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Abstract 

Aust. J. Phys., 1989, 42, 439-50 

In an earlier paper (Brahde 1988) it was shown that series of measurements of the atmospheric 
pressure in Oslo contained information about a one·day oscillation with mean amplitude 
0·17 mb. The data consisted of measurements every second hour during the years 1957-67, 
1969 and 1977. In the present paper the intervening years plus 1978 and 1979 have been 
included, increasing the basis from 13 to 23 years. In addition the phase shift occurring 
when the Moon crosses the celestial equator has been defined precisely, thus making it 
possible to include all the data. The one·day dynamic oscillation with mean amplitude 
0·17 mb has been confirmed, and in addition its first harmonic or the half-day oscillation 
has also been found. Its mean amplitude becomes 0·048 mb, a value which is considerably 
higher than the amplitude 0·007 mb determined by means of data from Oslo by Haurwitz 
and Cowley (1969). It is also shown how the dynamic wave reacts on the thermal wave. 

1. The Data 

As explained in Brahde (1988; referred hereafter as Part I), data for the 
years 1968 and 1970-76 had been excluded because the two first digits were 
not always recorded. Now this has been corrected by the introduction of two 
tests. The data which were recorded in units of O· 1 mb (0· 1 mb == 10 Pa) were 
tested if the number was smaller than 500, or if it was greater than 500 and 
smaller than 1000. In the first case 10000 was added, in the second 9000 
was added, thus confining the data to the interval between 950 and 1050 mb. 
It was also necessary to examine the data for errors. The absolute value of 
the difference between two subsequent pressure data points was formed and 
compared with a prescribed limit. Choosing the limit 9 mb it was easy to 
detect errors of the order of 1000, 100 and 10 mb. Inspection of the previous 
and the following values could also reveal errors of smaller magnitude. If 
one or two values were found to fall outside of an otherwise smooth series, 
and a correction involving addition or subtraction of an integral number of 
millibars caused the value(s) to fall in line, then this correction was applied. 
The last digit could of course never be changed. 

The expanded dataset comprising the 23 years 1957-79 form a continuous 
series of 100800 measured values . 

• Part I, Aust. ]. Phys., 1988,41,807-31. 
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2. Refinement of the Method 

In Part I it was shown that the principal and secondary maxima of the 
tidal acceleration change position relative to upper or lower culmination of 
the Moon, every time the Moon crosses the equator. To correct for this some 
days, when the time interval between maxima became shorter than 16 hours, 
were excluded from the statistics. 

This test has now been replaced by a precise definition of the time when 
the Moon crosses the equator and a subsequent switch between principal 
and secondary maxima. (The Sun does not matter in this connection because 
during the two periods when it also crosses the equator, the pull of the Moon 
always dominates.) Consequently, all of the 8154 tidal days can be used in 
the statistics and the first harmonic, or the half-day oscillation, can also be 
studied. 

With these alterations the gradient of the pressure was found and grouped 
within the tidal days as described in Part I. The noise limitation 0' was chosen 
to be o· 2, 0·4 and 1·4mb as before, and the results are shown in the upper 
part of Fig. 1 where the nOise limit increases from left to right. Compared 
with Figs 4a and 6 of Part I we notice a maximum of the gradient at T.N.-6h 

which could not be seen before. 
The values of the mean gradient D'(v) were determined at T.N.-14h to 

T.N.+14h, where h is the mean solar hour. The integration of D'(v) to find 
D(v) is performed by the method described in Part I (pp. 818-19). But, since 
we want to separate the harmonic components of the integrated function, 
we should not use intervals of mean solar time around T.N. The length of 
a tidal day is a variable quantity, but examination of the file gives a mean 
value of 1 ·0244 mean solar days. This is sufficiently close to the length of a 
mean lunar day of 1 d ·03505 to allow for the use of mean lunar hours in this 
connection. The procedure was as follows: First the coefficients of a Fourier 
series based on the 15 values of the gradient were determined. The resulting 
Fourier series was used to interpolate values in distances of -12, -1 0, ... +12 
mean lunar hours from T.N. Crosses in the upper part of Fig. 1 mark these 
points. Next, these 13 points were used to compute a new set of Fourier 
coefficients, which in turn were used to integrate the function using formula 
(7) of Part I. 

