reproduce the values Yi exactly if we choose m = 12, i.e. we use 12 sine and 
12 cosine terms. But if, for instance, only the first eight terms are used by putting 
m = 8, periods with duration 50/9, 50/10, 50/11 and 50/12 hours will be omitted, 
and the function Zj will represent a smoothed curve through the data. Then, Zj 
will contain periods of duration between 50 and 6·25 hours, if they are present in 
the data. The standard deviation of the observed values from this curve is computed 
from 

and the value of cr will be used as a measure of the noise. The gradient could be 
found by derivation of (5), but in doing so, weather fluctuations with periods of soh 
could still be included. They can be removed, however, by omitting the term j = 1. 
Consequently, we get the following formula for the gradient, valid for point i: 

Z'. = i {_0.sin(2'IT (i-l)j) +b'jcos(2'IT (i_l)j)}2'IT j. (6) 
I j=2 ') 25 25 25 

This gradient can be computed for every observed datapoint, but actually it will be 
needed to determine the gradient between the regular 2b intervals. In order to do this 
the 25 points are selected in a way which places the central points, numbers 12, 13 
and 14, close to the actual time. Then linear interpolation between Zi2 and Zi3 or 
between Zi3 and Zi4 defines the gradient of the pressure at this moment. 

In Fig. 3 the result of the procedure is shown for the two selected cases (0) in July 
1960 and (b) in July 1977. The function Zj is shown by the curves and the crosses 
represent the observed data Yi, In (0) the noise is small, only 0·08 mb, but in (b) i~ 
is 0·40 mb. Here (and in Fig. 2) a moment T.N. is indicated. This is the time when 
the tidal acceleration has a principal maximum and is designated by 'tidal noon'. In 
(0) the gradient has been determined at a time T.N. minus 4b and in (b) at a moment 
T.N. plus 4b. The arrows show the direction of the gradient. In (0) the gradient 
follows the slope of curve Z j' but in (b) the gradient is positive whereas the slope of 
the curve is negative. The reason for this apparent discrepancy is the fact that the 
curve includes the long period of soh which was omitted in the computation of the 
gradient. 

3. Gradient of the Pressure and the Tidal Acceleration 

In the classical search for an atmospheric tidal wave (see Chapman and Lindzen 
1970) the data have been arranged according to a time measure of one lunar day, or 
1·03505 mean solar days. This so-called mean lunar clock can differ from a true lunar 
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Fig. 3. Observed pressure (crosses) where the curves show the trigonometric 
interpolation based upon 2S observed .values, including periods between soh 
and 6.2Sh. The arrows marked G show the direction of the tangent when 
the SOh period is excluded. 

clock by more than one hour. The Sun is also important, even if the Moon exerts a 
pull 2· 18 times greater when the mean distances are considered. The importance of 
the zenith distance which indeed is the most significant factor regarding the magnitude 
of the acceleration, is difficult to include in a treatment by harmonic analysis. Also, 
as we have already seen, the jumps between the principal and the secondary maxima 
will blur the traces of a one-day oscillation. Therefore, the computed curves including 
the vertical components of the lunar and solar tide are the basis for the comparison 
with the observed pressure. 

From the starting points T.N. where the principal maxima take place, we could 
count lunar mean hours centred at T.N. However, it is preferable to use mean solar 
hours grouped from -14h to + 14h around T.N. in steps of 2 hours. In Fig. 2 
where the moments T.N. are marked, they are followed by a horizontal line where 
the acceleration is decreasing after each principal maximum to the next minimum. 
The change of the acceleration during this interval will be used as a measure of 
the 'magnitude'. In order to be able to concentrate on the one-day oscillation, the 
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data have been omitted when the interval between two computed minima becomes 
shorter than 16 hours. 

Consequently. the data have been sampled. and actually 69% of the total dataset 
has been used. In Fig. 2 for instance. the periods from the 1st to the 3rd and from 
the 29th to the 31st have been omitted. But in searching for the thermal effeCt. 
where the mean solar day is the basis. the complete set has been used. Ruled by 
the tidal clock the behaviour of the pressure gradient through a 'tidal day' has been 
investigated. The results from corresponding tidal hours have been grouped together 
and by statistical methods the variation of the pressure gradient has been found. In 
addition. the correlation between the gradient and the 'magnitude' of the acceleration 
will also be determined. the latter being unaltered during one tidal day. 

