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Abstract 

The theory of the neutron Kikuchi effect has been re-examined and an exact formulation in 
reciprocal space derived. The conditions necessary for its observation have been considered 
and appropriate data from a lead single crystal have been collected on the triple-axis 
spectrometer at the HIFAR reactor in the laboratories of the Australian Nuclear Science and 
Technology Organisation. A series of constant-Q phonon scans across the predicted positions 
of the Kikuchi lines show reductions in the integrated phonon intensity, which appear to 
move as expected with changes in the scattered neutron wavevector. 

1. Introduction 

The Kikuchi effect arises from the secondary Bragg scattering of diffuse 
inelastic radiation generated in a crystal. The effect was first observed by 
Kikuchi (1928) using a beam of electrons passing through mica plates of 
varying thicknesses. The diffraction pattern he observed consisted of black 
and white lines appearing in pairs, which have since become known as Kikuchi 
lines. The possibility of observing the effect using X-rays was considered by 
Friedrich et al. (1912) when they were devising an X-ray diffraction experiment, 
although the effect was actually observed much later by Geisler et al. (1948) 
and Grenville-Wells (1951). 

The potential for using the Kikuchi effect with the sample crystal both as 
scatterer and analyser has been demonstrated for X-rays by Bushuev et al. 
(1983) .. The effect has been invoked (Wilkins et al. 1983) to explain sharp dips 
(Ti et al. 1983; Kashiwase et al. 1982) observed in non-resonant M6ssbauer 
measurements of TDS profiles. There appears to be only one reported instance 
of a neutron TDS profile exhibiting a dip (Graf et al. 1981). However, although 
the authors drew a comparison with the similar y-ray dips, they cautioned 
against attaching any physical significance to the observation. 

Wilkins (1983) has discussed in detail the geometrical aspects of the neutron 
Kikuchi effect and the possibility of observing it using the standard diffraction 
geometry. More recently Petrascheck (1985) has considered the distribution 
of intensity across a neutron Kikuchi line as a function of angle for a perfect 
crystal. 
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For thermal neutrons the significant energy change that occurs on scattering 
by wavevector q from a phonon complicates the scattering geometry in that 
the incident (ko) and scattered (ks) wavevectors do not terminate on the same 
Ewald sphere. In his derivations for the equation of the Kikuchi loci, Wilkins 
(1983) made the physically reasonable approximation that ko - ks «ko, i.e. 
q «ko and proceeded to formulate the K-Ioci in terms of instrumental space 
coordinates Ll28,Llw where Ll28 and Llw are, respectively, the detector and 
crystal settings relative to the exact Bragg condition. The calculated Kikuchi 
loci are then a pair of straight lines, corresponding to phonon creation and 
annihilation, the slopes of which are discontinuous at the origin (Wilkins 1983). 

In Section 2 of this paper the experimental conditions necessary to observe 
the Kikuchi effect with neutrons are discussed. Following this the theory 
is reformulated in reciprocal space such that it is in a form which is 
appropriate for the described experiment. This leads to reciprocal and real 
space coordinates for the K-lines without any approximations. Finally we 
present some experimental results from lead which are consistent with the 
observation of the neutron Kikuchi effect. 

2. Experimental Considerations 

Various criteria were considered in planning an experiment to observe the 
Kikuchi effect. For the effect to occur two processes must take place within 
the crystal; the creation or annihilation of a phonon and a self-analysing Bragg 
reflection. 

The usual technique for the observation of the Kikuchi effect employs a 
photographic film to record the dark-bright contrast lines from a slightly 
misoriented crystal. This requires intense radiation sources and very good 
angular resolution. Neutron sources are inherently large and diffuse and 
the efficiency of neutron film methods is very low, making film detection a 
non-viable option. 

Strategies for observation using a neutron counting system are different 
from those employing films. To obtain adequate intensity requires both a high 
neutron flux and a large sample volume. At the same time, sufficient angular 
and energy resolution must be achieved to observe the effect. The angular 
resolution is achieved by using Soller collimators, which destroy the real 
space resolution, while maintaining reciprocal space resolution. The energy 
resolution is achieved by using a high monochromator scattering angle 28m . 

