
Double-cyclotron Absorption: 
A Semiclassical Formulation 

L. T. BallA and D. B. Melrose 

Department of Theoretical Physics. University of Sydney, 
Sydney, N.S.W. 2006. Australia. 
A Present address: Swedish Institute of Space Physics, 
University of Umea, S-90187 Umea. Sweden. 

Abstract 

Aust. J. Phys., 1989,42, 481-92 

A general semiclassical formulation of the process where charged particles in a magnetised 
plasma simultaneously emit or absorb two gyromagnetic waves is presented. The kinetic 
equations. which describe the evolution of the wave number and of the particle distribution 
number due to these processes, are given. General expressions for the probability of 
double-cyclotron absorption are derived. 

1. Introduction 

In recent years a wide variety of wave-particle interactions have been 
discussed in an attempt to explain the acceleration and heating of ions in 
space and laboratory plasmas (e.g., Smith and Kaufman 1975; Ungstrup et al. 
1979; Lysak et al. 1980; Chang and Coppi 1981; Ashour-Abdalla and Okuda 
1984; Chang et al. 1986; Retterer et al. 1986). In this paper we present the 
formal equations describing the double-absorption process where ions in a 
magnetised plasma simultaneously absorb two gyromagnetic waves. 

Double absorption has been proposed as a possible mechanism for the 
acceleration of oxygen (0+) ions in the supra-auroral regions of the Earth's 
ionosphere, as a first step leading to the production of ion-conic and ion-bowl 
distributions (Temerin 1986). Temerin and Roth (1986) and Roth and Temerin 
(1986) derived an expression for the rate of acceleration of 0+ ions due to 
double-cyclotron absorption by considering the perturbation of the ion orbits 
due to the superposition of the electric fields of the two waves. The equations 
presented in this paper, whilst by no means restricted to this application, 
provide the basis for an alternative calculation of the acceleration rate of 0+ 
ions due to double-cyclotron absorption (Ball 1989, present issue p. 493). 

In §2 we derive general kinetic equations which describe the evolution of the 
wave and particle distribution functions due to double-cyclotron absorption 
and emission. These equations are all expressed in terms of a quantity which 
may be called 'the probability of double absorption'. General expressions 
for this probability are derived in §3. The derivation given uses the fact 
that double-cyclotron absorption (and emission) is a crossed form of wave 
scattering in a magnetised plasma, a process for which a general semiclassical 
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description has been discussed at some length by Melrose and Sy (l972a, 
1972b). 

z. The Kinetic Equations 

The semiclassical formalism has been used extensively to describe wave
particle and wave-wave interactions, e.g., Melrose (1980a, chapter 5) and 
Melrose (1986, chapter 6). As implemented here the formalism involves using 
quantum mechanical notation to describe the waves and particles but all 
calculations are carried out classically. The advantage of introducing quantum 
mechanical notation and ideas is that it ensures that energy and momentum 
are conserved on a microscopic level (at each wave-particle event) so it is 
a simple matter to keep account of the effect of absorption and emission 
on the particles. In addition, quantum mechanical ideas allow us to relate 
absorption to emission on a microscopic level via the Einstein relations. As 
a result wave-particle interactions can be developed using a single-particle 
approach, in contrast with the collective approach that is necessary in any 
purely classical treatment. The notation used in this paper follows closely 
that of Melrose (1986, chapter 6). 

In the semiclassical formalism the particles are described individually by 
their momentum p and collectively by their distribution function (p). Waves 
in a wave mode M are described by their dispersion relation co = coM(k) 
and polarisation vector eM(k), and are regarded as collections of quanta with 
energy hi coM(k)l, momentum hk and occupation number NM(k). The occupation 
number may be formally defined in terms of the total energy WM(k) of waves 
in a mode M with wave vector k, enclosed in a system volume V: 

(1) 

ImpliCit in this description is the random phase approximation; the uncertainty 
prinCiple implies that if the occupation number is specified then we have no 
information regarding the phase of the waves. Since the aim of this paper is 
to present equations describing double-cyclotron emission and absorption, we 
will discuss only simultaneous interactions between a single particle and two 
waves. 