4. Statistics 

The data were divided into 13 groups. one for each year. The gradient of the 
pressure was determined at the times T.N. -14h. T.N. -12h •...• T.N. + 14h. In each 
particular case the noise was determined. defined, by the standard deviation of 25 
points from the function Zj of formula (5). During the tests to follow. it was found 
that this noise limit could be set· to 0·4 mb. The magnitude of the acceleration was 
also noted. this being the same for each tidal day. in order to find the correlation with 
the gradients determined at every phase value. -14h. -12h •...• + 14h. Mean values 
of all the scans during each year were formed. and finally the grand means including 
all of the 13 years. The uncertainty was determined from the differences between 
the yearly mean values and the grand mean. In Fig. 4a the resulting curve is seen. 
with error bars showing the uncertainty. The mean dynamical contribution to the 
pressure has been designated by D(v). where v is an index which take!\ the values 
1.2 •...• 15 corresponding to the tidal phase -14h. -12h •...• + 14h. We see how the 
mean gradient D'(v) varies during the tidal day between the limits ±O·I mb. Later 
it will be shown that integration results in values of D between the limits +0· 17 mb 
with still greater extreme variations. 

Continuing the argument that it would be impossible to register this effect using a 
mean lunar clock instead of the tidal clock. the same program was run again with the 
same methods as before. but this time the mean lunar day was used and the results 
were grouped around the time of upper culmination of the Moon. In this case no 
sampling was needed. Except for the exclusion of data because of noise. the whole 
set was used. Fig. 4 b shows the result. The error bars indicate that what remains of 
an oscillation is insignificant. or possibly a trace of the half-day oscillation with much 
smaller amplitUde may be present. 

In Fig. 4c another variation is shown. A period of duration Id.017525 or the 
mean value of the solar and lunar days was formed. There is no physical reason to 
expect a result. and it was performed in order to determine the magnitude of eventual 
statistical fluctuations. The dashed curve with circles shows the result with a period 
of Id.07354. which is Chapman's period 4 (Malin and Chapman 1970. p. 17). The 
two curves show small and insignificant variations. 

Finally. a period of exactly 24 hours was introduced and the result is seen in Fig. 4d. 
This curve represents the mean gradient of the thermal effect. and therefore this has 
been indicated by the designation T'(v). In this case the index v runs from 
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Fig. 4. Mean gradient of the pressure: (0) Distributed through a 'tidal day'. 
[Circles show the result when a series l013+R(t) is used as the data, where 
R(t) is a series of random numbers in the range ±O·S mb.] (b) Distnbuted 
according to a mean lunar clock. where 0 is the upper culmination of the 
mean Moon. (c) Grouped according to a period between the mean lunar 
and the mean solar day. Circles and the dashed curve show a similar result 
with Chapman's period Lt = Id.073S4. (d) Grouped according to mean 
solar time. CET is Central European time. Note that the vertical scale is a 
factor of S larger than: with (0). (b) and (c). 

I to 13 and corresponds to oh, 2h, ...• 24h CET (Central European time). We find two 
maxima, the maximum at 8h rises to 0·24 mb/2h, the minimum at 14h falls to -0·34, 
and the maximum at 20h reaches 0·28 mb/2h. We conclude that the thermal effect 
is the largest. Next comes the dynamical effect, and neither a period of one mean 
lunar day, nor Chapman's period 4, can be used to detect the one-day variations. 
The thermal effect will depend upon the time of year, and this will be discussed in 
Section 8, but first the function D( t) will be constructed where t is an index which 
marks every 2h throughout the year. 
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0.3 

Fig. S. The integration procedure: (a) Gradient of the pressure D' (t) during the first days of 
January 1957. produced by means of the regression coefficient with respect to the magnitude of 
the tidal acceleration. (b) Integrated dynamic pressure variation D( t). 

5. Dynamic Atmospheric Tide 

In the statistics for every tidal 2h mark the correlation was determined between the 
pressure gradient and the magnitude of the acceleration. Apart from the correlation 
coefficient. the regression coefficient Ax in the expression Y = Ax X was also found. 
where Y represents the pressure gradient and X the magnitude. By the magnitude 
we mean the difference between the maximum value at tidal noon and the minimum 
value 9-10 hours later. It becomes a measure of the strength of the tide on the 
particular day. 