The effect should be observable on a standard four-circle diffractometer. 
However, the instruments at the Lucas Heights Research Laboratories do not 
have Soller collimators and the incoming energy resolution is too poor. A 
limited series of measurements were made Cil the diffractometer 010, at the 
ILL, Grenoble, but the results were inconclusive. It was therefore decided to 
search for the Kikuchi effect using the triple-axis spectrometer. The advantages 
here were: 

(1) The phonon part of the two-stage process could be guaranteed by using 
the constant-Q technique, where Q is the scattering vector, q+Goo (Goo 
is the Bragg reciprocal lattice vector at crystal rotation Llw and q is 
the phonon wavevector). By selecting Q values at and close to those 
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at which the Kikuchi effect is predicted to occur, the phonon intensity 
could be used as a probe for the secondary Bragg scattering. 

(2) A high neutron flux over a large area was available at the sample 
position. 

(3) The large beam area enabled a large sample to be used. This increased 
the intensity of inelastic scattering and also enhanced the fraction of 
scattered intensity elastically scattered out of the scattered beam. 

Achieving the required resolution presented a problem. The triple-axis 
spectrometer at the Lucas Heights Research Laboratories, while having a good 
neutron flux and low background level, is only a medium resolution instrument. 
Both the monochromator and analyser crystals have mosaic widths of the order 
of 0.8°. The primary beam has 1.0° full width at half maximum (FWHM). The 
collimation before the sample was 0.5° (FWHM) and 0.62° (FWHM) before the 
analyser. The detector has an acceptance angle of 3°. The measured widths 
of the resolution function (with analyser collimation of 1.25°) parallel and 
perpendicular to Gw(qA, qw) are 0·051 and 0·052 A -1 respectively. 

Ideally, the instrumental resolution should match the estimated angular 
spread of the Kikuchi line. The major contributions from the crystal to the width 
of the line are the mosaic spread and variation of the relevant elastic constant 
with direction in reciprocal space (Section 3). Depending on the experimental 
conditions the second term may vary from larger than the first to zero. Thus, 
an instrumental resolution matched to the sample mosaic is desirable. 

Phonon resonances were measured at a series of wavevectors across the 
predicted Kikuchi line positions with the expectation of observing a reduction 
in the integrated intensity of the neutron groups when self-energy analysis 
(secondary Bragg scattering) occurred in the crystal. To make full use of the 
constant-Q technique, it was decided to reformulate the theory in reciprocal 
space coordinates. 

3. Theory 

The scattering geometry for the secondary Bragg scattering of an inelastically 
scattered neutron is shown in Fig. 1 a for reciprocal lattice vector Gw and 
phonon wavevector q. The scattering diagram is appropriate to the geometry 
of the triple-axis spectrometer at the Lucas Heights Research Laboratories. 
The two large circles correspond to the Ewald spheres for ko and ks, the 
incident and scattered neutron wavevectors respectively. The small circle at 
the origin represents a constant energy surface for an acoustic phonon of 
wavevector q. Axes that are parallel and perpendicular to the direction ks 
are convenient for the formulation of the theory and these are denoted by t7J1 

and qJ. respectively. These axes, which are shown in Fig. 1 b, are displaced 
by a rigid rotation of 90-8il from the conventional axes corresponding to 
wavelength spread (qA) and crystal rotation (qw) used by Wilkins (1983) (see 
the Appendix). Note also that the (qA,qw) axes here are rigidly fixed in 
reciprocal space and rotate with the crystal, whereas Wilkins kept these axes 
fixed relative to the (Ll28,Llw) coordinate system. This introduces a rotational 
displacement of Llw between the two (qA,qw) systems. Here 8~ is the Bragg 
angle for the scattered wavevector. 
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Fig. 1. (a) Scattering geometry in reciprocal space for the secondary Bragg scattering of 
an inelastically scattered neutron, where E(ko) and E(ks) represent the Ewald spheres for ko 
and ks respectively, and w(q) = vs(q)q is the constant phonon energy surface. (b) Detailed 
wavevector geometry. 