Consider first an isolated particle in an ambient magnetic field with no 
waves present. Let wMM'(k,k',p) be the probability per unit time that such a 
particle spontaneously emits wave quanta in the modes M and M' in the range 
(d3k/(2rr)3)(d3k'/(2rr)3). Since we are interested in processes in a magnetised 
plasma we assume that the particle is an ion with gyrofrequency flr and write 

5=00 

WMM,(k,k',p) = L WMMI(k,k',p;s) (2) 
s=-oo 

where WMM,(k, k', p; s) is the probability that emission occurs at a harmonic s 
of the gyrofrequency, and includes a Dirac a-function of the form 

(3) 
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The subscript r is used on the ion gyrofrequency because the theory presented 
here includes relativistic effects. Thus.or = IqlB/ym where q is the ion charge, 
m is the rest mass of the ion, y is the Lorentz factor and B is the magnitude of 
the ambient magnetic field B. When emission occurs at a harmonic s the state 
of the ion changes from p to p-L1p where L1p is the momentum carried by the 
wave quanta and has components L1p.L = hs.or/v.L and L1PiI = h(kll + ku). (Strictly, 
only the component Pn is continuous in the quantum case; P.L is quantised as 
a simple harmonic oscillator, and becomes continuous only in the classical 
limit h -+ 0.) If we now include the effects of the wave populations and use 
the Einstein relations we find that the total probability of double emission at 
a harmonic s by a single particle is WMM,(k,k',p;s)[l +NM(k)][l +NM,(k')]. The 
unit term which describes spontaneous double emission is a purely quantum 
term and is neglected in semiclassical theory. The term proportional to NM(k) 
describes emission stimulated by the wave population in mode M; similarly, 
the term proportional to NM,(k!) describes emission stimulated by waves in the 
mode M'. The term proportional to NM(k)NM,(k') describes emission stimulated 
by the presence of both wave populations. The inverse transition, where the 
state of the ion changes from p -L1p to p, corresponds to absorption. Of 
course absorption cannot occur unless the waves are present in both modes, 
and the probability of absorption of a wave at wM(k) must be proportional to 
the number of waves present, NM(k) , so the probability of double absorption 
is proportional to NM(k)NM,(k'). Considerations of equilibrium and the Einstein 
relations (Melrose 1980a, pp. 153,154) imply that the probability of double 
absorption is WMM,(k, k',p; s)NM(k)NM,(k'). Finally we must sum over a set of 
particles and take the limit where the particle quantum number p becomes 
continuous. The net rate of double emission per unit volume is then 

(4) 

and the net rate of absorption is 

(5) 

each of which is to be operated on by an integral of the form J d3p. (Note 
that f(p) is normalised so that the particle number density n is given by 
n = J d3pf(p).) 

It is apparent from the above expressions that WMM,(k,k',p;s) may equally 
well be referred to as "the probability for double emission" or "the probability 
for double absorption". We use these terms interchangeably from here on. 

From expressions (4) and (5) we can obtain a kinetic equation for the waves 
which describes how the occupation numbers evolve. Each time a double 
emission occurs, NM(k) increases by unity and each time a double absorption 
takes place, NM(k) decreases by unity. Note also that for each k we have to 
consider the integral over all possible k'. Hence we have 

(6) 
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In the classical limit we use the approximation 

f(p - .1p) = f(p) - (.1P.L ~ + .1PII -:l-)f(P) 
vP.t vPII 

(7) 

and then (6) becomes 

(8) 

where we have dropped the purely quantum term. The corresponding kinetic 
equation for waves in the mode M' is obtained from (8) by exchanging primed 
and unprimed quantities. 

The evolution of the particle distribution function due to the double emission 
and absorption processes may be calculated in a similar fashion. Note that in 
this case we must consider the transitions p +.1p - P as well as transitions 
p - p - .1p. The rate of change of f(p) is thus determined by the increase 
due to double emission p +.1p ...... P and double absorption p -.1p ...... p, and 
by the decrease due to double absorption p ...... p+.1p and double emission 
p ...... p - .1p. The rates at which the second and fourth process occur are 
given by (5) and (4) respectively whilst the rates at which the first and 
third processes occur are obtained by replacing p by p +.1p in (4) and (5) 
respectively; all four of these expressions are now to be operated on by the 
integrals f (d3k/(2rr)3)(d3k' /(2rr)3). Combining all these results we have 

df(p) S"'OO f d3k d3k' 
-d- = L --3 --3 {WMM,(k,k',p+.1p; s){[l +NM(k)]x 

t 5=-00 (2rr) (2rr) 

x [1 + NM,(k')]f(p +.1p) -NM(k)NM,(k')f(p)}+ 

(9) 

The expansion of f(p±.1p) in .1p needs to be carried out to second order in 
this case as the first-order terms cancel. Thus one writes 

and 

o 0 
f(p ±.1p) = [1 ±.1p . op + (.1p . op)2]f(p) 

o 
WMM,(k,k',p+.1p;s) = (1 +.1p . op)WMM,(k,k',p;s). 