The correlation and regression coefficients become functions of the tidal hour. 
Therefore. the grand means of Ax can be used to reconstruct the function D'(t). Here 
Ax is a function of tidal phase. and the magnitude of the acceleration is known for 
every tidal day. Therefore by means of the regression equation. the gradient D'(t). 
where t is the time measure through the complete dataset, can be found except of 
course for the time intervals which were omitted in the sampling procedure. In order 
to be able to integrate D'(t) we had to define D'(t) = 0 for every value falling in 
these intervals. In the procedure only the phase values T.N. -12h to T.N. + 12h were 
used because this is sufficient to cover an uninterrupted time scale. 

In Fig. 5a the method is demonstrated for the first days of January 1957. Note that 
the curves for the individual days are replicas of each other. apart from a diminishing 
scale because of the diminishing magnitude of the acceleration. The first T.N. at 
Id.Ol06 takes place close to lower culmination of the Moon. One hour later the Moon 
was new. The time measure is CET. Joints between the adjacent tidal days are marked 
by arrows. As a preparation for the integration of D'(t). values at 01'. 2h •...• 22h are 
interpolated. Then the integration is performed by means of the trapezoidal formula. 
A slow monotonous variation caused by the effect that the pressure was increasing by 
0·80 mb from lunar phase new Ifull to first/third quarter had also to be subtracted. 
(This is a fact of the present data. but seems to be without statistical significance.) 
The series D( t) obtained in this way is consequently based upon: 
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(1) the mean pressure gradient D'(v) which was found by arranging the individual 
values in the scheme of tidal hours; and 

(2) the regression between these values and the magnitude of the tidal acceleration. 
Fig. 5b shows the result of the integration for the first days of January 1957. On the 
1st of January the amplitude is 0·25 mb. 
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Fig. 6. Mean dynamic gradient 15'(v) shown for three values of the noise 
limit: (a) 0·4, (b) 0·2 and (c) 1·4 mb/2h. The solid curves were obtained 
with the original data, the circles with D( t), and the crosses with 0( t) - D( t) 
as the data 

6. Crucial Test of the Method 

The reconstructed dynamical contribution to the pressure variation D( t) can now 
be used to test the method. The program which produced the mean function D'(v) 
shown in Fig. 4a can be run again, but this time with the series D(t) as the data 
instead of the observed series O( t). In Fig. 6 the result is shown with three values 
for the noise limit (a) 0·4, (b) 0·2 and (c) 1·4 mb/2h. The solid curves are obtained 
with the original data and the circles are the results with D( t) as the data. In all cases 
the differences between the circles and the solid curves are small, about 0·015 mb/2h, 
which is satisfactory in view of the fact that the observed pressure was noted to a 
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precision of O· 1 mb. However, the number of observations which is the basis of 
each point in Fig. 6 varies from 1445 in (0) to 710 in (b) and 2920 in (c), which 
is a natural consequence of the varying noise limit. If the noise limit is disregarded 
we end up with 3086 observations for each point, but in this case the test shows 
unacceptable differences. Therefore, a noise limit which excludes data from days with 
too much noise is needed. Fig. 6 demonstrates that a noise limit of up to 1· 4 mb is 
sufficient. Nevertheless, the noise limit 0·4 mb where 47% of the available data is 
used was chosen because of the higher correlation coefficient with the magnitude of 
the acceleration, as discussed in the following. 

At this point we mention that in a first attempt to determine the dynamical one-day 
oscillations we used a combination of straight lines adapted to the observed values by 
the method of least squares. Testing the result statistically revealed that the method 
itself produced an amplification of the effect. Then polynoms of the 2nd and 3rd 
degree were tried, but this time the test showed a reduction. Finally, the Fourier 
filtering method used here seems to be a good solution to the problem of sorting out 
small systematic oscillations from a dataset with considerably larger noise. 
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Fig. 7. Correlation coefficient between the pressure gradient and the 
magnitude of the tidal acceleration from the three noise limits 0·2, 0·4 
and 1·4 mb: (a) original data used and (b) series D(t) used as the data. 