For the point PI to lie on a Kikuchi locus requires that in addition to 
satisfying the conservation of energy condition, 

(1) 

and the conservation of momentum condition, 

(2) 
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ks must also satisfy the Bragg condition corresponding to the reciprocal lattice 
vector Goo [mn is the neutron mass, w(q) is the phonon frequency for the 
wavevector q and E = 1 for phonon creation and -1 for phonon annihilation]. 
Thus, the reciprocal lattice vector Goo must necessarily be a spanning vector 
for the Ewald sphere inscribed by the scattered wavevector. By utilising this 
condition, the scattering geometry to satisfy all necessary conditions may be 
embodied in the triangle OPi C (Fig. 1 b), P'l and PI being equivalent points as 
they are separated by a reciprocal lattice vector. It then remains to solve for 
the coordinates qlf, q~ of P'l. From triangle OP'1 C, it may readily be shown that 

(3) 

When combined with the conservation of energy condition (1) this yields the 
relationships 

K 2 
~ =Ej3'(q)!!... _!L, 
ks ks 2k~ 

q~ 1 2 K2! _ "" ± -(q -qll )2, 
ks ks 

(4a, b) 

for the Kikuchi loci positions, where f3' = vs(q)/v'n is the ratio of the velocity 
of sound in the crystal in the direction of q to the velocity of the scattered 
neutron. The only approximation in deriving equations (4) is the absence of 
dispersion, i.e. the phonon frequency w(q) = vs(q)q. 

Several points follow from equations (4): 

(1) Both solutions for q~ are physically significant, corresponding to the 
two points of intersection P'l and P'2 in the scattering plane between 
the constant phonon energy surface and the Ewald sphere for the 
scattered wavevector. (There is a rotation of the qll,q.i axis frame 
between the two solutions.) 

(2) Although the diagram in Fig. 1 is for phonon creation (ko > ks, E = 1 and 
hence qlf> 0) equation (4a) with f. = -1 gives the K-Iocus for phonon 
annihilation (ko < ks and hence q,f < 0). This locus is continuous with 
the phonon creation locus through q = o. Thus two pairs of Kikuchi 
lines corresponding to phonon annihilation and creation are predicted. 

(3) Even if j3'(q) is constant with angle, the K-Ioci are curves. However, for 
small Ll28,Llw the K-lines are indistinguishable from the straight lines 
calculated by Wilkins (1983) and are equal in the limit that ,128, Llw->O 
(see the Appendix for details). 

(4) The position of the Kikuchi line varies with the neutron wavevectors 
used during the measurement, predominantly through the variation of 
{3'(q) with k s. This variation is a stringent test of the observation of 
the Kikuchi line. 

(5) The condition I qlf I 51 q I from equation (4a) implies {3'(q) 5 (l ± q/2ks) 
for E= ±1 (cf. {351, where {3={3'ks/ko, Wilkins 1983). 

(6) Because the velocity of sound, and hence {3'(q), varies with direction, 
successive iterations of equations (4) are required to calculate the K-Ioci. 
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For a given direction q, the elastic constants Cj(q) and polarisation 
vectors ej(q) are obt~ined from the equations 

(5) 

by diagonalisation. Here Ccx )'./3J. are the elastic constants of the material, 
., is the displacement vector, cx{3yA are summation indices over x,y,z 
and j = 1,2,3 is a polarisation index (Born and Huang 1954). The 
calculated variation of the velocity of sound Vs with direction for the 
transverse acoustic branch polarised in the ITo plane in lead is shown 
in Fig. 2. The elastic constants were taken from Waldorf and Alers 
(1962). 

In addition to the above scattering process, whereby a phonon is created 
and Bragg scattering of the outgoing les beam occurs (ks Kikuchi line) it is also 
possible for the incident leo beam to be Bragg scattered before the phonon q 
is generated from the same point. In this case P'1 will no longer lie on the 
Ewald sphere E(ks). The scattering geometry for this has been omitted from 
Fig. 1 a to avoid confusion. In this case, defining the axes qll, q.l parallel and 
perpendicular to lc'o, the scattered incident wavevector equivalent to 1c's, the 
theory becomes equivalent to that for the ks Kikuchi effect. The ko Kikuchi 
line positions (qlf/ko,q~/ko) are then given by equations (4), with the sign 
of the quadratic term reversed in (4a), ko replacing ks and {3(q) = vs(q)/vn 
replacing {3'(q), where Vn is the velocity of the incident neutron. 