The results are presented in the lower part of Fig. 1 by the curves marked 
15. The same formula allows interpolation between the 13 points which are 
marked by dots, thus giving a smooth shape to the curves for D(v). Formula 
(7) of Part I allows also a separation of the Fourier components of the function 
D(v) , and we get the one-day and half-day components marked 15, and 15" in 
Fig. 1. The use of intervals of length 1·0244 mean solar days around T.N. 
did not diminish the higher harmonics, and therefore mean lunar hours were 
preferrred. The curves marked R show the sum of the harmonics of order 3, 
4, 5 and 6. 

Earlier the integration was also performed by means of another method. 
Based on the computation with noise limit 0' = 0·4 mb, the regression 
coefficient between the gradient of the pressure and the magnitude* of the 

• The 'magnitude' was defined to be the difference between the maximum value of the 
acceleration which takes place at tidal noon and its subsequent minimum value. 
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tidal acceleration was extracted (see Part 1, pp. 808, 815) and used to compute 
the series D(t) running through the intervals where the one-day oscillation had 
been determined. Now the gaps between the intervals have disappeared and 
the series D(t) has been found throughout the 23 years every second hour, 
this time with the three actual values of (T. Again, as in Part I, mean values 
grouped within tidal phase were formed, and the results are shown in the 
lower part of Fig. 1 by small circles, which closely follow the curves for D(v). 
This of course, represents a control of the procedures and a confirmation 
of the correlation between tidal acceleration and the pressure variation. The 
first method does not involve the magnitude of the acceleration at all, and 
depends only on the pressure data grouped according to tidal phase. The 
second method depends also on the magnitude of the acceleration and its 
correlation with the measured pressure gradient. 

Noise limit 
(T (mb) 

0·20 
0·40 
1·40 

o.s 

Table 1. Dynamic atmospheric (Juni-solar) tide 

Number 

1882 
3892 
7751 

! , , 

-12 -10 -8 
, 

-6 

(%) 

23 
48 
95 

I 

-4 
I 

-2 

Amplitude of oscillation 
'One-day' AI (mb) 'Half-day' All (mb) 

0·172±0·053 
0·154±0·059 
0·129±0·039 

, , I I 

T.N. +2 +4 +6 
I 

+8 

0·046±0·021 
0·048±0·018 
0·044±0·014 

+10 +12 +14h 
M.S.H. 

Fig. 2. Mean dynamic gradient D'(y) when the limitation of data because of noise is avoided. 
(Note that the scale of the ordinate differs from Fig. 1.) 

As already stated the three parts of Fig. 1 differ only in the choice of 
noise limit (T. When (T = 0·2 mb each point of the gradient curve represents 
1882 data points or 23% of the total. With 0- = 0·4 mb the basis is 3842 data 
points or 48%, and for the limit 0- = 1 ·4 mb as much as 7751 observed values 
are behind each point of the curve, or 95% of the available 8154 tidal days. 
Table 1 summarises these values. The uncertainty in the amplitudes AI and An 
have been found in the usual way by selecting data for each year separately, 
determining the amplitudes, forming the grand mean and computing standard 
deviations. Examination of the table reveals the following: 

(1) the amplitude AI in the first line coincides with the value in Part I 
and diminishes with increasing values of 0-; 
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(2) the amplitude Au of 0·048 mb is about seven times larger than the 
value 0·007 mb found by Haurwitz and Cowley (1969) for the same 
station; and 

(3) it is surprising that the three results differ so little considering that 
95% of the data was used in the third line. 