The test can also be used on the correlation coefficient between the pressure gradient 
and the magnitude of the acceleration. In Fig. 70 the original data were used and the 
three curves again represent cases with noise limits of 0.2, 0·4 and 1·4mb. During 
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the tidal day the correlation coefficient varies between the limits +0·30 for noise 
limit 0·2, between +0·14 for noise limit 1·4, and between +0.20 and -0·28 when 
the noise limit of 0·4 mb is chosen. This supplies an argument as to why we proceed 
using the noise limit 0·4 and not 1·4 in the following. 

Fig. 7 b shows a similar result when the series D( t) is used instead of the observed 
values. The correlation coefficient is considerably higher, varying between~ the limits 
+0· 75, and it is also easier to understand the shape of the curve. There is a high 
positive correlation at phase -14h to -lob, where the gradient has positive values, 
then it decreases to marked negative values at _2h to +4h, where the gradient is 
negative, and again to positive values from +6h, exactly as would be expected for 
a tidal wave. The more complicated picture in Fig. 7 a, however, shows that the 
original data also contain information which is not of dynamic origin. Of course, this 
is the thermal effect which for some days each month follows the tidal day. 

The simplified picture is encouraging. Not only has the correlation increased to· 
higher extremal values of +0· 75, but the shape of the curve indicates that the effect 
must be of dynamic origin. However, still another test can be performed. From 
the observed pressure series 0( t) the series .. 1>( t) can be subtracted, and this new 
series can be used as data in the progr~. The result is seen in Fig. 6, where crosSes 
connected with the dashed curves show the resulting mean gradient of the amended 
pressure. The amplitUde of these curves is small, and if the result is significant it may 
indicate a residual half-day oscillation. 

A final test on the validity of the results concerns the question whether it is possible 
to explain the dynamic pressure variation as a statistical oscillation. It has already 
been shown in Fig. 4c that a period between the lunar and the solar day resulted in 
a gradient jj'(v) which is small and insignificant. In addition, the stochastic dataset 
1013 + R( t) was constructed, where R( t) is a series of random numbers in the interval 
±0·5 mb. In the construction of R(t), Table 26.11 of Abramowitz and Stegun (1964) 
was used. The five-digit numbers were separated into five one-digit numbers, giving 
a series of numbers between 0 and 9 with 12500 members. This was not enough 
to cover the datapoints consisting of 56964 observations. Therefore, the series was 
counted backwards and then forwards again to obtain a series of 62500 numbers. The 
repetition involved should not be of any consequence as it does not repeat itself at the 
same time of the year, month, day or hour. From each number, 4·5 was subtracted 
and the result was divided by 9, thus resulting in additions to the constant pressure 
in the range + 0·5 to -0·5 mb. In Fig. 4a the circles indicate the results in the 
process of determining jj'(v). The same test on the determination of T'(v) gave a 
similar result, the numerical values being smaller than 0.01 mb/2h. 

7. Dynamic Mean Pressure Variation 

So far the gradient of the pressure has been discussed, its connection with the tidal 
acceleration found, and the dynamical part D(t) produced. The mean· oscillation can 
be found in two possible ways. Either· the series D( t) may be arranged according 
to tidal phase an9 the mean values formed, or we can integrate the mean gradient 
jj'(v) which was determined directly from the pressure data. In the latter procedure 
a trigonometric interpolation formula can be used to represent the mean gradient, 
and then the integration is straightforward. Fourier coefficients ak and bk based on 
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the 15 values at T.N. -l4h to T.N. + 14h are found, and the values D(v) where v is 

an index starting with 1 at T.N. _l4h can be computed from 

D(y) = ~(v-l)+ i [ak sin(21T (V-1)k) 
k=l 15 

+bk{l--'COS(~; (V-l)k)}]/2~5k. (7) 
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Fig. 8. Dynamic mean pressure variati~n where the solid curve shows the result obtained by 

means of formula (7) and the crosses the first harmonic. The circles show a mean curve obtained 

from the aeries D( t). In the right part the amplitude spectrum of D( t) is shown. 

In Fig. 8 the solid curve shows the result. A maximum occurs 6 hours before T.N. 

and a miniInum 6 hours after T.N., with the pressure decreasing fastest when the 

tidal acceleration has its largest value. The mean amplitude is 0·17 mb. The Fourier 

method also facilitates a study of the harmonics. Crosses and the dashed curve show 

the first harmonic with a period of 14 hours. Its amplitude is 0·02 mb, and the 

second harmonic has an amplitude ofO·Ol mb. The first method results in the mean 

curve indicated by circles. Again the method which was used to find the series D( t) 

has been confirmed. In the right part of Fig. 8 the amplitude spectrum A of D( t) is 

shown. The mean amplitude is O· 19 mb, but it is interesting that amplitudes up to 

0·35 mb are present in 2% of the cases. 