Fig. 3 illustrates the predicted ks and ko Kikuchi lines for ks values of 2·90 
and 2·65 A-l with € = 1 and q.l > 0 in the positive quadrant at 222 in lead. 
Corresponding lines for € = -l,q.l < 0 and € = -l,qll > O,qll < 0 occur in the other 
three quadrants, 

Bragg scattering for leo and les may occur for other reciprocal lattice points 
which lie on the respective E(ko) and E(ks) Ewald spheres. The identification of 
these points is most readily achieved by numerically calculating the distance 
of a reciprocal lattice point from either of these spheres for given points in 
(ro, Q) space with fixed les . When this distance is zero the reciprocal lattice 
point is on the sphere and a Bragg reflection is possible. These points produce 
loci in (ro, Q) space that are shown in Fig. 4, for points close to 222 in lead for 
ks = 2 . 85 A.-I. The thick curve is the calculated frequency for the transverse 
acoustic phonon branch derived from the elastic constant data (Fig. 2). The 
ks Kikuchi or ko Kikuchi condition occurs whenever the locus of a Bragg 
point for les or leo crosses the phonon curve. The analytical solution points 
corresponding to the K-Ioci are included in this method and the intersection 
positions derived from Fig. 4 are in agreement with the numerical calculation 
(Table 1). Once a particular lattice point has been identified as fulfilling the 
Kikuchi condition, the locus of its movement in reciprocal space may be 
readily calculated from equations (4). 

The positions of all these loci vary with the scattered wavevector les . Fig. 5 
shows the calculated positions for the incident and scattered beam K-lines as 
a function of les (again close to 222 in lead), 
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Fig. 2. Variation of the velocity of sound with angle from [001] for the transverse acoustic 
mode of lead polarised in the ITo plane at room temperature. 
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Fig. 3. Reciprocal space map around (222) for lead showing some predicted Kikuchi line 
positions for ks = 2·90 and 2·65 A-I and the location of phonon scans (circles). The solid 
and dashed lines represent ks and ko lines respectively. 
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Fig. 4. Loci in (00, Q) space of possible Bragg reflections from the ks (solid lines) and ko 
(dashed lines) Ewald spheres (shown for ks = 2·85 A-I) for points close to (222) in lead. Also 
shown by the thick curve is the appropriate phonon frequency for the transverse acoustic 
mode polarised in the ITo plane. Intersections of this curve with the solid and dashed lines 
are possible ks and ko Kikuchi loci respectively. The data points are the measured phonon 
frequencies Wf, for ks = 2·75 A-I. 

Table 1. Calculaterd ks and ko Kikuchi line positions for 222 in lead at the constant 
scattered neutron wavevectors indicated (for q~ > 0) 

Qx,Qy are the components of the scattering vector along [110] and [001] respectively 

2·65 
2·75 
2·825 
2·86 
2·88 
2·9 
2·92 

4. Experiment 

Scattered ks K-Iines 
Qx Qy 

(.j22rr/a) (2rr/a) 

2·083 
2·078 
2·072 
2·070 
2·068 
2·067 
2·066 

-1·783 
-1· 778 
-1· 772 
-1· 770 
-1· 768 
-1· 767 
-1·766 

Incident ko K-Iines 
Qx Qy 

(.j22rr/a) (2rr/a) 

2·124 
2 ·131 
2·137 
2·140 
2 ·142 
2·144 
2·145 

-1·824 
-1·831 
-1·837 
-1·840 
-1· 842 
-1·844 
-1·845 

Lead was selected as a suitable material on which to try and observe the 
Kikuchi effect. It has very low elastic constants, which ensures that the 
condition /3' ~ (1 ± q/2ks) could be satisfied for the low ks values to obtain 
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Fig. S. Variation of predicted Kikuchi loci with ks along the line of the experimental 
wavevectors Q. The solid and dashed lines distinguish ks and ko Kikuchi loci respectively. 

the necessary energy resolution. It has a high coherent scattering length (for 
good phonon intensity) and has a low neutron absorption cross section so 
that a large crystal can be used. An old monochromator crystal, 50x27x8 mm3 

with a mosaic spread of 0.6°, compatible with the angular resolution of the 
instrument, was used. It was mounted with [ITO] vertical. 