Item (3) lead to a rerun of the program without the noise test, or actually 
the limit was set to 100 mb, which served the same purpose. In Fig. 2 the 
function D/(V) is shown in this case when all data were included. The variation 
becomes about 2·5 times larger than before, and the error bars show that 
the result is scarcely significant. However, it is highly interesting that the 
remaining 5% of the data makes such a profound difference. 

Table 2. Spectrum of dynamic variation 2A 

Year 2A = Dmax - Dmln (mb) 
0·05 0·15 0·25 0·35 0·45 0·55 0·65 0·75 

1957 26 36 26 108 118 35 6 0 
1958 25 40 58 110 89 31 0 0 
1959 37 32 51 84 136 14 0 0 
1960 23 24 61 102 103 42 0 0 
1961 24 28 58 99 97 42 7 0 
1962 28 31 60 79 101 56 1 0 
1963 24 17 55 77 123 59 0 0 
1964 24 16 56 66 117 65 12 0 
1965 8 23 61 78 110 42 34 0 
1966 13 30 52 71 84 59 43 1 
1967 24 18 38 65 75 98 36 0 
1968 32 18 25 67 63 115 37 0 
1969 12 31 30 76 91 71 33 11 
1970 13 36 34 73 84 63 46 4 
1971 19 22 33 63 101 78 36 0 
1972 28 23 29 65 90 122 0 0 
1973 18 41 32 86 104 52 21 0 
1974 16 43 33 104 96 51 11 0 
1975 21 30 39 103 105 58 0 0 
1976 31 19 48 108 129 22 0 0 
1977 38 46 40 97 103 27 0 0 
1978 23 44 43 108 93 36 5 0 
1979 22 22 67 112 87 44 0 0 
5um 529 670 1029 2001 2299 1282 328 16 

From the series D(t) with (J = 0 . 4 mb running through 23 years we have 
formed a spectrum of differences between subsequent maxima and minima. 
Table 2 gives the results for the individual years, and the complete amplitude 
spectrum is presented in Fig. 3; it may be compared with the right-hand side of 
Fig. 8 in Part I. Table 2 reveals an interesting feature. The largest amplitudes 
occur around 1968, a year when the Moon attained its highest numerical value 
of declination, ±28°· 5. As a consequence of the formation of the series D(t) 
by means of the regression coefficient and the computed magnitude of the 
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Fig. 3. Amplitude spectrum of 
the dynamic oscillation D(t). 

accleration, the amplitude is expected to be high in 1968. A high value of 
declination means a low value of zenith distance z, and since the principal 
variation of the tidal acceleration is proportional to cos2 Z this means a large 
amplitude. Therefore, the influence of the tide will be most conspicuous 
during years when the ascending node of the lunar orbit is near the vernal 
equinox. This happens every 18-19 years (18·613). 

Looking again at the curves for the mean gradient in Fig. 1, the error 
bars may seem comparatively large. Because only one 18-19 year period is 
included, part of the uncertainty may be caused by a systematic variation 
within the period. A longer dataset including several periods would give an 
answer to this question. 

The amplitude spectrum shown in Fig. 3 reveals a distribution containing 
more of the smaller amplitudes than in the corresponding Fig. 8 of Part I. 
This is because oscillations with smaller amplitudes when the Moon crosses 
the equator have been included with the refined method. It will be noted that 
the maximum now occurs at an amplitude 0·225 mb instead of 0·175 mb in 
Fig. 8 earlier. The mean value, however, is unaltered at O· 19 mb. 

3. Evaluation of the Method 

In Part I it was explained why the one-day oscillation could not be found 
with a method which does not include a correction every time the Moon 
crosses the celestial equator. However, this should not invalidate a search for 
the half-day oscillation. Therefore, an explanation is needed as to why the 
Chapman-Miller method used in earlier investigations has failed (Malin and 
Chapman 1970). In the first place, the use of mean lunar time introduces 
an error regarding the selection of data. Analogous to the 'equation of time' 
which is the difference between true and mean solar time, there is a varying 
difference between true and mean lunar time of more than twice the effect as 
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regards the Sun. A simple calculation of the two terms the 'reduction to the 
equator' and the 'equation of the centre' shows that the range of distribution 
becomes approximately one hour. In addition, perturbations of the Moon by 
the Sun add to the amount. Therefore, the use of true instead of mean lunar 
time would be an improvement, but this is not used in the Chapman-Miller 
method (see Chapman and Lindzen 1970, p. 71). 