8. Thermal Contdbution 

Fig. 4d shows the gradient of the pressure when the data are grouped with a 

period of 24 hours or a solar day. The curve showing the variation during a solar day 

represents a mean of 13 years, and it has been denoted by T'(v) where v= 1, 2, ... ,13 

correspond to Qh, 2h, ... , 24h CET. Of course there is a high degree of dependenct:: upon 

the season. In order to separate this effect the statistics were divided into 12 
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Fig. 9. Thermal gradient of the 
pressure showiq the mean daily 
variations for each month. 

groups containing the results for each month. Then, mean values for 13 months of January, 13 months of February etc. were formed. Fig. 9 shows the result. There are two maxima and two minima each day, most pronounced during the winter months. The next step was to use the results to form a continuous series covering every day of the year by linear interpolation. This series may be designated by T' (t) where 
t = 1,2, ... ,4380 starting with 1 at January Ist fJ't. Then integration is performed by means of the trapezoidal formula to form the series 

T(t) = ft T'(x) dx. 
, 0 

Again the same test as before was'performed. The series T(t) was substituted for the observed data and a new curve for the mean gradient T'(lI) found. In Fig. lOa the result is seen. The original curve is shown, the same as shown in Fig. 4d, while the crosses show the result with T( t) as data. Once more the mean value of the function T( t) can be found in two ways, either by summing values from the same hour in the series, or by integrating the function T'(lI) which had been obtained directly from the data. A trigonometric interpolation formula was defined, exactly as given in Section 7, and the curve in Fig. lOb shows the result. The crosses correspond to those in 
(a) where the series T(t) was used as the data. Fin8J.ly, the circles represent 
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Fig. 10. Thermal daily variation: (a) The curve shows the yearly mean gradient 1"( v) determined 
from the original data (the same curve as shown in Fig. 4d) and the crosses show the result with 
the series T(t) as the data. (b) The integrated mean function 1'(v) based upon the original 
data is shown by the curve. Crosses show the result when the series T( t) is used as the data, 
and the triangles show Schou's (1939) result. 

the result of summing all values in T( t) corresponding to the same solar hour and 
forming mean values. We note that the amplitude of the curves defined by the crosses 
and by the circles is smaller than the solid curve. A possible explanation of this fact 
will be given in Section 10 where the correlation between the series T( t) and D( t) is 
discussed. 

In Table 1 the monthly means of the function T( t) are shown every second hour 
from oil to 22h CET. 

9. Thermal Oscillation Compared with Earlier Results 

Schou (1939) presented tables ofthe pressure for every hour local time at a number 
of stations in Norway. The table for Oslo is based on observations during the 40 year 
period 1893-1932. The monthly mean of the daily pressure variation normalised to 
the mean pressure of the month is given for every hour local time. The presentation is 
therefore similar to Table 1, the only difference being that Schou used local time. The 
measurements used by him were obtained in Oslo 24·9 m above sea level, whereas 
the present observations were obtained 3·5 km further north at an altitude of 96 m. 
Therefore, the results of Schou prepared by the classical method should constitute 
an independent test of the method used here. From Schou's Table 2 (p. 37) values 
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for ()h. 2h, ... , 22h were selected in order to make them compatible with our data. 
The yearly mean is formed from the monthly values, and the harmonic components 
are computed. If S.(T) and 52(T) represent the one-day and half-day components 
respectively, we get 

S.(T) = 0.249sin(T+3.8), 52(T) = 0.224sin(2T+ 133.4), (8) 

where T denotes local time measured in degrees (lh = 15°) from midnight, the unit 
being millibar. Similarly, separation of the mean function T(v) into its harmonic 
components 1'1 and 1'2 and introduction oflocal time, which is 4°·28 less than CET, 
results in 

T1(T) = 0.287sin(T-4.9) 

= 0.236sin(T-5 .0) 

= 0.240sin(T-5.0). 