Incident wavelength selection on the triple-axis spectrometer was determined 
by Bragg reflection from the (11l) planes of a single crystal of copper. Scattered 
wavelength selection was obtained by using the (0004) reflection from a pyrolytic 
graphite crystal. The monochromator scattering angle (2em) was 58-68° for the 
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range of wavevectors used, ensuring that good neutron groups, well separated 
from the incoherent elastic background, were obtained. 

The intensity of a phonon resonance is given by the coherent scattering 
cross section 

. d2(T = (Teoh ks (2rr)3 _1_ ex (-2W) L {Q. ej(q)}2 
d.Q dE' 4rr ko Vo 2M P qj Wj(q) 

x {(n qj + 1)8(w -wj(q»8(Q - q-T) 

(nqj)8(w + wj(q»8(Q + q -T), 

(6a) 

(6b) 

where (6a) and (6b) are for phonon creation and annihilation respectively, and 
the symbols are conventional. 

All the phonon scans were done at constant Q, maintaining ks constant, 
and detector counts were recorded for a preset number of incident neutrons 
monitored with a 235U fission counter (efficiency 1jvn ). This allowed intensities 
to be compared directly. 

The terms exp(-2 W) (the Debye-Waller factor), (nqj+ 1) = {exp( hWj(q)jkT _l}-I+ 1 
(the Bose-Einstein factor for phonon creation) and {Q. ej(q)}2jWj(q) all vary 
with wavevector Q. They have been calculated and applied as a correction to 
the observed intensities. 

While the Q. e(q) term controls the intensity of the phonon scattering 
involved in the Kikuchi process, the shape of an observed phonon resonance 
is controlled by the relative orientation of the phonon dispersion surface and 
the instrumental resolution function. Sharp resonances are obtained when the 
long axis of the resolution ellipsoid [in the (w, Q.L> plane] aligns closely with 
the phonon dispersion surface. Both these conditions were easily satisfied for 
the transverse acoustic phonon branch. 

In deciding at which Bragg point to measure the transverse acoustic phonon, 
both the intensity term, nqj wjCq), and the calculated positions of the ks and 
ko Kikuchi lines were considered. From Fig. 2, maximum intensity will occur 
for q at -45 0 from the [001] and [110] axes where Vs is a minimum, i.e. close 
to the (113) and (222) directions. At all such points in the [lIO] plane the 
calculated positions of the ks and ko Kikuchi lines are about 15 0 (depending 
on k s) on either side of the q 1. ( == qw) axis. General K-lines were not calculated 
at this stage. Trial measurements were made around (220), (222) and (222) 
and, as the latter looked most promising, detailed measurements were made 
at this position. 

Measurements were made as a series of constant-Q phonon scans at the 
appropriate pOSitions in reciprocal space to cross the predicted Kikuchi lines 
for a range of values of ks (Table l). Fig. 3 illustrates the phonon scan 
positions, plotted relative to the [001] and [110] axes. Also shown are predicted 
ks Kikuchi line positions for ks values of 2·90 and 2·65 A-I for q1. > 0 and 
€ = 1. The intensities of the observed phonon resonances were obtained by 
fitting a Gaussian on a sloping background to the observed counts in each 
constant-Q scan. This intensity, corrected for the expected Q variation given 
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earlier, is plotted as a function of Q in Fig. 6. The calculated Kikuchi line 
positions are indicated. 

5. Results and Discussion 

The integrated intensity data for values of ks ranging from 2·65 to 2·92 A-I 
are presented in Fig. 6. The positions for the Kikuchi lines derived from Fig. 5 
are also shown. There are two general features to be noted in the data. There 
is the overall decrease in the integrated intensity with decreasing scattered 
wavevector ks, as a result of the decrease in the volume of reciprocal space 
sampled due to the reduction in the size of the resolution function. Secondly, 
there is the variation in the integrated intensity with the wavevector Q. It is 
this latter effect that is of interest in the present investigation. 