(10) 

(11) 

When (9) is expanded in this way all the terms independent of .1p (and hence 
independent of h) cancel. In the classical limit, h ...... 0 and NM(k) -- 00 in such 
a way that hN (the classical action variable) remains finite. Thus we retain 
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only terms proportional to either hN or h 2 N2. The resulting semiclassical 
kinetic equation for f(p) may be written as a generalised diffusion equation 
in momentum space. The details of this procedure are omitted, as is the 
transformation to cylindrical co-ordinates. The resulting kinetic equation for 
the particle distribution can then be written in the form 

d~i) = a~,,{Allf(P)+[Dlllla~1I +DII.La!.Jf(P)}+ 

+ p1.L a!.L {P.L[A.Lf(P)+(D.Llla~1I +Dua!.L)f(P)]} (12) 

with 

(13) 

and 

(14) 

The term in (12) of direct relevance to the postulated acceleration of oxygen 
ions, and hence the production of ion conics via double-cyclotron absorption, 
is that involving D u. This point is discussed in some detail by Ball (1989). 

3. Absorption Probability: General Expressions 

The kinetic equations derived in §2 describe the evolution of the wave and 
particle populations due to double absorption and emission in terms of the 
absorption probability wMM'(k, k', P; s). In this section we derive the general 
expression for WMM,(k, k', P; s) from the probability for wave scattering in a 
magnetised plasma. Note that WMM,(k, k', p; s) was defined as the probability 
of double emission, and then related to absorption by the Einstein relations. 
In the following derivation it is the probability of double emission which is 
calculated explicitly. 

A general semiclassical treatment of the scattering of gyromagnetic waves 
in a magnetised plasma was developed by Melrose and Sy (1972a). They 
derived an expression for the 'scattering probability' which we will denote by 
WMM,(k, k', p; s); this quantity is the probability per unit time that a particle 
with momentum p will scatter a wave in mode M' with wave vector k', into 
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a wave in mode M with wave vector k, via the harmonic s of the particle's 
gyrofrequency. The results of Melrose and Sy (l972a) may be written in the 
form 

w ,(k k' p' s) = 2rrq4 1 aMM,(k, k', p; s)1 2 R (k)R ,(k')x 
MM , " m 2€6 1 wM(k)WM,(k')1 M M 

Xc5[WM(k) - klivlI- wM,(k') + kllvlI- sQrJ (15) 

with 
aMM'(k, k', p; s) = a7:t~,(k, k', p; s) + a~~,(k, k', p; s) , (16) 

and 

(17) 

Quantities in (15) which refer to the scattering ions are the charge q, rest 
mass m, relativistic gyrofrequency Qr, and velocity v with components Vii, V.L 
parallel and perpendicular to B. Quantities in (15) which refer to the waves 
are RM(k), the ratio of electric energy density to total energy density of waves 
in mode M, and kll' k.L the parallel and perpendicular components of k. In 
(17) eM(k) is the polarisation vector for waves in mode M (e.g., Melrose 1980a, 
pp. 42-45) and the subscripts i and j refer to components in a cartesian 
co-ordinate system where the magnetic field is along the 3-axis. 

The form of (16) reflects the method used by Melrose and Sy (1972a) 
who solved the inhomogeneous wave equation for the power radiated in 
the scattered waves, with the source current identified as the sum of two 
terms. The first contribution to the source current, which gives rise to the TS 
(Thomson scattering) term of (16), is the current density due to the perturbed 
motion of the scattering charge in the fields of the unscattered wave. The 
second contribution to the source current, which gives rise to the NL (nonlinear 
scattering) term of (16), is the current density due to the nonlinear response of 
the plasma to the fields of the unscattered wave and the shielding fields due 
to the unperturbed motion of the scattering charge. These two processes via 
which a particle in a plasma can scatter waves were discussed in some detail by 
Tsytovich (1970) and it is from that work that the name 'nonlinear scattering' 
arises. This nomenclature may be confusing since Thomson scattering is itself 
a nonlinear process. Hereafter the terms 'nonlinear scattering' and 'nonlinear 
contribution' refer specifically to the process which gives rise to the second 
term of (16) and to the second part of (17). 

