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Abstract 

We study the approach to steady state of a system described by the Klein-Kramers equation 
with a COnstant source, to see how the source structure effects disappear away from the 
source. We link this to some earlier work on non-hydrodynamic effects in time-of-flight 
swarm experiments to show how this theory may be applied to the analysis of steady-state 
Townsend swarm experiments. 

1. Introduction 

The evolution of a distribution function {(c, z,t) of heavy particles reacting 
with a neutral homogeneous medium is well described by means of the 
Klein-Kramers equation with a uniform force term. For a one-dimensional 
geometry, this reads 

where c is the velocity coordinate, z the position coordinate, a the acceleration 
due to an electric field, and S the source distribution. The reaction rate v is 
positive when ionisation occurs, and negative when attachment occurs. The 
coefficients VI and V2 are related to physical quantities by 

VI = mvclM, V2 = kBTvclM, (2) 

where m is the charged particle mass, M the neutral mass, kB the Boltzmann 
constant, T the neutral gas temperature and Vc the collision frequency. 

This equation has received much attention in recent years as an improvement 
in technique has allowed some progress on the problem of diffusing particles 
near an absorbing boundary, posed a long time ago by Wang and Uhlenbeck 
(1945) [see Selinger and Titulaer (1984) for a review]. The interest in 
this problem comes from modelling chemical reactions near catalysts, and 
coagulation of colloids. For a good introduction to the Klein-Kramers equation, 
and to Fokker-Planck equations in general, see Risken (1984). 

In this work, we are interested in systems where the source term is constant, 
and in particular, though not necessarily restricting ourselves it, a source 
located as a delta function at the origin: S(c,z, t) = S(c)8(z). The initial approach 
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would be to construct the solutions from a linear combination of solutions 
that decay away from the origin along the lines of Selinger and Titulaer (1984). 
However, this approach clearly fails to model the situation of ionisation (see 
Fig. 3 below) where the particle density grows exponentially away from the 
origin with a well-defined growth constant. If we are to include solutions that 
grow away from the origin, then we are faced with the question of which 
solutions should be included, as there happen to be an infinite number of 
them forming an unbounded sequence of growth constants. The solution to 
this problem lies in analysing equation (1) dynamically with a source that is 
switched on at time t = O. It will be found that some of the modes propagate 
in the direction of the electric field, and the others in the opposite direction. 

2. Eigenfunctions 

The operator ick +:M. admits a complete set of eigenfunctions, 

(ick +:M.) 'Pn(c,ik) = -wn(ik)'Pn(c, ik), 

and the adjoint Similarly admits a complete set of eigenfunctions, 

(ick +:M) tf>n(c, ik) = -wn(ik)tf>n(c, ik). 

(3) 

(4) 

The two sets of eigenfunctions may be normalised so as to satisfy the 
bi-orthonormality relationship 

f 'Pm(c, ik)tf>n(c, ik)dc = omn. (5) 

In the following, we use dimensionless units, in which VI = 1 and V2 = ~. 
In these units, the mean free time of the charged particle is m/M and the 
mean free path is ~ (m/M)3. This model can be solved by finding a similarity 
transformation, and a variable substitution that transforms equation (3) into 
the Schrodinger equation for the harmonic oscillator problem (Standish 1987). 
The solutions to equation (3) and (4) are given by 

wn(ik) = v - n - aik + ~(ik)2, (6) 

tf>n(c, ik) = exp [(c- a)2/2 - (c - a + ik)2/2] Hn(c- a + ik), (8) 

where Hn is the nth order Hermite polynomial [Abramowitz and Stegun (1965), 
22.2.24]. 