Referring to Fig. 6 for ks = 2·65 A-I, there is a marked dip in the integrated 
intensity centred about Qx = 2·1 (~2 2rr/a) which is consistent with calculated 
locations for the unresolved 222 ks and ko Kikuchi lines. At ks = 2·75 A-I there 
is some evidence of increased structure in the Qx dependence of the integrated 
intensity that is in accord with the calculated increase in the separation of 
the 222 ks and ko Kikuchi lines. However, there is no indication of a variation 
associated with the predicted locations for the 331 ks and the 331 ko K-lines. 

On increasing ks further the interpretation of the variations in the integrated 
intensity becomes much less certain due to the increased number of predicted 
K-lines in the range of Qx investigated. Nevertheless, a 20-30% drop in 
intensity which appears at Qx < 2· 02 (~2 2rr/a) for ks = 2·825 A-I moves to 
Qx - 2· 09 (~2 2rr/a) at ks = 2·92 A-I. For ks < 2·91 A-I, Fig. 5 would indicate 
that the most likely source of this drop in integrated intensity is the (240,420) 
ko Kikuchi effect scattering intensity out of the [110] plane. Although less 
pronounced, there is also a drop in integrated intensity consistent with the 
(240,420) ko Kikuchi effect for Qx> 2· 1 (~2 2rr/ a) for ks = 2·88 and 2·90 A-I. 
The observed movement of these dips is in accord with that predicted, but 
the actual values of Qx for a given value of ks are too large or too small 
depending upon whether Qx is greater or less than 2· 1 (~2 2rr/a). 

Referring to Fig. 4, a drop of -0·035 THz in the calculated frequency 
would move the (240,420) ko Kikuchi loci into agreement with the observed 
pOSitions, while only moving the 222 ks and ko Kikuchi lines a small amount. 
Furthermore, the (240,420) lines would then also account for the pronounced 
double dip observed for ks = 2· 92 A-I. 

An examination of the phonon dispersion curves measured at 100 K by 
Brockhouse et af. (1962) indicates that the shift in frequency to correct for 
dispersion would be of this order. However, our observed phonon frequencies 
00 which are plotted in Fig. 4 only show evidence of dispersion close to the [001] 
and [110] directions, with a maximum shift in frequency of -0·025 THz. At 
the frequencies corresponding to the (240,420) K-lines the observed frequency 
shift is negligible. 

In addressing the question of the correction to be applied to the observed 
phonon frequencies we recall that for the Kikuchi effect to be observed 
the velocity of the neutron must be greater than the velocity of sound in 
the crystal (Condition 5 in Section 3). This implies that the gradient 9 
of the resolution function in the (00, Q.d plane is greater than the slope 



300 

~ 

80 I-

;. 240 
80- + 

L 
331 

70-

331 
+ 

I I 

s. L. Town et aI. 

I 

-

-
2.86 

-

-

.* 60 - t 2.825 
~ r-------------------------------------~ 
¥ <:::. 331 222 222 331 <;. 

~ 70 - 1 + 1 J. . .l. + + + -
~ TyT y tJ.t 

60 - ?? ? ? ? ? ? ? ?? T 
-

2.75 

50-

40-
2.65 

I I I 

2.05,1.75 2.1,1.8 2.15,1.85 
OX' Oy (--12 21[/a, 2rc/a) 
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of the transverse acoustic phonon branch. Thus, the initial (low frequency) 
part of the resonance will be due to the intersection of the high frequency 
side of the resolution function with the phonon surface. Conversely, the 
upper (high frequency) part of the resonance will be due to the intersection 
of the low frequency side of the resolution function with the phonon surface. 
At low frequencies the phonon dependent part of equations (6a) and (6b) 
approximates to a 1/002 dependence. Because of this -1/002 factor in the 
scattering cross section, the intensity for the low frequency side of the 
resonance is reduced relative to that at the high frequency side, thus shifting 
the distribution of the resonance to higher frequencies. This is illustrated in 
Fig. 7. 