Tz{T) = 0.219sin(2T+ 131.5) 

= 0.t88sin(2T+ 131.8) 

= 0.t99sin(2T+ 131· 7), (9) 

where the three fUnctions T(v) from Fig. lOb are shown in the same order. There 
is a difference of 8°.8 between the phase constants of S. and 1'1' corresponding to 
35 minutes, but the phase constants of 52 and 1'2 are nearly equal. If we consider 
the different methods used and the different datasets, it may be concluded that the 
agreement is satisfactory. In Fig. lOb where the curve shows the mean function 
T(v), Schou's values are marked by triangles. 

10. Connection between the Dynamic and Thermal Effect 

Having found the two series, T( t) representing the thermal tide, and D( t) which 
is of dynamic origin, it is tempting as a final test to subtract both of them from 
the original data series O( t). Then, this new series could be used as the data in 
the programs which determined the mean gradients T'(v) and ii' (v) and we might 
expect to obtain results close to zero. But this did not happen. In both attempts the 
data had been more than compensated, resulting in gradients running opposite to the 
former curves of Figs 4a and 4d. The explanation is already indicated in Section 1. 
Every month there will be a few days when the thermal and dynamic effects operate 
in unison. In Fig. 7 it was demonstrated that the correlation coefficient between the 
gradient of the pressure and the magnitude of the tidal acceleration during a tidal 
day showed a different behaviour if the series D( t) instead of O( t) was used as the 
data. 

Now the same program can be run with T( t) as the data, and we find a correlation 
coefficient showing two maxima and two minima as indicated in Fig. II, where the 
correlation coefficients for the three cases are placed together and the curves marked 
0, D and T. When looking at Fig. 11 a natural idea would be that the two series 
D( t) and T( t) are also correlated. But this is not the case. The correlation coefficient 
between the two series was computed and the result was zero in the statistical sense. 
The mean value for all of the years was smaller than the standard deviation; actually 
the result was -0·035+0·043. The correlation coefficients shown in Fig. 11 can be 
used to construct two factors a and b such that the dataset O(t)- aT(t)- bD(t) will 
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(a) 
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Fig. 11. (a) Correlation coefficient between the dynamic gradient and 
the magnitude of the acceleration with the three datasets O(t), D(t) 
and T( t). (b) Residual dynamic gradient where the curve is for dataset 
O(t) -0·355 T(t) -0·613 D(t) and crosses for dataset O(t)- D(t). 

produce almost no gradient of the pressure. From the curves marked T and D in 
Fig. 11 a the mean square deviations may be formed to give a = O· 355 and b = o· 613 
respectively. Then with the dataset O(t) -0·355 T(t) -0·613 D(t), the dynamical 
gradient iJ'(v) shown in Fig. 11 b by the curve is obtained. The uncertainty is shown 
by the vertical bars. Crosses mark the former result where the series O( t) - D( t) 
had been used. It is obvious that the result is zero in the statistical sense, and it is 
immaterial whether the series D( t) or the combination aD( t) + b T( t) is subtracted 
from the data. 

Now since there is a significant correlation between the gradient and the magnitude 
of the acceleration when the series T( t) is used as the data, it might be suspected that 
conversely we could find a significant variation within the solar day if the series D( t) 
is used as the data. This did not happen. Instead the deviations of T'(v) from zero 
became smaller than 0·005 mb/2h, independent of the time of day. This of course 
is consistent with the fact that the two series T( t) and D( t) are uncorrelated. It 
proves again that the dynamic wave represented by D( t) can only be explained by 
the lunisolar tide. 

However, it is interesting that the thermal variation T( t) alone will produce 
oscillations during the tidal day. An explanation may be that the dynamic wave acts 
upon the thermal wave as a feedback system for some days every fortnight, meaning 
that part of the series T( t) actually is of dynamic origin. 
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Fig. 12. (a) Mean dynamic pressure variation during the tidal day, iJ(V), shown by the curve, 
and the corrected mean lie(v), shown by triangles. (b) Filtered mean daily thermal variation 
1'r(v) and the filtered daily variation of the thermal balance function .fr(v) both shown by solid 
curves. The triangles (dashed curve and indicated by 1'e) give the mean daily variation of the 
corrected thermal series Te(t). 