Firstly, let us consider solving the steady-state problem 

(oz+:M.)f(c,z)=O; Z:FO, 

f(c, 0) = S(c). (9) 
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from equation (3), equation (1) is solved by solutions of the form 

exp(q~z)'Pn(c, q~), 

where the q~ are the roots of wn(q~) = 0: 
1 

q~ = a ± [a 2 + 2(n - v) r . 
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(10) 

(11) 

A theorem of Protopopescu (1987) tells us that 'Pn(c,q~) form a complete 
set in velocity space, so we can look for an expansion of the form 

{ 

n=~=±a~ exp(q~z)'Pn(c,q~), z> ° 
((c,z) = 

00 

L b~ exp(q~z)'Pn(c,q~), z < 0. 
n=O,r=± 

(12) 

If the set of functions used to represent ( for positive z is disjoint from the 
set used for negative z, then the completeness theorem assures us that the 
expansion is unique, which is required if the solution (12) is to be sensible. 
However, there are an infinite number of ways in which the functions 'Pn(c,q~) can 
be divided between the two regions of z. To get some insight into the problem, 
the number density was computed numerically for the Klein-Kramers model. 

Numerical Studies o( the Klein-Kramers Model 

We numerically computed the number density J": ((c,z)dc as a function 
of z, and the reaction rate v. In these computations charged particles are 
injected at a constant rate into the drift region with velocity equal to the drift 
velocity a, which is set to unity. The computations were carried out using an 
exact form of the Green function. This can be calculated from equations (6) 
to (8) by means of the spectral representation 

G(c,z, t; c',z', t') = 

J 00 00 

e(t-t') -00 ~ 'Pn(c,ik)cf>n(c',ik)exp[wn(ik)t+ik(z-z')]dk, (13) 

where e(t> 0) = l,e(t < 0) = ° is the Heaviside step function. The sum over 
n may be performed by using a generating function for Hermite polynomials 
[Erdelyi et al. (1954), 10.13.22] upon which the integration over k becomes a 
standard Gaussian integral. 

The phase space distribution may be found by integrating the Green function 
over source times 0.:$ t' .:$ t: 

((c,z,t) = fot L: L: G(c,z,t;c',z',t')S(c',z',t')dc'dz'dt' 

= fot G(c,z,t;a,O,t')dt'. (14) 

Firstly, the integration over c to find the number density was performed 
analytically, and then the time integration was performed numerically using 
an adaptive integrator. 
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Fig. 1. Density for v = O. In Figs 1 to 4 the curves shown are at successively greater times 
after the source is switched on. 

~-\ '. ---. 
\ \, ...... ""..;:::-- -'-\ \ "'" 

i \ \. 
i \ \. 
i" , 
i \ ... . \ \. 
\ \ \. 

\ \ \\" \\~" 

-'- ..... ...:. :'.: ..:. .. 

-10 o 10 :ll II 40 

z 

Fig. 2. Density for v = -0.01. 
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Figs 1 to 4 show the effect of varying the reaction rate v. In the cases 
where v < a2/2, the distribution builds up to a steady-state distribution. Non
hydrodynamic effects manifest themselves in a neighbourhood of size (qa-qj)-l 
(= 1.374, 1.366 and 0.995 for v = -0.01, 0 and 0.01) around the origin. Outside 
this region, the non-hydrodynamic modes (n i- 0) are damped exponentially with 
respect to the hydrodynamic mode (n = 0), and it is here that we see exponential 
behaviour governed by the Townsend ionisation coefficient. In Figs 5 and 6, 
the steady-state distribution is plotted on a logarithmic plot. It can be seen 
that the density behaves exponentially in z far from the source. The slopes at 
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Fig. 3. Density for v = 0.01. 
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Fig. 4. Logarithmic plot of the density for v = 1. 
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either extremity give q'Q downstream of the source, and q'6 upstream. This is 
evidence that the positive branch roots control the spatial decay of particles 
diffusing against the electric field, and the negative branch roots control the 
spatial decay (or growth) of those diffusing with the field. 

