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Abstract 

The energy per particle and magnetic susceptibility in neutron matter are calculated using the 
Skyrme and modified Skyrme interactions. Results show a kind of ferromagnetic transition 
beyond the Fermi momentum kn - 1 ·0 fm-I. It is concluded that such behaviour is a general 
phenomenon instead of a result due to the choice of a given effective interaction. 

1. Introduction 

It has been shown by Haensel (1975) and Moszkowski (1970) that the ratio of 
magnetic susceptibility of free neutron matter to that for neutron matter, XF/x, 
is an increasing function of density when calculated with realistic two-body 
interactions such as the Reid (1968) hard core potential and Sawada-Wong 
(1972) potential. More recently Behera and Satpathy (1979) calculated xFlx 
with their own effective interactions and found that xFlx exhibits a decreasing 
tendency beyond the Fermi momentum kn = 1 ·5 fm-1 , similar to the results 
with a non-local separable potential by Mongan (1969). The purpose of the 
present paper is to see whether such a tendency is due to the inherent 
structure of the particular effective nucleon-nucleon interaction by Behera and 
Satpathy (1979), or whether it is also true with other effective interactions 
currently in use. 

In recent years the Skyrme (1959) interaction and its various sets have 
been widely used to study the problems of nuclear matter, finite nuclei and 
heavy-ion scattering due to its simplicity in structure for the inclusion of 
a-function terms. In view of this we have chosen this interaction, especially 
set III and the modified Skyrme interaction due to Tondeur (1983), to calculate 
xFlx at various Fermi momenta kn • In doing so, the energy per particle and 
the single particle potential are also calculated as required. In Section 2 we 
deduce the expressions for the energy per particle, the single particle potential 
and xFlx with the Skyrme forces in the framework of the energy density 
formalism (EDF) of Negele and Vautherin (1972). The numerical results and 
the conclusions are discussed in Sections 3 and 4. 
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2. Energy per Particle 

In neutron matter, the density Pn is related to the Fermi momentum kn by 
the relation 

Pn=~k~. 
3rr 

(1) 

In first order perturbation theory, the potential energy of neutron matter is 
given by 

(V) = i L [(ijl vi i]) - WI vi ji}] , 
iJ<n 

where the sum is over momenta as well as spin and isospin. In terms of 
the density matrix p(rl, r2) and the product of densities p(rl) and p(r2), the 
direct part of the potential energy is given by 

(V)D = i L (ijl vii]) 
iJ<n 

and the exchange part by 

(V)E = i L (ij I v Iji} 
ij<n 

Following Negele and Vautherin (1972), we expand as 

p~(rl' r2) = P~I(kn r)p~(R) + PsI(kn r) {}sl(kn r)r2 

where 

(k ) 3jl (kn r) 
PsI n r = kn r ' 

(2) 

(3) 

(5) 

and where jl (kn r) and j3(kn r) are the spherical Bessel functions, and '1n(R) is 
the kinetic energy density. In neutron matter having uniform density, we can 
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write Po(R) = Po and derivatives of Po are zero. With the Skyrme force given 
by Vautherin and Brink (1972), 

v(rl,r2) = to (1 +xoPer)o(rl-r2) 

+ ~tl[o(rl -r2)k2 +k'2 o(rl -r2)] 

+t2" .o(rl-r2)k+ ~t3(1 +Per) 

x o(rl - r2)p«rl + r2)/2) 

the potential energy (V) through equations (2) and (3) becomes 

(6) 

Adding the kinetic energy term to equation (6), we get the total energy density 
of neutron matter as 

HSK( ) _ H SK _ 3 h 2 k2 to(l - xo)p~ 
o r - 0 - -10-m- oPo + ....:...;.----,4~.:....::. 

