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Abstract 

Amplitudes for the mixing of the meson valence ground state with O(g) states, I qqG}, 
are calculated using 51/2 quarks and 1+ (TE) gluon wavefunctions from perturbative cavity 
dynamics. Bag parameters are obtained for increasing basis size by fitting to 7T-p and· K 
spectroscopy. The expected self-energy divergence appears to be regulated primarily by the 
strong coupling approaching zero. The K* and cf> masses are also calculated. 

1. Introduction 

It is generally believed that large scale lattice simulations of quantum chromo
dynamics (QCD) will ultimately provide 'measurements' of non-perturbative 
quantities which are, as yet, incalculable directly from QCD. However, since 
lattice calculations are still in an early stage (Montvay 1987), there is considerable 
interest in the further development of phenomenological models of the non
perturbative regime of QCD, such as the bag (Chodes et al. 1974) and potential 
(Isgur and Karl 1979) models. There are also other non-perturbative techniques 
which have had some success in describing low evergy QCD phenomena such 
as the liN expansion (t'Hooft 1974) and, more recently, bi-Iocal bosonisation 
(Praschifka et al. 1987). 

These phenomenological models usually assume some confinement mechanism 
and fit model parameters to the hadron spectroscopy. The real test of any 
model. constructed in this way is to predict the hadron dynamics from the 
underlying quark and gluon degrees of freedom with a minimum number of 
free parameters. 

In this paper we concentrate on recent formulations of quark and gluon 
dynamics in the static cavity (bag) model for confinement-perturbative cavity 
dynamics (PCD) (Lee 1979; Close and Horgan 1980, 1981; Barnes et al. 1982; 
Close and Monaghan 1981; Barnes 1979; Hansson and Jaffe 1983). Using these 
techniques it now seems possible to calculate a range of processes which 
stem directly from confined quark-gluon dynamics; for example, loop effects, 
mixing calculations, glueball masses, etc. 

Unfortunately, there is one main stumbling block for most applications 
of PCD, namely the question of the values of the model parameters to be 
used when describing the interaction of high-mode number quarks and gluons 
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encountered, for example, in loop diagrams. As the energy of the constituents 
increases, one might expect the confinement radius and pressure to readjust 
to maintain equilibrium. It may also be necessary to allow for running of the 
effective strong coupling constant with mode energy. 

It seems to us to be impossible to insert these effects into any PCD calculation 
of this sort without introducing an unreasonable amount of arbitrariness. We 
therefore take the view that, as a first step, it is more appropriate to use these 
techniques to calculate and improve ground-state wavefunctions by including 
higher modes and fitting to the hadron spectroscopy. In this way we hope 
to obtain a bound-state wavefunction with 'averaged' parameters that take 
the higher mode dynamics into account, which can then be used in furtber 
calculations of hadronic effects. 

This paper is intended as a brief report on the techniques involved in, and 
results of, fitting the light mesons TT-P and K to an O(g) expanded basis for 
Sl/2 quarks and 1+ (TE) gluons (Barnes 1979). We hope to extend this work 
to include P1/2 quarks and 1- (TM) gluons, and ultimately to extend to 0(g2) 
states. 

2. Perturbative Cavity Dynamics 

The quark spinors for J = i Sand P modes confined to a spherical cavity, of 
radius R, are well known. To establish our notation, we write them down as 

(oe) 1 (-ignp(r)u.rxoe) 
unP (x) = (4TTP' , (1) 

fnp(r)xoe 

where Xoe is a two component Pauli spinor. The radial functions fndr) and 
gndr) are given by 

3 

fnL(r) = R-2 Nndo(PnL r), 

(2) 

where the shell-momentum is PnL = R-1(W~L _m2R2)1/2 and K is the Dirac quantum 
number, with K = ±1 for L = P, S. The mode numbers, WnL, parametrising the 
shell-energy, EnL = wnLlR, satisfy the eigen-equation imposed by the linear 
boundary condition 

(3) 

and the normalisations are given by 

NnL = (W~L - m2R2)[{2wndwnL + K) +mR}sin-2{(w~L - m 2R2)hrt . (4) 

Anti-particle spinors are obtained according to the transformation property 
(up to some phase 1]) 

(oe)} C (oe)* ( ) VnL (x = 1] )'0 UnL x, 
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which gives 

(ex) 1 (gns(r)u. iCT2 xex) 
Vns (x) = (4rrP' , 

-i fnS(r)CT2 Xex 

(ex) 1 ( -fnp(r) CT2 Xex ) 
Vnp (x) = (4rrp , 

-ignP(r)u. iCT2 Xex 
(5) 

for the choice TJ = i. The spinors (1) and (5) can be used to construct the 
quark field operator 

«1/ (x, t)j = L L {b(f, nL, DC, i) u~~)(x) e-iEnLt 

nL ex 

(6) 

where b(f, nL, DC, i) are the annihilation operators for an nL quark with flavour, 
spin and colour labels f, DC and i respectively and satisfy the usual anti
commutation relations. A similar interpretation holds for the anti-quark 
operators d t (f, nL, DC, i). 