11. MulticorrelatiOD Analysis 

Since the series D( t) of dynamic origin is significantly correlated with the magnitude 
of the acceleration, an attempt was made to find a function which would be correlated 
with the thermal series T( t). For that purpose a function which describes the 
radiative balance of the atmosphere was defined. First the accumulated insolation 
f!~ cos z dB was computed, where B is the hour angle of the Sun, 110 its value at 
sunset and z is the zenith distance as given by formula (3). The integration started 
on January lst at sunrise was continued the next day from sunrise to sunset through 
the year, and its value every 2b was noted. In the course of a year the same amount 
has to be radiated into space at a constant rate, day and night. The series S( t) which 
is the accumulated insolation minus the radiation was computed and listed every 
2b. Strictly speaking S( t) should be multiplied by the solar constant, but this has 
been omitted because the purpose is only to use correlation coefficients, which are 
independent of the scale. The first attempt to correlate S( t) and T( t) resulted in a 
correlation coefficient 0.24, almost independent of the time of day. This only reflects 
the fact that both series show a dominant yearly variation. In order to study the daily 
variations, periods longer than 24b were removed from S( t) and T( t) by a filtering 
method similar to the previous one described in Section 2, but this time covering 4380 
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or 4392 datapoints. In Fig. 12b the yearly means of the filtered series T,(t) and .sf(t) 
are shown as functions of the time of day. The curve 'Ff does not differ much from 
'F shown in Fig. 10 b, but the shape of Sf is interesting. Small values of Sf result in 
increasing pressure and vice versa. Most important is the numerically high value of 
the correlation coefficient of - O· 819 between the two series .sf( t) and T,( t). 

Having obtained this promising result, we performed a multicorrelation analysis 
between four functions: 

(1) F, the magnitude of the tidal acceleration (one value each tidal day); 
(2) Sr, the filtered daily variation of the radiative balance; 
(3) 1f, the filtered thermal series T( t); and 
(4) D, the dynamical variatioh of the pressure. 

The sampling had to be chosen according to the tidal day, and for every value of the 
tidal phase v the analysis had to be repeated, giving 15 separate results. The absolute 
correlation cOefficients r12' r13' r14' r23' r24' r34 were computed, the determinant 

1 r12 r13 r14 

r12 1 r23 r24 
.d= (10) 

r13 r23 1 r34 

r14 r24 r34 1 

was formed, and its minors .d IJ were computed. Further, the standard deviations 
0"1,0"2,0"3,0"4 were found and the coefficients 

(11) 

were determined. Then, the connection between the mean functions F, Sf, 1f and D 
becomes 

1f = ~1 F + ~2 Sf + ~4 D, 

(12) 

Since it is suggested that the functions F and Sr are the causes and 1f and D are the 
effects, solution of equations (12) leads to 

~ = {(~1 +~4 B41 )F +(~2+~ B42)Sr}/(I-~4 B43) , 

Dc = {(B41 +B43 ~1)F +(B42 +B43 ~2)5f}l(1 -~ B43) , (13) 

where ~ and Dc can be interpreted as corrected thermal and dynamical functions. 
The coefficients 

CFr = (~1 +~4 B41)/(I-~ B43) , 

CsT = (~2 +~4 B42)/(1 -~4 B43) , 

Cro = (B41 +B43 ~1)/(1 -~4 B43) , 

CsD = (B42 +B43 ~2)/(1-~ B43) , 

are listed in Table 2 as functions of the tidal phase v. 

(14) 



Lunisolar Atmospheric Tides 827 

Table 2. Multicorrelation coefficients 

T.N.+ CFT CsT CFO Cso v 

-14 0·3074 -1·068 -0·1081 -0·0956 1 
-12 0·2637 -1·101 0·0000 -0·1181 2 
-10 -0·0500 -1·014 0·0694 0·0879 3 
-8 -0·2844 -0·984 0·1023 0·0000 4 
-6 -0·1955 -1·042 0·1185 0·0085 5 
-4 0·0431 -1·047 0·1180 0·0528 6 
-2 0·2265 -1·035 0·0795 0·0669 7 

0 0·2082 -1·062 0·0000 0·0749 8 
2 0·0157 -1·035 -0·0931 0·0727 9 
4 -0·2477 -0·958 -0·1717 0·0203 10 
6 -0·3077 -0·981 -0·1984 0·0091 11 
8 -0·0288 -1·047 -0·1599 -0·0808 12 