(7) 

where we have used 'Tn = ~k~po. The energy per particle for neutron matter is 

HSK 
ESK(ko) = _0_ 

Po 

(8) 

The gradient terms make no contribution in neutron matter. 
The modified Skyrme (MSK) interaction due to Tondeur (1983) is given by 

v(rl, r2) = to(l + Xo Per)o(rl - r2) 

+ ~tl (l + Xl P er)[o(rl - r2)k2 + k/2 o(rl - r2)] 

+ t2(l + X2 Per)" • o(rl - r2)k 

+ ~t3(l +X3 Per)o(rl - r2)pV 

+ i Wo(O"1 +0"2)'" x o(rl - r2)k, (9) 

where Per is the spin-exchange operator having a value of ±1 for odd and even 
states respectively, and v is a density dependence parameter taken to be ~. 
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The values of other constants are as in Tondeur (1983). On evaluation in the 
same manner as for the SK potential, we get 

HMSK(r) = 3 h2 k2 P + to Pn (1 _ xo)k3 
n 10m n n 12rr2 n 

and the expression for the energy per particle is 

EMSK(k ) = 3h2k~ + ~(l-X )k3 
n 10m 12rr2 0 n 

It may be noted that the contribution of the term containing the parameter t3 
is zero in the case of the SK potential, whereas there is a finite contribution 
from such terms for the MSK potential. This is also reflected in all further 
calculations below. 

(a) Expression for Single Particle Potential 

Following Vautherin and Brink (1972) the single particle wavefunction tJlj 
satisfies the Schrodinger equation 

(- V. :~ VtJlj + Uj tJll) = €j tJlj, (12) 

with 

oH oH 
Uj = Opj -V. a (VPj) . 

The energy density H(r) is usually expressed in terms of density functionals 
A(p), B(p) and C(p) as 

h2 
H(r) = 2m '1 +A(p)+B(p)'1+C(p)(Vp)2 

= (:~ +B(P») '1 +A(p) + C(p)(Vp)2. (l3) 

In neutron matter we have 

(14) 

oH(r) =!C B(P) 
o'Tn 2m + n· 

(15) 
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The effective mass m* is defined as 

hZ oH 
2m* = oIn . (16) 

Substituting the values of h2 12m * in equation (12) using equations (15) and 
(16), we get the single particle potential 

with 

For the SK interaction, the single particle potential becomes 

uSK(k;, kn) = 1to(l-Xo)Pn + iIn(tl + 3tz) 

+ frPn(t1 + 3t2)kr ' 

and for the MSK interaction it becomes 

UMSK(k;, kn) = i to(1 - XO)Pn + {-In[tl (1 - Xl) + 3t2(1 + X2)] 

(b) Magnetic Susceptibility of Neutron Matter 

(17) 

(18) 

Following the notation of Haensel (1975), the total energy of a system of 
N neutrons in the presence of an external magnetic field H can be written as 

EH(N, ex) = Ekin(N, ex) + Epot(N, ex) -l1n HNex, (20) 

where the first two terms on the right-hand side are the kinetic and nuclear 
potential energy of the system and ex is the spin excess parameter defined as 

ex = (N i -N DIN. (21) 

Here N i and N 1 are the number of neutrons with spin up and spin down 
with respect to the direction of the applied field. Assuming that ex is a 
small parameter, the energy per particle EH(N, ex)IN is expanded up to terms 
containing ex2 and we get 

(22) 

For a fixed value of the spin excess parameter lXO, the total energy of the 
system reaches the minimum value in the ground state and we have from 
equation (22) 

I1n H 
lXo = --. 

EO' 
(23) 
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For a neutron excess, £Xo, the magnetic moment per unit volume is £Xo Pn Iln 
and this gives 

x = Il~ Pn/Ea-. 

For a Fermi gas of free neutrons we have 

XF = 31l~ Pn/2En, 

where En = (h 2 /2m)k~. From (24) and (25) we get 

xFlx = ~Ea-/En, 

where the kinetic energy part of Ea- is given by 

and the potential energy part is 

,..kin _ 2 r 
"0' -3'''n, 

(24) 

(25) 

(26) 

(27) 

(28) 

Here E~)Pot and L\EO' denote the non-rearrangement and rearrangement parts 
respectively. 

Following the procedure of Haensel (1975), with the SK interaction we get 

(O)pot I 
Ea- = - LPn to(1 - XO), 

L\Ea- = 0, 

and with the MSK interaction we get 

E~)Pot = - ~Pn to(1-xo) - foTn[~tl (1-XI) 

4 

- ¥-t2(1 +X2)] - tz t3(1-X3)pJ, 

L\EO' = _ t3(1-X3)k~ . 