In Fig. 4, the reaction rate has been increased to larger than a2/2. In this 
case, no steady state is seen to occur. Rather, the density of charged particles 
increases exponentially with time. Physically, this can be understood as the 
electric field not being strong enough to remove at a sufficiently rapid rate 
the charged particles created by ionisation. This effect will be seen to arise 
out of the analysis in the next section. 
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Fig. 5. Logarithmic plot of the steady-state density for the case 
v = -0.01. Lines fitted to the tails of the distribution have slopes 
corresponding to qii = 2.01 and q(j = -0.01 respectively. 
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Fig. 6. Logarithmic plot of the steady-state density for the case 
v = 0.01. Lines fitted to the tails of the distribution have slopes 
corresponding to qii "" 1.98 and q(j = 0.01 respectively. 

3. Asymptotic Behaviour for Large Times and Distances 

In the previous section, we examined a model in which there are an infinite 
number of roots q~ of either sign. The numerical work indicates that the root 
qo controls the asymptotic exponential behaviour downstream from the source, 
and that qt; controls the behaviour upstream. In this section, we discuss 
the time dependence analytically, and show how the steady-state solution is 
established. It will be seen that the positive and negative branches of the 
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roots control the swarm behaviour upstream and downstream of the source 
respectively. 

We start with the one-dimensional time dependent Klein-Kramers equation 
for a steady source S(c,z) switched on at t = 0: 

(0 t + czo z +:M.) f(c, z, t) = S(c, z)e(t). (15) 

This may be formally solved by means of the eigenfunctions (3) and (4), 

f(c, z, t) = L fn(c,z, t) == L f 00 sn(c(O~) exp(ikz) {I - exp(wn(ik)t)} dk, (16) 
n n -00 Wn 1 

where 

Sn(c, ik) = 2~ 'P(c, ik) f f exp(-ikz')rJ>n(c', ik)S(c', z')dc'dz'. (17) 

We assume that the source has been chosen in such a way that the integral 
over k in (16) is well defined. For example, we may choose a Gaussian source 
located at z = 0: 

S(c,z) = exp(-O"c2)8(z). (18) 

Upon substituting (7), (8) and (18) into (17), we find that 

1 

(1 - I/O")2n [ ] sn(c, ik) = 1 exp (1 - 1/40") k2 - (c - 2a)ik - (c - a)2 
0""22nn! 

H ( ik(I-I/20")-a)H (_ Ok) 
X n 1 n C a+l . 

(1 - 1/0")"2 
(19) 

To get sn to vanish fast enough as k --+ ±oo for (16) to ~e convergent, we must 
choose 0" < *. 

Since Sn and Wn are analytic functions of k, the integrand in (16) is analytic. 
Also, Sn(c, ik) --+ 0 as Re(k) --+ ±oo, and so the contour of integration in (16) may 
be translated by an arbitrary amount. In particular, we may move the contour 
so that it passes through the saddle point -iQn of wnUk), which is -ai. We 
may then use the method of steepest descent (Jeffreys 1961) to evaluate the 
time dependent portion of the integral at large times: 

fn(c, Z, t) _ f oo+Q"i sn(c, ik) e~pUkz) dk 
-oo+Q"i wn(Ik) 

1 

_ ( (n»)(2TT)"2Sn(C,Qn)exP(Qnz) 
exp Wn '<.J1 t t wn(Qn) [-w%(Qn)]· 

(20) 

The behaviour of f in time will depend critically upon the sign of wn(Qn). 

If wn(Qn) is positive for any n, then the time dependent part will grow 
exponentially, and the system will not approach a steady state. On the 
other hand, if wn{Qn) is negative for all n, then the time dependent term is 
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Contour of integration -Qni 
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point 

Fig. 7. Singularity structure of sn(c, ik)/wn(ik) for the Klein
Kramers model. There are two simple poles at -q~i. and a 
saddle paint at -Oni = -(q~ + q;'li. The fact that the contour 
of integration must lie between the poles determines that the 
negative branch controls downstream behaviour. and that the 
positive branch determines upstream behaviour. 