However, this would not be sufficient because of the contribution of the 
Sun to the tidal acceleration. Ordinarily the pull of the Moon is more than 
twice that of the Sun, but it is easy to find situations where the two must 
be about the same magnitude (see Part I, pp.808-9). Actually the maximum 
acceleration occurs when a vector pointing to a position between the Moon 
and the Sun culminates. This is exactly the method used here. In Part I it was 
shown how the added vertical components of the tidal acceleration of Moon 
and Sun are used to produce the curve shown there in Fig. 2. The moments 
of tidal noon are defined to be when the curve exhibits the principal minima, 
representing the maxima of the acceleration. 

20 

g 
~ 10 = o 

Fig. 4. Spectrum of the differences between moments of tidal noon 
T.N. and a running scale of length one mean lunar day. 

In order to demonstrate the difference in time measure between tidal noon 
and mean lunar noon, a series of T.N. values running from 1 January 1957 to 
31 December 1979 were compared with a measuririg rod of length one mean 
lunar day of 1·0350502 mean solar days. The differences were recorded and 
care was taken to adjust for the phase shifts when the Moon crosses the 
equator by insertion of a half mean lunar day. The result is shown in Fig. 4. 
The range of the distribution has now become 5 hours, and the displacement 
of the axis of symmetry is caused by the arbitrary starting moment of lunar 
time, at lower culmination of the Moon on 1 January 1957. 
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Fig. 4 is a striking demonstration of the magnitude of errors which may be 
caused by the use of mean lunar time. It must obviously distort the expected 
results. Secondly, our method is aimed at the gradient of the pressure, not 
directly on the pressure itself which varies primarily with the weather. Thirdly, 
the rejection of data because of too much noise is different in the two methods. 
Our noise limit as defined in Part I, p. 811 was chosen as the standard deviation 
of 25 measured pressure values from an interpolation formula where periods 
shorter than 6h • 25 had been omitted. As we have seen, this noise criterion 
allows 95% of the data to be used in the statistics. Conversely, Chapman in 
his determination of L2 from Greenwich data (Chapman and Lindzen 1970, 
p.75), selected only days on which the range during one day did not exceed 
O· 1 inch or 3·4 mb, and this reduced his useable data to about one-third of 
the total. 

4. Thermal and Dynamic Terms 

Since the dataset was enlarged the thermal effects were also studied again. 
In Part I the mean pressure gradient T'(v) was found from the data during 13 
years when a period of 24 mean solar hours was used, incidentally with the 
noise limit (J" = 0 ·4 mb. The same procedure was repeated with the dataset of 
23 years, and the running oscillation T(t) was found as before. 

Table 3. Multicol'l'elation coefficients 

H CIT CST CFD CSD v 

-14 0·0977 -1·1634 -0·0662 -0·0036 1 
-12 0·1114 -1 ·1861 0·0145 -0·0270 2 
-10 0·0041 -1·1628 0·0618 -0·0233 3 
-8 -0·0607 -1·1340 0·0905 -0·0074 4 
-6 -0·0599 -1·1204 0·1222 0·0198 5 
-4 0·0260 -1·1283 0·1422 0·0188 6 
-2 0·1008 -1·1487 0·1165 0·0048 7 

0 0·0965 -1·1551 0·0351 -0·0042 8 
2 0·0086 -1·1166 -0·0817 -0·0048 9 
4 -0·1151 -1·0508 -0·1884 0·0028 10 
6 -0·1569 -1·0323 -0·2237 -0.·0018 11 
8 -0·0447 -1·0893 -0·1704 . -0·0199 12 