Gluon wavefunctions in the static cavity are constructed as one would in the 
analogous problem of electrodynamics (Lee 1979; Barnes et al. 1982; Barnes 
1979). The j = 1 modes in the Coulomb gauge are 

(i) jP = 1 +: Transverse electric (TE) 

TE 1 TE. (kn ) Anh(x) = "RNknJl If r YUh; 

(ii) JP = 1-: Transverse magnetic (TM) 

where the mode numbers satisfy 

jo(kn) = ~h(kn) : 

jl(kn) = 0 : 

and the normalisations are given by 

TE kn = {2· 7437, ... }, 

TM k n = {4· 4934, ... }, 

NI; = [I jdkn){kn(l - 2/k~)}~ I r 1 , 

NI~ = [I h(kn){kn}t I r 1 • 

The vector spherical harmonics Yjlm for these modes are 

1 

YlOm = (4rrp' em, 

1 

YUm = -3i(8rrp' ixem, 

1 

Y12m=(8rrP{em -3(i.em)i}, 

where em are the spin-1 unit polarisation vectors. 

(7a) 

(7b) 

(8) 

(9) 

(10) 
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The field operator then for the transverse gluon field in cartesian colour 
basis is just 

Aa(x, t) = L L {A~j3 (x) ~(n,h) e-iEnf 

T/=TE,TM njl 

(11) 

with the annihilation and creation operators ea(n,j3) and eat(n,h) satisfying 
the usual commutation relations. 

The components of the interaction we are interested in are 

(i) Transverse interaction 

(ii) Instantaneous Coulomb (Lee 1979) 

Hc(O) = 8~ f f d 3x I d3x2 pa(XI, O)G(XI, X2) pa(X2, 0); 

where the cavity Green's function is 

I 1 {"" 1+ 1 (Xl X2 )1 _ _ } 
G(XI,X2) = 1 Xl - x21 + Ii t:o -1- 7 P/(XI.X2) -1. ' 

pa =: glJ1t iA alJ1 : ~ 

(12) 

(13) 

The gluon self-couplings will not concern us here since they lead to 
corrections of higher order in g. 

3. Wavefunction Mixing 

In this work we simplify the calculation by considering only S-wave quarks 
and TE gluons as well as ignoring IqqqqG} states. * The wavefunction we wish 
to construct has the form 

I qq}'=1 1 siS}' + L L a}qq (n, fI, ng)1 nSflSG;;;~q4 ' (14) 
nflng 1q4 

where }qq is the angular momentum of the qq pair which for} = 1 can be 0 
or 1. 

The amplitudes are given in time-ordered perturbation theory as 

(15) 

• In a more complete treatment these states, arising from vacuum fluctuations, should be 
included as they give rise to Z-graph self-energy diagrams. Note that the states I qqGGG) 
due to O(g) gluon self-coupling do not contribute to the wavefunction as they lead to 
disconnected O(g2) energy shifts. 
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To order g2, the energy of the new ground state (14) is simply 

£i = i(ISiSl HI qqy = £(1 SiS) + i(ISiSl HclISIS>' 

+ L L at.(n, i1,ng)'{1 sISI HTI nSilSG~;~Il<i' (16) 
niing iq4 

The first step in evaluating the mixing amplitudes and the ground state 
energy is the calculation of the diagrams shown in Figs 1 a-I e. Since we 
have neglected I qqqqG) states we are left with only 'time-forward' self-energy 
contributions arising from the Bremsstrahlung diagrams Figs I a and I b. To 
be consistent with this picture we also ignore the Coulomb Z-graphs so that 
we only evaluate the diagrams of Figs I c, I d and 1 e. 