- + -q;;i 

Sides of contour 
are extended 
to infinity -

Fig. 8. Contour used for the large z asymptotic argument. 

exponentially damped, and a steady state is reached. Now, we get 

Wn(Qn) = v- n - a2/2. (21) 

If v> a2 /2, then there is no steady state approached (Fig. 4), otherwise the 
system does approach a steady state (Figs 1 to 3). 

Let us consider a system satisfying Wn(Qn) < 0 for all n. The steady-state 
term is given by the integral in (20). Since Sn and Wn are analytic, the only 
singularities of the int~grand occur at the zeros of W n . There are only two 
singularities as shown in Fig. 7. The contour of integration must lie between 
the poles q~ and q~ for the time dependent term to approach zero according 
to (20). As we shall see, this leads to the term proportional to exp(q~z) not 
contributing to the distribution at positive z and similarly the exp(q~z) term 
not contributing to the distribution at negative z. 

Since Sn grows much faster than any exponential as k -+ ±ioo, it is not 
possible to evaluate the integral in (20) by completing the contour around the 
positive imaginary half-plane for positive z, and around the negative half-plane 
for negative z. Instead, we must use a large asymptotic argument that is 
similar to the method described in section 2.6 of Jeffreys (1961). In this, we 
complete the contour in the fashion shown in Fig. 8, with , an arbitrarily 
large positive but finite value. We may now apply Cauchy's residue theorem 
to obtain 

F ( )_ f oo+Q"i sn(c,ik)expUkz)dk 
In C,Z,OO - 'k 

-oo+Q"i Wn(l ) 

( 'k) 00+( Q,,+()i ('k) ('k) 
_ 2' (-)R (Sn C, I . -) f Sn C, I exp I z dk - mexp qnz es ('k) ,lqn + ('k)' 

Wn I -oo+(Q,,+\:"li Wn I 
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But the absolute value of the second term is 

n,. dk ::; exp(-[( + Qn]z) n '. dk. I f oo+(Q,,+1;')i s (C ik) exp(ikz) I f oo+(Q,,+1;')i Is (c ik) I 
-oo+(Q,,+1;')i wn(lk) -oo+(Q,,+1;')i wn(lk) 

Since ( may be chosen arbitrarily large, the second term must vanish faster 
than any exponential as a function of z, and so 

F ( ) 2' (-)R (Sn (c, ik) . -) (22) In c,Z, 00 - Trlexpqnz es wn(ik),lqn as Z-+OO. 

By taking ( negative, one can similarly show that 

F ( ) 2' (+)R (Sn(C,ik). +) (23) Inc, Z, 00 - Tl'l exp qnz es wn(ik) , lqn as Z -+ -00. 

In general, we may state the selection principle thus: the contour passing 
through the saddle point of Re[wn(ik)] divides the complex plane; those roots 
of Wn that lie above this contour contribute to the asymptotic behaviour 
of fn downstream of the source, and those that lie below contribute to the 
asymptotic behaviour upstream of the source. 

4. Discussion 

In this paper, a theory is developed relating the asymptotic properties of 
the steady-state solution of the Klein-Kramers equation to the distribution of 
zeros of the eigenvalues of the inhomogeneous operator ick +:M. It was found 
that the zeros of the lowest eigenvalue give the growth constant far away 
from the source, whereas the other modes are clustered around the source 
and decay exponentially way from it. In the non-hydrodynamic theory of 
time-of-flight swarm experiments (Kumar 1981; Standish 1987) it is assumed 
that the general inhomogeneous Boltzmann operator ick +:M == ick + aOe +], 
where] is the collision operator, satisfies the same eigenvalue equations (3) 
to (5) as does the Klein-Kramers operator. If we further assume that the 
appropriate functions are analytic, then the theory given in this paper can be 
used directly to analyse steady-state swarm experiments of a one-dimensional 
nature such as the steady-state Townsend experiment. At the expense of 
additional complication, the assumptions on the spectrum of ick +:M and 
the analyticity assumptions may be relaxed, introducing additional terms in 
the solution that are generally not exponential in z, but are bound!!d by an 
exponential of z, and so will not contribute to the behaviour at large z. 
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