10 0·0973 -1·1653 -0·0789 -0·0347 13 
12 0·1122 -1·1864 -0·0009 -0·0275 14 
14 0·0055 -1·1623 0·0375 0·0054 15 

In Part I we also found multicorrelation factors connecting four quantities: 
F, the magnitude of the tidal acceleration; Sf, the filtered daily variation of 
the radiative balance; Tf, the filtered daily thermal series; and D, the dynamic 
series. The resulting factors were given in Table 2 of Part I. With the larger 
dataset and the precise definition of the phase shift, the new results are given 
here in Table 3. 

The 'corrected' series Tdt) and Ddt) are given by 

Comparison of the two tables shows that the numerical value of the factor CFT 
has become smaller. The factor CST connecting Tc and the filtered radiation 
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balance Sf is still close to -1 regardless of phase. Likewise, CFD connecting 
the dynamic series Dc and the magnitude of the acceleration F now has larger 
absolute values at phase -4h and +6h • However, CSD is now almost zero which 
was to be expected. 

It was hoped that the separation of the series D(t) and T(t) by means of 
the multicorrelation analysis would result in two corrected series with the 
property that a dataset, where the series Tdt)+Dc(t) had been subtracted from 
the observed series O(t), would produce zero results in both of the programs 
used to compute T'(Y) and D/(Y). However, the tests showed that the resulting 
mean gradients were actually overcompensated, which was also the case in 
Part I where we had subtracted the original series T(t) + D(t) (see Part I, p. 823). 
Therefore, the multicorrelation analysis seems to be a blind alley. 

Statistical tests, however, revealed another result. If the program which 
determines the dynamic gradient D/(Y) is run with the data OCt) - D(t), the 
result becomes zero as expected. But if the same program is run with the 
data OCt) - T(t), the result, perhaps surprisingly, is also zero. The series T(t) 
with a period of 24 mean solar hours attains amplitudes about twice the 
amplitude of D(t). To compensate the pressure oscillations following the more 
complicated pattern of tidal days, the explanation must be that an 'image' 
of D(t) is contained in T(t). The results of the tests are shown in Table 4, 
columns 2 and 3. We notice that the resulting gradients D/(Y) are much smaller 
than the standard deviations in both cases. 

A similar test on the program determining T'(Y) with the data OCt) - T(t) 

was of course expected to give a zero result, but if the series T(t) really 
contains an image of D(t) the test ought to be unaltered if we subtract the 
combination T(t) - D(t) from the observed data OCt). The results are shown in 
Table 4, columns 6 and 7. Comparison of the resulting gradients with the 
standard deviations demonstrates the validity of the assumption. 

In order to be able to compare this with a dataset consisting of pure noise, 
two sets of artificial data were formed. The series R(~) and R(1) consist of 
random numbers confined to the intervals ±~ and ±1 mb. In Table 4 column 4 
the mean dynamic gradient with standard deviations is listed when the dataset 
1013+R(~) was used, and in column 8 the mean thermal gradient is shown with 
the data 1013+R(I). Consequently, the 'thermal' series T(t) seems to contain 
an 'image' of the dynamic series of the same order of magnitude as D(t) itself. 
This means that the 'true' thermal oscillation would be the series T(t) - D(t). 

In Table 5 we present the daily variation of the monthly means of the series 
(a) T(t) and (b) T(t) - D(t). 

5. Conclusions 

The results of the present investigation have been the detection of a one-day 
dynamic pressure oscillation with a mean amplitude of O· 17 mb, together with 
its first harmonic, a half-day oscillation with a mean amplitude of 0·048 mb. 
We may compare this with earlier results based on observations from the 
same station (Oslo) by Haurwitz and Cowley (1969), where only traces of a 
half-day oscillation with amplitude 0·007 mb were found. 

Atmospheric tides ought to be re-investigated on a global scale. 
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