15 .. G:p. 
15 

CO 

(a) 

,- ... , , 
IS , , IS 
:> I :> ':> 

nS 

IS 
E 
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IS 15 
:> .. 
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IS .. 
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" -, 

IS' 'IS 
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Fig. 1. (a) Transverse quark Bremsstrahlung. (b) Transverse anti-quark Bremsstrahlung. (e) 

Coulomb exchange. (d) Quark Coulomb self-energy. (e) Anti-quark Coulomb self-energy. 
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If one wishes to obtain realistic wavefunctions 1 qq) to O(g), in a more 
complete treatment these effects, as well as the inclusion of P-wave quarks 
and TM gluons, must be considered. However, for the purposes of this work, 
it suffices to work in the approximation outlined above, since we are primarily 
interested in demonstrating the effects of wavefunction mixing in the simplest 
system possible. 

The computation of the diagrams of Fig. 1 is accomplished using the quark 
and gluon field operators (6) and (11) in conjunction with the interactions 
HT and He. One finds for the transverse graphs (Close and Monaghan 1981; 
Barnes 1979): 

where 

1 

, - - TE - -,[ • 1 (8OC) 2" • 
(a) 'o.(nSlSGng 1 HTllSlSr = -I R ""3 SqU,Jqq )h(1S,nS,ng)q, 

1 

(b) 'o~(lSflSG~;1 HTllSISY =-i~ (83OCY SqU,Jqq)h(iS,flS,ng)q; 

{
I, J = 0 

Sq,ljU,Jqq ) = -J~, J = 1, Jqq = 0 

=+= J~, J = 1, Jqq = 1 

(17) 

(18) 

(19) 

(note that for J = 1 and Jqq = 1 the Sq factor is negative whilst the Sq factor is 
positive) and oc is the effective fine structure constant (oc = g2/4rr). 

The transverse vertex integral is given by 

h(nS, nlS, ng)q = NIE Nns Nn,s f 1 ~2 d~ {( Wns - mq ~) til (PnS R~)jo(Pn'S R~) 
ng 0 WnS+mq 

+ (wn's: mq ~) t il (Pn'S R~)jo(PnS R~)}idkng ~). (20) 
Wn'S mq 

For the Coulomb diagrams one obtains: 

(c) '{IsISI He 1 IsISYI exchange = - 4; ~ IdlS, IS: IS, IS)qq; (21) 

, - - - -,[ I 40c 1 " . . (d) (ISISI Hel l Sl Sr Iself-q ="Z""3 R L Ic(1S,nS. nS, IS)qq, 
n 

(22) 

(e) '(ISISI HellSISYlself-q = ~ 430c ~ LIc(iS,flS: flS, IS)qq; 
n 

(23) 

where the. Coulomb integral is defined by 
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with 

WmS - mq R '2 WnS - mq R '2. . I I } 

+ (wms +mqR) (wns +mqR) JI(PmSX)JI(PnS X) • (24) 

The mode summations appearing in the self-energy terms are divergent and 
require some regulating procedure; this has been considered by several groups 
(Hansson and Jaffe 1983; Baacke et al. 1983a, 1983b) where a multiple reflection 
expansion is used to isolate the divergence. 

We choose, instead, to regulate these divergent mode summations by 
introducing a cut-off in the form of truncating the basis size to {n, f1, ng :5 NB} 
and demanding that no loop-quark mode exceeds this limit. In this way the 
wavefunction for each NB is consistent with the energy of the maximum mode 
number allowed. Divergences are isolated in the large NB behaviour of the 
parameters. Since these parameters are adjusted, at a fixed NB, to fit the data 
we believe that our procedure follows the spirit of the usual renormalisation 
procedure in (unconfined) quantum field theory. 

4. Fitting Procedure 

In terms of bag parameters the I qq) ground-state energy (16), for spin state, 
j, takes the form 

J 1 (q q 47T 4 ,.NB,.NB ) 
ENB = R WIS + WIS + 3"""" BR - Zo + oc.)c + OC.)T,J ' (25) 

where B is the bag pressure and Zo is the parametrisation of the zero-point 
energy (DeGrand et al. 1975). The transverse and Coulomb energy corrections 
are respectively 

~ OC~B == (J(1SIS 1 Hcl 1Sf sYlexchange + J(lSISI Hcl 1SISYlself-q 

+ J(1SISI HcI1SISYlself-q) (26) 
Max loop mode=NB 

The transverse energy·shift can be rewritten in the following manner. We 
first separate the first terms of the quark and anti-quark mode summations, 
i.e. 