10 0·3060 -1·073 -0·0764 -0·1470 13 
12 0·2637 -1·101 0·0249 -0·1410 14 
14 -0·0490 -1·014 0·1046 -0·0754 15 

Next, within the intervals where the tidal days were defined, the corrected series 
Te( t) = CFT F + CST 5f and De( t) = CFO F + cso 5f were formed. In the intervals 
where the tidal days had not been defined, the values of 7;;(t) were set equal to 1f( t) 
and De( t) = O. Then, the grand means were formed again and Fig. 12 shows the 
results. In Fig. 12a the mean dynamical variation D(v) is shown by the curve and 
De (v) by triangles. The two are practically identical. However, in Fig. 12b, where 
T C<v) is shown by the solid curve and Te(v) by the dot-dash curve, two differences 
become apparent. Firstly, the amplitudes of Te is diminished relative to that of Tr, 
exactly as expected, and secondly the maximum at about lob seems to be displaced 
to the left, approximately one-half hour earlier. 

In Table 3 the monthly means of the daily variation of the function Te( t) have 
been listed for every second hour from ob to 22h CET. 

12. Conclusions 

In the foregoing every test confirms the existence of a lunisolar one-day atmospheric 
pressure oscillation with a mean amplitUde of 0·17 mb. This comes into existence 
When the Moon has increasing numerical values of declination, it decreases again 
when~'the equator is approached, and so on. This is a consequenceCof the high latitude 
of the station (Oslo at 60° north). It may be compared with the values for the lunar 
half-day variations Lz. of Fig. 2L.6 in Chapman and Lindzen (1970). The amplitUde 
of Lz. is extremely small in high latitudes, actually only 0·007 mb in Oslo. But in 
the tropics it reaches values of up to 0·080 mb. Probably the atmospheric dynamical 
tidal wave will appear in the one-day mode at every station, north or south, with 
high latitude. 

In equatorial stations the one-day luni-solar oscillation cannot exist. When the 
latitude is close to zero, formula (4) shows that the magnitude ofthe tidal acceleration 
becomes equal at upper and lower culmination. 

The curious fact that the thermal one-day oscillation has a small amplitUde 
compared with its first harmonic, the half-day oscillation, is possibly explained by 
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Fig. 13. Situation during the first half of June 1963. Crosses show the observed pressure values 
0( t), while the dynamic variation D( t) and the thermal variation T( t) are shown by solid curves. 
During the interval between the 4th and the 10th the corrected series Dc(t) and Tc(t) together 
with the sum Tc + Dc are shown using a doubled vertical scale. 

the feedback of the dynamic tide, and the closeness to the natural frequency of the 
atmosphere. 

As an illustration Fig. 13 shows the resulting curves T(t) and D( t) for the first 
half of June 1963. The crosses mark the observed pressure series. During the interval 
between the 4th and the 10th the corrected series Dc(t) and I;,(t) together with the 
sum Dc + I;, are shown using a doubled vertical scale. 

The Moon and the Weather. It may be relevant to raise the question again: does 
the Moon influence the weather? It is interesting to quote two papers, one by Bradley 
et al. (1962) and the other by Adderly and Bowen (1962). Together they found a 
clear correspondence between the phases of the Moon and precipitation during 50 
years in the USA and 25 years in New Zealand respectively (see Figs 14 and 15). 
Bradley et al. commented: 'The quantitative nature of the indicated lunation effect 
is clear from a separate plotting of the 185 dates which registered as precipitation 
maxima at ten or more stations. The amplitude of the diphasic 29·53 day cycle is 
remarkable, since the dates of the most extreme widespread rainfalls in the US history 
are three times more frequent during the cyclic peak periods than during the cyclic 
trough periods. ' 

In view of the results presented here, it is tempting to suggest that the tidal pressure 
variations are causing these variations in precipitation. 
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Fig. 14. Deviations (in terms of standard measure) of ten-unit moving totals 
of synodic decimals for 16,057 record dates of maximum 24-hour precipitation 
at 1544 US stations 1900-49, treated in separate 25 year series for correlative 
comparison. [From Bradley et al. (1962).] 
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Fig. 15. Ten-unit moving totals of the heaviest falls of the month for 50 New 
Zealand stations, for the years 1901-25, plotted against the synodic decimal. 
[From Adderly and Bowen (1962).] 
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