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Abstract 

The effect of a rotating magnetic field on the stability of a rotamak is investigated. Using a 
simple equilibrium model and the linearised equations of ideal magnetohydrodynamics, it 
is shown that a rotating field can be a contributing factor in the stabilisation of the tilting 
instability of a slightly prolate rotamak plasma. 

1. Introduction 

The possibility of using a rotating magnetic field (RMF) to drive steady 
currents in a plasma was originally demonstrated by Blevin and Thonemann 
(1962). In recent years this technique has been applied successfully in a 
series of rotamak experiments (jones 1984; Durance et al. 1987). A rotamak 
essentially is a device in which a field reversed configuration (FRC) is maintained 
by means of an RMF. This RMF drives a steady toroidal (or azimuthal) current 
which, with the externally applied steady vertical field, confines the plasma. 
Most of these recent experiments have been concerned with spherical or near 
spherical configurations but some highly elongated plasmas have also been 
investigated (Jones and Knight 1985). 

One feature common to all these experiments has been their remarkable 
reproducibility and the lack of any obvious signs of instability. This has led 
to the conjecture that, apart from driving the current, the RMF may also have 
a role in dynamically stabilising the plasma (Storer 1982; Jones 1984). 

On the other hand conventional FRCs, which do not have imposed r.f. fields, 
also do not display the instabilities which are predicted by ideal MHO theory 
(Schwartz meier et al. 1983). The reason for this has been attributed to kinetic 
stabilisation (Barnes et al. 1986). The effectiveness of kinetic stabilisation is 
associated with small values of the plasma parameter s, which is a measure 
of the number of gyro radii within the separatrix (Slough et al. 1984). In 
rotamak experiments the values of s have always been small so that the 
apparent stability may well have been due to kinetic stabilisation. However, 
to enhance the thermal properties of FRCs (and also of rotamak plasmas), 
it is necessary to operate with much higher values of s for which kinetic 
stabilisation is supposed to lose its effectiv~ness. Therefore, it is of some 
interest to investigate the effect of the RMF on the stability of a rotamak 
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plasma in an operating regime where s is large. In this paper we examine, in 
terms of a very simple model, the effect of an RMF on the internal tilting mode 
in a rotamak. It is well known (Clemente and Milovich 1981) that a spherical 
FRC is marginally stable and an oblate FRC stable to tilting. Therefore, we 
will confine the analysis to the case of a prolate rotamak. The linearised ideal 
MHD equations for small perturbations about an equilibrium are derived in 
Section 2. Using a specific perturbation to the equilibrium the equations for 
the perturbed fields are solved in Section 3. In Section 4 the energy principle 
is used to examine the stability of the configuration. A short summary and 
discussion in Section 5 concludes the paper. 

2. Linearised Stability Equations 

In the model of a rotamak adopted here we consider a plasma of low 
resistivity (1] -+ 0) surrounded by a thin, rigid, non,conducting shell in the 
shape of a prolate spheroid whose surface in cylindrical (y.cf>.z) coordinates 
is given by y2 / a 2 + z2/b2 = 1. A transverse rotating magnetic field 

Beo = [Beo cos(cf> - rot). -Beo sin(cf> - rot). 0] (1) 

is applied which induces in the plasma a steady azimuthal current 

Jo = (0. -neroy. 0). (2) 

Here Beo is a constant and the electron number density n is assumed to 
be uniform. An externally applied steady magnetic field ensures that the 
separatrix of the steady field Bo lies on the plasma boundary, so that Bo 
corresponds to a Solov'ev (1976) equilibrium 

(3) 

where 

(4) 

The equations describing this system are those of Maxwell, the equation of 
motion 

with p = nmj, and Ohm's law 

dV A A A 

p- +'ilP=JxB 
dt 

A A A 1 A A 

E+VxB=-JXB. ne 

(5) 

(6) 

where V is the fluid velocity, P the pressure, and J and B are the current 
density and magnetic field within the plasma. We shall also assume the fluid 
to be incompressible so that 'il. V = o. 
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A quasi-static axisymmetric equilibrium can then be defined (Bertram 1989) 
as being a configuration in which each physical variable Qo is of the form 

Qo(r, </>,z, t) = Qo(r,z) + Qo(r,</> - wt,z), (7) 

and in which the average fluid velocity Vo is zero. Given such an equilibrium we 
can then consider the effects of small perturbations Cb from their equilibrium 
values by assuming that the time dependence of Cb is characterised by two 
different scales, one of which is associated with the growth rate (or frequency) 
i\ of the perturbation, and the other with the frequency w of the applied RMF. 
The value of w is chosen to satisfy w »i\. The average of Cb over a period 
of rotation, denoted by (Q1) = Q1, is a slowly varying function of time which 
suggests that we separate Cb into slowly and rapidly varying components as 