From Fig. 7 with the approximation of zero frequency spread in the resolution 
function, the difference between the wavevector q being scanned and that 
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(7) 

where Wi is the frequency corresponding to the point of observation, Wei is 
the sampled frequency and 00 is the phonon frequency. From equation (7) we 
get 

Wei = 00 -R(Wi - 00), (8) 

where R = (glvs _1)-1 = (lIP _1)-1. 
It is implicit in the fitting procedure of the resonance that the 1/002 factor 

is constant, which results in the shift in frequency Llw = Wf - 00 described 
above, where Wf is the frequency obtained from the fitted Gaussian peak 

(9) 
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Fig. 7. Schematic representation of the intersection of the resolution 
function and the phonon surface illustrating the shift in the observed 
resonance to higher frequencies. 

with full width W at 10/2. Thus, the corrected intensity lei corresponding to 
Wei is given by Ii w~Jwl. The peak shift, Llw may be estimated from Lli = lei -Ii 
by using the mean of LlI/{ali/a(Wi - Wf)} calculated at each value of 10/2. This 
leads to the relationship 

RW2 
Llw = 4Wf In2 ' (10) 

where R varies from 0·83 to 2·30 for the Q values used in the experiment, 
with the values of Llw ranging between 0·01 and 0·03 THz. If the energy 
resolution is less than that assumed, the shifts will be a bit less than these 
estimates. These corrections are consistent with the expected dispersion and 
the shift in frequency required to bring the observations into agreement with 
the predicted K-lines. 

Correcting for dispersion, weak ks and ko Kikuchi lines associated with 
the 222 reciprocal lattice point are predicted to occur and move with ks as 
observed. Stronger reductions due to the (240,420) ko Kikuchi lines also occur 
as predicted. 

Unfortunately, it has not yet been possible to calculate the relative intensities 
of the various lines, or explain why the 331,331 lines which are also predicted 
to occur in the range of Q studied (see Fig. 5) were not seen. While further 
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measurements are required, possibly using a different reciprocal lattice point 
where fewer K-lines are predicted, the present results are in agreement with 
the theoretical prediction of the neutron Kikuchi effect. 

6. Conclusions 

The data presented here provide a reasonable confirmation of the existence 
of the neutron Kikuchi effect. Analysis of the data was far more complex than 
originally envisaged and follow-up work on a more exact frequency correction, 
the effect of the resolution function on the phonon intensities and the relative 
intensities of the Kikuchi lines themselves is needed. Calculations are in 
progress to see if other reciprocal lattice points give rise to a less complex 
pattern of Kikuchi lines, which would thus be simpler to interpret. It also 
remains for investigations of the effect to be made using different samples, 
and also to explore whether or not the effect can be observed using a standard 
four-circle diffractometer. 

Acknowledgments 

We have benefitted from discussions with a number of people, in particular 
Drs C. J. Howard, M. S. Lehmann and S. W. Wilkins. We are specifically indebted 
to Dr C. J. Howard for material used in the Appendix. 

Much of this work was carried out at the Lucas Heights Research Laboratories 
using Australian Nuclear Science and Technology Organisation facilities. The 
funding for this was made available by the Australian Institute of Nuclear 
Science and Engineering and the Australian Research Grants Scheme. One of 
us (S.L.T.) acknowledges support given by a Monash University Scholarship. 

References 
Born, M., and Huang, K. (1954). 'Dynamical Theory of Crystal Lattices' (Clarendon: Oxford). 
Brockhouse, B. N., Arase, T., Caglioti, G., Rao, K. R., and Woods, A. D. B. (1962). Phys. Rev. 128, 

1099. 
Bushuev, V. A., Laushkin, A. B., Kuz'min, R. N., and Lobanov, N. N. (1983). Sov. Phys. Solid 

State 25, 228. 
Friedrich, W., Knipping, P., and von Laue, M. (1912). K. Bayer Akad. Munchen Ber. 302. 
Geisler, A. H., Hill, J. K., and Newkirk, J. B. (1948). J. Appr. Phys. 19, 104l. 
Graf, H. A., Schneider, J. R., Freund, A. K., and Lehmann, M. S. (1981). Acta Cryst. A 37,863. 
Grenville-Wells, H. J. (1951). Nature 168, 290. 
Kashiwase, Y., Kainuma, Y., and Minoura, M. (1982). J. Phys. Soc. Jpn 51, 937. 
Kikuchi, S. (1928). Jap. J. Phys. 5, 83. 
Petrascheck, D. (1985). Phys. Rev. B 31, 7466. 
Ti, S. 5., Finlayson, T. R., Smith, T. F., Cashion, J. D., and Clark, P. E. (1983). Aust. J. Phys. 36, 

185. 
Waldorf, D. L., and Alers, G. A. (1962). J. Appr. Phys. 33, 3266. 
Wilkins, S. W. (1983). Phys. Rev. Lett. 50, 1862. 
Wilkins, S. W., Chadderton, L. T., and Smith, T. F. (1983). Acta Cryst. A 39, 792. 