(27) 
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The first term contains the gluon exchange piece and the (n, ii) = 1 term of the 
quark and anti-quark self-energies. We perform the sum over }qq, remembering 
that the 11SISG~E) state receives contributions from Figs 1a and 1b and using 

g 

the spin factors Sq,qU,}qq) accordingly, to obtain 

1 roNB _ 80c 1 { " ~ (2 ITO S, 1 S, ng)q ITO $, IS, ng)q) Ii OC::>T,J - 3 Ii 0'1.0'2[ L 3' . k 
ng ng 

(28) 

The above form clearly demonstrates the gluon exchange spin splitting and 
the spin-independent self-energy contributions. 

The confinement radius Ro is obtained by minimising the energy (25) with 
respect to R: 

OE~B(R) I = 0 
oR R=Ro . 

(29) 

Finally, the mass of the state is given by 

MJ(Ro) = [{E~B(Ro)}2 _{p2)]1 . (30) 

(Note that the physical observable, the mass, is independent of the cut-off NB 
by construction.) 

In the original MIT bag model fit (DeGrand et al. 1975) there were no centre
of-mass corrections. Consequently, the pion was difficult to fit since these 
effects are very important for this state. Ideally one would use Peierls-Yoccoz 
projection methods to calculate (p2), but this procedure is lengthy. Several 
authors (Bartelski et al. 1984; Carlson et al. 1983) have simply put 

(31) 

which seems to accommodate the pion very well. We generalise this choice, 
so as to include the mixing of I qqG) states, and put 

(32) 

where the generalisation of (31) is taken to be 

(33) 

(Le. we sum (p2) over occupied states weighting according to their probability) 
and the state normalisation is 

1 

NJ = (1 + ~ 2: I ajqq(n,ii,n g)1 2)-2 
nnng Jq" 

(34) 
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The strategy we employ in fitting the light mesons 7T-P and K is to first 
assume that the non-strange quark masses are zero and fit the 7T-P system. The 
mq = 0 case is particularly simple because the confinement radius dependence 
in the mode numbers (3), and overlap integrals, (20) and (24), enters as mR 
[these results should not change appreciably for mq up to -10 MeV since 
for R - 5 GeV-l we still have (mR)2 «1]. Hence, from (25), the minimisation 
condition immediately yields 

(35) 

Once the 7T-P system is fitted for some parameter set (OI.,B,ZO)Ns' these values 
are then used to determine the strange quark, ms , required to fit the kaon. 

5. Results 

We begin by considering the NB = 1 case which is easily written down and is 
pedagogically useful. For mq = 0 (and q = q) the relevant overlap integrals are 

h(lS, IS, 1) = 0·6030, Ic(lS, IS; IS, IS) = 0·2784. (36) 

Note that for q = q, the first term of the Coulomb self-energy mode sum 
cancels the exchange contribution. 

The matrix elements for J = 0, 1 states are 

J(lSiSIHcI1SiSYI =0, 
Ns=l 

(37) 

where the spin factors in the transverse matrix element add due to the two 
possible Bremsstrahlung diagrams, Figs 1 a and 1 b, which reach the same state 
for NB = 1. For the mixing amplitudes we then obtain 

1 { 0·4396, 
- . 801. "2 

aL(l,I,I)={T) -0·2538, 

0, 

and the transverse energy contributions are 

J=O, 
J=1, Jqq=O 
J = 1, Jqll = 1 

J=O 

J=1 

which demonstrates the splitting of scalar and vector states. 

(38) 

(39) 

The transverse integrals are easily checked by conSidering the gluon exchange 
contribution to the transverse energy shift. For example, taking J = 0 and 1, 
this gives 

401. 1 Y Eexchange = T R(O"l ·0"2 (0· 1767) , (40) 
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Fig. 2. (a)-(d) Behaviour of the fitting parameters with the cut-off parameter NB. (e) Vector 
kaon mass K*(892). (f) Vector phi mass 4>(1020). 
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Fig. 3. (a) Pion wavefunction amplitudes (Ns = 10) for n = 1, 5 and 10 as 
a function of ng. Negative values are plotted as shaded points. (b) Pion 
wavefunction normalisation as a function of basis size Ns. 

which is the first term in the usual mode sum (Close and Monaghan 1981; 
Barnes 1984). 

A check of the Coulomb integrals can be done by performing the integration 
without the -R-l term in the Coulomb Green's function. The result for the 
exchange term then agrees with other authors (Barnes 1984) who omitted the 
constant in G(Xl, X2); since we are considering self-energy diagrams we keep 
the full cavity Green's function . 