Q1 (r, </>, z, t) = Q1 (r, </>, z, t) + Q1 (r, </>, z, t) , (8) 

with 

Q1 (r, </>, z, t) = Re[q(r, </>, z, t)eiwtj. (9) 

Expansion of equations (5) and (6) to first order in the perturbed variables 
and separation of the rapidly and slowly varying time components yields the 
linearised stability equations 

aV1 - - - -
Pat +P(W1.'V)VO+(VO.'V)V1)+'VP1 

=Jo X Bl +11 X Bo +(io XHl)+<Jl XHo), (10) 

a Bl - - - -at = 'VX(VI X Bo +(Vo X Bl)+(Vl X Bo» 

1 - - - -
- -'VXUOXBl+JlXBo+(11xBo)+(JoXBl», (1) ne 

aV1 - - -
Pat + P(V1 • 'V)Vo + p(Vo. 'V) VI + 'VPl 

=JOXH1 +11 XHo+JoXBl +Jl xBo+{Fd, (2) 

a HI - --at = 'VX(V1 xBo+ VI xBo + VoXBd 

where {Q} denotes the quantity Q -(Q) and 

F1 = Jo X HI +Jl X Ho - P(V1 • 'V)Vo -pcVo. 'V) VI , 

- - - - 1- - --
G1 = VI xBo + VOXBl - -Ul XBo +JoxBd. ne 

(4) 

(15) 
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For a given small displacement C with VI -= OC18t, it is possible in principle 
to solve equations (11 H 13) for the perturbed fields BI, BI and VI so that 
the force terms in the equation of motion (10) can be evaluated. To test a 
given equilibrium configuration for stability to a particular mode, we will use 
a Simplified form of the energy principle (Freidberg 1982) based on the fact 
that if C represents an eigenmode of the system, or a good approximation to 
the exact eigenmode, the stability of the system to that particular mode can 
be determined from the sign of the quantity 

8W=-~ f C·FdV, (16) 

where F represents the collection of force terms in equation (10). 

3. Determination of Perturbed Fields 

To determine the effect of the RMF on the m = 1 tilting mode in a slightly 
prolate spheroidal plasma (m is the azimuthal mode number). we use a simple 
generalisation of the equilibrium derived in Bertram (1989). For the case 
W»Wo and w »Wei. where Wo = eBolmi and Wei = eBoo/mi. the rotating field 
fully penetrates the plasma and the steady driven current corresponds to the 
electron fluid in synchronous rotation with the rotating field. The steady fields 
are therefore given by equations (2) and (3) and the oscillating equilibrium 
fields are Bo = Boo + O(weilw), iollo = O(weilw), and 

Vo = ~Wei[Z sin(4) - wt), zcos(4) - wt), -(rb2Ia2) sin(4) - wt)]. (17) 

This last equation is not exact but is correct to order 8 = (b2 - a2)j a2• Since Vo 
enters the stability equations only through products with perturbed quantities 
which are of order € say. the error introduced by (17) is of order €8 and is 
negligible provided 8« 1. 

Consider a displacement of the form 

(18) 

When a = b and Boo = 0 this is an exact eigenfunction of equations (10) and (11) 
corresponding to a zero eigenvalue. Therefore. provided 8 and Boo are small. 
equation (18) represents a good approximation to the exact eigenfunction and 
can be used in (16) to test for stability. This same analysis has been carried out 
for the case Boo = 0 and a,p b by Clemente and Milovich (1981) to investigate 
the instability of a prolate (b2 > a2) FRC. 

Equations (10)-(15) can be Simplified considerably if we use the properties 
of the equilibrium fields. Ignoring terms of order Wei/W, the terms involving 
io can be dropped from (10)-(15). We shall also ignore the terms involving 
the operators VI. \I. Vo. \I and VI. \I. The justification for this is not obvious 
at this stage but it will be shown later that for the solutions we obtain these 
terms are indeed negligible. 
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As a result of these simplifications (10)-(13) can be written as 

OVI - -
Pat =loXBl +11 xBo +lJl XBw} -'VPl, (19) 

(20) 

(21) 

Furthermore, in equation (21) (p/ne)oVIIot is of order 71./000 smaller than the 
term VI X Bo and can be ignored. Similarly, the right-hand side of (22) is 
dominated by 0 V 110 t which is of order 00/000 larger than the other terms, so 
that (20)-(22) can be replaced by 

o VI - - - --
p'Vx at = 'VXUOXBl +11 xBw +11 XBO+Ul X Bw}), (23) 

To solve these equations when tl is given by (18), we note that the term 
II x Bw in (23) generally will give rise to both m = 0 and 2 harmonics in VI. 
For the m = 0 component let us try a rigid body oscillation which must be of 
the form 