S. L. Town et al. 

Appendix 

In the reciprocal space formulation presented above, the coordinates for the 
Kikuchi loci are derived without approximation. This approach is specific to 
the present experimental investigation. However, to realise the full potential of 
the Kikuchi effect for self-energy analysis within the sample crystal, requires 
the detection of K-lines in the standard diffractometer geometry. Thus, the 
location of K-lines is required in real space (.126,.100) coordinates, where 26 
and 00 refer to detector and crystal rotation respectively. It is the purpose 
of this Appendix to derive the (Ll26K,LlooK) coordinates and to demonstrate 
that these are identical, in the limit that .126,.100 are small, to those given 
previously by Wilkins (I983). 

The qll,q.L axes that were convenient for the derivation of equations (4) are 
not readily related to .126 and .100. With a rotation of 6~, the qll,q.L axes 
become coincident with the invariant reciprocal space axes qw, q?. Thus, in 
matrix form we have 

( q" ) = (S' -C') (qll ) , 
qw c' s,· q.L 

(AI) 

where s' = sin6~ and c' = cos6~. 
The diffractometer coordinates .126,.100 are taken to be positive in the 

anticlockwise sense. Note that this is the reverse of the choice made by 
Wilkins (I983), but it is in accord with Fig. 1 a in the present paper, which 
corresponds to the measurement geometry on the triple-axis spectrometer. 

Fig. 8. Scattering geometry for the transformation between ..128 • ..1w instrument space and 
reciprocal space. 

The scattering geometry is illustrated in Fig. 8, where 

o=tan-l(~) 
G+q" ' 

(A2a.2b) 

Note that Gw = G. With .100 = 0, the Bragg condition is satisfied for the incident 
ko, 

G = 2ko sin6g . (A3) 
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Applying the cosine rule in the triangle bounded by ko, ks and Q gives 

k2+k2 Q2 
cos(2eg +Ll2e) = ° 2k~ ~ (A4) 

k2 +Q2 _k2 
cos(rr/2 -eg-8-Llw)=sin(eg+8+Llw)= ° 2koQ s (AS) 

Hence, we get 

(A6a) 

(A6b) 

which are the required values for Ll2e and Llw. 
The theory given previously by Wilkins (1983) was developed using the 

approximation that q/ko «1 (we assume that I ko - ks I/ko is a term of the 
same order as q/ko). Retaining only first order terms in q/ko, equations (A6) 
can be reduced to 

(A7) 

where s = sineg. Note that this differs from equation (6) of Wilkins only in 
the sign of the coefficient of qw, this difference being associated with the 
opposite sense of Llw with respect to the q;>..,qw axes. 

The values qlf,q~ corresponding to a point on the Kikuchi locus are given 
by equations (4), which in the approximation used here are 

(A8a,8b) 

where {3 = (3'ks/ko. Furthermore, as k5-k~ "" 2ko(ko-ks) it follows from equation 
(1) that 

ko - ks = €w(q) :: = €(3q . (A9) 

Using (AI), (A8) and (A9) in (A7) to obtain Ll2eK and LlWK on the Kikuchi 
locus gives 

2CSkO(Ll2eK)=(2S2)€{3q+( 2s2 -2SC) ( €(3q ) 
.1wK 1 S2-C2 -2sc ±q(1_{32)~' 
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and hence 

Ll2eK = {2€/Haneg ± 0- !32 )hq/ko, 

LlWK = {€!3taneg ± 0- !32)hq/ko. 

s. L. Town et al. 

(AID) 

(All) 

Using (AID) and (All) it is not difficult to show that Wilkins' equation (9) is 
satisfied. Hence, the theory presented here reduces, near the Bragg condition, 
to that presented previously by Wilkins. 
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