It remains to find parameter sets (OI.,B,ZO)NB which fit TT-P and then fit K 
with ms. Since there is actually a range of Zo values here (-1·5 - 1 ·5) which 
will fit the light mesons we have chosen to set the zero point parameter, 
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Zo, to some reasonable value, * Zo = 1, and investigate the evolution of the 
remaining parameters with NB for this simple system. 

The resultst for the Zo == 1 system parameters are plotted in Figs 2a-2d 
whilst the predictions for K* and ¢ are shown in Figs 2e and 2f- The 
wavefunction mixing amplitudes and normalisation, for the pion only, are 
shown in Figs 3a and 3b. 

6. Discussion and Conclusions 

From the large NB behaviour of the bag parameters shown in Figs 2a-2d for 
our simple Zo = 1 system, we see that the self-energy divergences are being 
regulated primarily by 0( approaching zero. The bag pressure and confinement 
radius appear to be locked together in maintaining a regulated volume energy 
with opposing NB dependence. 

The minimisation of the bag energy for the strange system, K-K* and ¢, 
is less straightforward than the Tf-P (mq = 0) case since the overlap integrals 
for mq = 0 depend on R. We have fitted ms to K(496) up to NB = S. 

An interesting feature is the behaviour of mK' and mcf> with NB. Since we 
have set Zo = 1 and fitted ms with mK, the K* and ¢ masses are not fixed at 
each NB; rather, these quantites are subject to the way the system responds to 
the regularisation procedure. It appears that the predictions for mK' and mcf> 
are independent of NB to within the errors quoted, although taking ZO(NB) not 
constant may change this. The fact that these masses are about 2% above the 
data may indicate a lower value of 0( is required for the higher momentum 
stange quark. 

In Fig. 3a we see that the wavefunction Bremsstrahlung amplitudes are a 
maximum when n = ng and appear to oscillate uniformly either side of this 
maximum. The Fock state normalisation still appears to have some residual 
NB behaviour, though very slight. 

To construct a more realistic wavefunction to O(g) we would have to include 
P-wave quark and TM gluon modes as well as the Z·graphs we have so far 
ignored. The calculations presented here give us the confidence to proceed 
to more complex situations and use the resulting wavefunctions to compute 
various hadronic effects involving the light mesons. 

References 
Baacke, J., Igarashi, Y., and Kasperidus, G. (1983a). Z. Phys. C 17, 161. 
Baacke, ]., Igarashi, Y., and Kasperidus, G. (1983b). Z. Phys. C 21, 127. 
Barnes, T. (1979). Nucl. Phys. B 152, 171. 
Barnes, T. (1984). Phys. Rev. 0 30, 1961. 
Barnes, T., Close, F. E., and Monaghan, S. (1982). Nucl. Phys. B 98, 380. 
Bartelski, ]., Szymacha, A., Ryzak, Z., Mankiewicz, L., and Tatur, S. (1984). Nucl. Phys. A 424, 

484. 
Carlson, C. E., Hansson, T. H., and Peterson, C. (1983). Phys. Rev. 0 27, 1556. 
Chodos, A., Jaffe, R. L., Johnson, K., Thorn, C. B., and Weisskopf, V. F. (1974). Phys. Rev. 0 

9, 3471. 

• The original MIT fit used Zo = 1 ·84 whilst the fit of Bartelski et al. (1984) with centre·of·mass 
corrections had Zo = 0 . 76. 
t The errors shown are our estimate of the numerical errors involved in the integrations 
and the minimisation of the bag energy for the strange quark systems. 



24 L. C. L. Hollenberg and B. H. j. McKellar 

Close, F. E., and Horgan, R. R. (1980). Nucl. Phys. B 164, 413. 
Close, F. E., and Horgan, R. R. (1981). Nucl. Phys. B 185, 333. 
Close, F. E., and Monaghan, S. (1981). Phys. Rev. D 23, 2098. 
DeGrand, T., jaffe, R. L., johnson, K., andKiskis, j. (1975). Phys. Rev. D 12, 2060. 
Hansson, T. H., and jaffe, R. L. (1983). Phys. Rev. D 28, 882. 
Isgur, N.,and Karl, G. (1979). Phys. Rev. D 18, 4187. 
Lee, T. D. (1979). Phys. Rev. D 19, 1802. 
Montvay, I. (1987). Rev. Mod. Phys. 59, 263. 
Praschifka, j., Roberts, C. D., and Cahill, R. T. (1987). Phys. Rev. D 36, 209. 
t'Hooft, G. (1974). Nucl. Phys. B 72, 461. 

Manuscript received 19 August, accepted 31 October 1988 