VI = (0, ocr sinwt,O). (26) 

After evaluating Bl and 81 using equations (24) and (25) and substituting the 
results into (23) we find that (26) in fact represents an exact solution of the 
equations, provided the spatially constant oc is given by 

oc - 5 Wci€ 
- 'Z a2 +4b2 • 

(27) 

Remarkably, there are no contributions from the higher harmonics. The full 
solution of (23)-(25) for the perturbed fields can then be expressed as 

2 [( y2 2z2). ( 2r2 2z2 ) rz.] Bl = -(Bo €/b) 1 - a2 - b2 . smcp, 1 - Q2 - Jj2 coscp, a2 smcp , (28) 

- ( 5BW €.) Bl = 0,0,- 2 2 smoot . 
4b +a 

(29) 
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The currents corresponding to these fields are 

Bo € [( 1 4 ) ( 1 4). r ] J 1 = - /lo b2 a2 + b2 Z coscf>, - Q2 + b2 z smcf>, -5 Q2 coscf> , 

il = o. 

(30) 

(31) 

It is now relatively easy to justify the approximations that were made earlier 
to simplify the equations. As an example, using (17) and (26) to evaluate the 
terms involving Vo omitted from (10), we find that 

Tl = P«VI • V)Vo + (Vo. V)Vl} - PW~i £ 

which, using equation (4), can be written as 

Tl - /lOl Bo Boo £(Wei/w). 

On the other hand, evaluation of the term T2 = Jo X Bl yields T2 - /lol B6 £ so 
that 

TI Boo Wei 1 ----« 
T2 Bo W . 

4. Stability Criterion 

From the expressions for the perturbed fields and currents it is now possible 
to evaluate the force terms on the right-hand side of (19) and to calculate out 
the energy integral (16). The pressure does not contribute since 

f '.'VPdV= LPC.ndS=O, 

where S denotes the surface of the plasma. Since il = 0, (16) becomes 

8Wv =-i f '.Ul xBo +JOXBl) dV. (32) 

This integral, which now contains no contributions from the oscillating fields, 
has been evaluated by Clemente and Milovich (1981) as 

4rr B6 £2 b2 _ a2 
8Wv=-- -- ---. 

15 /lo b3 
(33) 

However, we must also take into account any surface contribution to 8W. If 
[BIl is the change in the perturbed steady or oscillating fields across the 
boundary of the plasma there is a surface contribution of the form 

8Ws = - -21 f'. [(nx [BI]) x Bol dS 
/lo s 

=-21 f (Bo.[BI])'.ndS- -21 f (n.Bo)(,.[BI])dS. (34) 
/lo s /lo s 

For a fixed boundary the first term on the right-hand side of (34) is zero. The 
second term vanishes for the static equilibrium field if the separatrix coincides 
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with the plasma boundary, but does not necessarily vanish for the oscillating 
field since in general n • .8o is nonzero. Therefore, we must evaluate the term 

1 f - -8Ws = - -2 {(n. Boo)~. [B1]» ciS. 
110 s 

(35) 

The quantity [.8d can be obtained by solving for the perturbed oscillating 
vacuum field .8~ subject to the boundary conditions n . .81 = n • .8~ on Sand 
.8~ -- 0 when y2 + z2 __ 00. In cylindrical coordinates this is a difficult problem 
which is more easily solved in a spheroidal coordinate system. The evaluation 
of (35), which is carried out in the Appendix, yields 

5rr b B2 €2 rr B2 €2 

6Ws=""8 a2 +4b2 ~o "" 8110 T (36) 

From (33) and (36) it follows that the plasma is stable (6Wv + 6Ws > 0) when 

(37) 

That this stability criterion does not depend explicitly on the frequency w of 
the rotating field is a consequence of the fact that in RMF current drive w is 
related to 10 and Bo through (2) and (4). 

In the experiment of Durance et al. (1987), a typical prolate rotamak 
configuration had the parameters alb = 0·8 and Bo = 30 G. Equation (37) 
predicts that this configuration is stable when Boo = 26 G which is not very 
different from the value Boo = 20 G used in the experiment. However, it must 
be remembered that the value of s in this experiment is rather small and this 
may well be the major factor in the apparent stability of the configuration. 