216(3rr2)3 

Here L\Ea- f. 0 is due to the non-vanishing of the t3 term as stated earlier. 
Using equations (27)-(32) in equation (26), we get 

(XF)SK =1_~pn(to(1-Xo) + k~(tl-6t2»)' 
X En 2 15 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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Table 1. Energy per particle En (in MeV) and ratio XF/x as a function of Fermi 
momentum kn for three potentials 

kn SEIA Presel1t calculations 
(fm-1) SK MSK 

(a) En 

0·2 0·3809 0·456 0·4287 
0·4 1·1958 1·658 1·5136 
0·6 2 ·1560 3·368 3 ·120 
0·8 3·2467 5·369 5·366 
1· 0 4·7123 7·477 8·473 
1·2 7·0445 9·549 13·066 
1·4 10·9550 10·498 19·871 
1· 6 17·3366 13 ·298 29·868 
1·8 27·2206 15·001 44·261 
2·0 41· 7343 16·742 64·765 
2·2 62·0695 18·755 92·161 
2·4 89·4554 21·379 129·189 
2·6 125·1469 25·071 177·654 
2·8 170·4187 30·416 239·875 
3·0 226·5637 38 ·140 318·391 

(b) XFlx 

0·2 1·419 1·150 1·2600 
0·4 1·716 1·293 1·4581 
0·6 1·939 1 ·421 1·5694 
0·8 2·092 1·526 1·5692 
1· 0 2 ·175 1·601 1·4327 
1·2 2 ·188 1·638 1·1353 
1·4 2 ·132 1·630 0·6521 
1 ·6 2·007 1·569 
1·8 1· 813 1·448 
2·0 1·554 1·259 
2·2 1·233 0·99 

A Behera and Satpathy (1979). 

3. Results and Discussion 

The results of our calculation for the energy per particle ~n in neutron 
matter for different values of the Fermi momentum kn are given in Table 1 a 
for the two SK (set III) and MSK interactions, along with those for the simple 
effective interaction SEI of Behera and Satpathy (1979). These results are 
compared in Fig. 1 with the results obtained with the local realistic interactions 
of Sawada and Wong (SW) (1972). It is found that the En versus kn curve has a 
slow rise up to kn = 1 ·5 fm-1 for all four potentials, but beyond kn = 1 ·5 fm- l , 
the slopes of the curves steepen and are similar in nature for all potentials, 
except SK. The reason is that for the SK potential, the density dependence 
part involving the t3 term, with t3 = 14000 MeVfm6 , makes no contribution 
whereas the same is not true for MSK. This is also manifested in the effective 
mass calculations giving a large value of m* 1m = 0·623 for SK compared with 
0·583 for SEI at kn = 3 ·0 fm-l. 

The results of our present calculation for xFix using the SK and MSK 
potentials are given in Table 1 b and also plotted in Fig. 2 as a function of 
kn, together with those for the Reid hard core (RHC) potential, the Mongan 
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Fig. 1. Energy per particle as a function of Fermi momentum. The symbols SK and MSK 
are defined in Section 2, and SEI and SW in Section 3. 
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Fig. 2. Ratio of magnetic susceptibilities as a function of Fermi momentum. The symbols 
SK and MSK are defined in Section 2, and SEI, SW, RHC and MG in Section 3. 
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(MG) non-local potential and the Sawada-Wong (SW) potential. The results for 
xFlx by Behera and Satpathy (1979) using their SEI are also shown in Fig. 2 for 
comparison. It is observed that XFlx is an increasing function of kn for the 
RHC and SW interactions above kn'" 1 . 0 fm-I. Beyond kn'" 1 . 0 fm- I, however, 
for the SK and MSK interactions we find that xFlx decreases steadily showing 
the tendency for the ferromagnetic transition in conformity with the SEI of 
Behera and Satpathy (1979) and also with the MG potential due to Haensel 
(1975). Previously it was thought that the decreasing tendency of xFlx with 
the SEI at higher densities was due to the particular choice of the potential, i.e. 
a single density dependence c)-function repulsion and a single gaussian-type 
attractive term, with the latter dominating at higher densities. 

4. Conclusions 

From our investigation we find that a decrease in xFlx at higher densities 
is definitely present when calculations are made with the widely used Skyrme 
interactions consisting of several c)-function terms, and we thereby conclude 
that this tendency of the ferromagnetic transition in neutron matter is a general 
result rather than one due to a particular choice of the effective interaction. 
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