5. Conclusions 

By examining the internal m = 1 tilting mode in a simplified model of a 
rotamak we have shown that the rotating magnetic field can be a contributing 
factor to the stabilisation of a rotamak plasma. This supports a previous 
conjecture by Storer (1982). The analysis does not necessarily offer a full 
explanation for the lack of experimental evidence of instabilities in the rotamak. 
Other mechanisms may well be responsible for this (Barnes et al. 1986). To 
simplify the analysis it was necessary to adopt the incompressible fluid model 
and the frequency of the rotating field w was assumed to be much greater 
than the ion cyclotron frequency Wo. In the absence of an r.f. field the 
tilting instability is a current driven mode in which pressure effects are 
negligible so that, in the context of ideal MHO, the tilting instability can be 
described using the incompressible fluid model. In the case of the rotamak the 
inclusion of the RMF complicates the problem conSiderably. The interaction 
between the RMF and the steady plasma fields most likely results in pressure 
effects. However, the analysis for a compressible plasma does not appear 
to be tractable, particularly in view of the fact that there is no simple way 
to describe the equilibrium configuration (Bertram 1989). Nevertheless, even 
though the analysis was restricted to incompressible plasmas in near spherical 
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equilibrium configurations, the results indicate that when the elongation is 
increased, the relative amplitude of the RMF, BwlBo, must also be increased 
to maintain stability. This does seem to put a limit on the effectiveness of 
RMF stabilisation of more highly elongated plasmas. 

The analysis can also be carried out for a spherical plasma where instead 
of 00 »000, the equilibrium fields (Bertram 1989) satisfy the more realistic 
condition 000 »00 »Wci. This analysis, the details of which we have not 
presented, yields the result oW = O. This is an obvious result since for this 
equilibrium both the steady and oscillating fields correspond to spherical Hill's 
vortices (Bertram 1989). At any instant the combined field is also a spherical 
Hill's vortex which is well known to be marginally stable to tilting. 
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Appendix 

To evaluate the surface integral 

oWs = -i Is «n. Bw)C· [Bl]) dS, (AI) 

we make use of prolate spheroidal coordinates (u, e, cp) (Morse and Feshbach 
1953) which are related to the cylindrical coordinates (r,cp,z) by 

r = l(u2 - 1) ~ sine, Z = lu cose, (A2) 
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where 12 = b2 - a2 • The plasma boundary is at U = UB = bjl. The spheroidal 
components of a vector P are related to the cylindrical components by the 
transformation 

1 1 
Pu =t1-;;(uPy sin8 +(u2 -I);;Pz cos8), 

(A3) 

with t1 = u2 -cos28. 
The perturbed field Bl given by equation (31) can be expressed in the new 

coordinate system as 

- 1 2 1 
Bl = -Bz t1-;; sinoot«u -1)2 cose, -u sine, 0), 

where Bz = 5Bw €j(a 2 + 4b2). 

To calculate the vacuum field BY we write 

B~ = - (12 .,ft1(u2 - 1)~ sin8)-1 sinoot ~ ~ , 

B~ = (l2.,ft1 sin8)-l sinoot ~ ~ . 

This ensures that v. BY = O. The condition V x BY = 0 then leads to 

2 a2 l/l . e a ( 1 al/l) 
(u -1) au2 + sm 08 sin8 ae =0, 

which can be solved by separation of variables to yield 

(A4) 

(A5) 

(A6) 

1 00 

l/l = (u 2 -1);; sin2cp .~)an P~+l (u) + en ~+l (u)lP~1·l)(cos8). (A7) 
n=O 

Here P~ and QA are the Legendre functions and p~l,l) are Jacobi polynominals 
(Abramowitz and Stegun 1965). The required vacuum field is obtained from 
(A5) and (A7) by selecting the n = 0 term which gives 

-Y 2co 1 . 
Bu = - -2- Ql cose smoot, 

I .,ft1 
B- Y 2co QO . 8 . e = -2- 1 sm smoot. 

I .,ft1 
(A8) 

On the plasma boundary where u~ = b2j(b2 -a2) »1 we can use the approximate 
forms Q? = (3u 2)-1 and Qf = _~(U2 _I)~ju3 to write BY as 

B-Y 2co sinoot (2 -3( 2 I)"" 8 -2· 8 0) = 2 uB uB - 2 cos ,us sIn, . 
31 .,ft1s 

(A9) 

The boundary condition n. Bl = n. il at u = Us determines the value of Co as 

(AIO) 
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so that we obtain for [Bl1 = BY - Bl, 

[Bl1 = [0, -iBz(uBI.JIJ.B) sine sinrot, 01. (All) 

The values of Boo and ~ at U = UB can be expressed in terms of the spheroidal 
coordinates as 

Boo = Boo[(uBI.JIJ.B) sine cos(ef> - rot), (auBlb.JIJ.B) cose cos(ef> - rot), 

- sin(ef> - rot)], 

~ = E [0, (/1 a).JIJ.B sinef>, cose cosef>], 

(AI 2) 

(A13) 

which, when substituted into (AI) and using dS = 12(u~ - l)t .JIJ.B sine de def> 
yields the result 

1T 
= 2bBooBzE. (A14) 

Manuscript received 2 November 1988, accepted 18 April 1989 