Still following Melrose and Sy (l972a) and correcting a sign error in their 
equation (5), the Thomson scattering term of (17) has the form 

00 

al/(k,k',p;s)= 2: iXij(s+t',k;t',k';p), (18) 

with 
('=-00 

A k.t'k") exp[-i€(tl/l-t'I/I')]{ '() , OI.ij(t, , , ,p = ,Wtwt'Jt z !ft,(z )Tij+ 
YWtWt' 

+wtlt(z)VJ(k',p; t')kJTi/ + Wi';t,(Z')Vi(k,p; t)kjTIj+ 
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where € = q/l ql, k = (k..L cos 1/1, k.L sin 1/1, kn), Wt = W - tar - kn"1I' z = k.L V.L/!2 r and 
the primed quantities are defined analogously. Here 1t(z) is the Bessel function 
of order t. The vector V(k,p; t) is the velocity function for the spiralling ion 
and is given by 

V(k,p; t) = {v .L[eiel/l 1t-1 (z) + e-iel/l 1t+l (z)]/2, 

(20) 

and the asterisk denotes complex conjugation. The quantity Tij(W) is given by 

( 

W 2/(W 2 - !2~) i€w!2 r/(w 2 - !2~) 0) 
Tij(W) = -i€w!2r1(w 2 - !2~) W 2/(W 2 - !2~) 0 . 

o 0 1 

(21) 

In (19) we write Tij = Tij(Wr> = Tij(W~'), where the equality Wt = W~, arises from the 
6-function in (15) with s replaced by t-t'. Note that although the tensor Tij is 
usually associated with the cold plasma approximation, no such approximation 
has been made in the derivation of (19). This expression is the probability for 
scattering by a single particle and has not been averaged over any particle 
distribution. 

The 'nonlinear' contribution to the scattering probability has the form 
(Melrose and Sy 1972a): 

aI:<.L(k k' . s) = 2m exp[-i€s(1/I + 1/1')] cx" (k k' k _ k') Alm(k - k') x 
u ' , P. q€o [wM(k) - wM,(k,)]2 ul , , l1(k - k') 

xVm(k-k',p;s) (22) 

where we have included a phase factor and used the shorthand notation 
w,k --> k. The inclusion of the phase factor in (22) is important because the 
relative phase of a;{{MI(k,k',p;s) and a~~,(k,k',p;s) is needed to evaluate the 
crossed term 2a;{{MI(k,k',p;s)a~~,(k,k',p;s) of laMMI(k,k',p;s)1 2 which appears in 
equation (15). The phase factor is often neglected in applications where it can 
be argued a priori that only the Thomson scattering term or the 'nonlinear' 
term will contribute. 

The quantities in equation (22) which have not already been defined describe 
the collective response of the plasma. Further, CXljI is the quadratic nonlinear 
response tensor and describes the second-order (lowest-order nonlinear) response 
of the plasma to an applied field (e.g., Melrose 1986, pp. 11, 81-82); note 
that CXijI is not related to the 2-index quantity (Xij which appears in equations 
(18) and (19). The quantity l1(k) is the determinant of the tensor l1ij(k) and 
Aij(k) is the cofactor of the tensor element I1ji(k); These last two quantities 
are related by 

(23) 
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where Oil is the Kronecker delta. Finally, the tensor Aij(k) may be defined in 
terms of the dielectric tensor Kij(k), 

(24) 

The dielectric tensor describes the first-order (linear) response of the plasma 
to an applied field (e.g., Melrose 1986, p. 11). 

(a) 

p 

'\ 
\ 
\k' 
\ 

\ (b) 

p \k 
\ 

OR 

P 

k'\ 
\ , 

Fig. 1. Diagrammatic representations of wave scattering. 
Fig. la represents Thomson scattering and Fig. Ib represents 
'nonlinear' scattering. 

Recalling that the primed quantities refer to the unscattered or incident 
wave, the scattering processes for which we have set out the equations 
above may be represented diagrammatically. Fig. 1 a represents the Thomson 
scattering contribution and Fig. 1 b represents the 'nonlinear' contribution. 
These diagrams have been constructed according to the following rules (Melrose 
1980b, p. 165): 

(1) A particle is represented by a solid horizontal line. 
(2) A dashed line represents a 'real' photon. A photon in the initial state 

is represented by a dashed line extending from the bottom of the 
diagram to a dot. A photon in the final state is represented by a 
dashed line extending from a dot to the top of the diagram. 
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(3) A squiggle represents an internal or 'virtual' photon and always starts 
and ends in a dot. 

(4) A circle with n dots represents an (n - I)-fold nonlinear response. 

Note that here 'photon' means 'wave quantum'. 
The process of double emission is 'crossed' relative to the process of 

scattering, in the sense discussed by Melrose (1986, p. 87). If 'scattering' 
describes a transition from some initial state I to final state F, then 'double 
emission' describes a transition from a state I' to a state F', where (I',F') may 
be obtained from (I,F) by transferring the wave in mode M' from the initial 
state I to the final state F. Thus there are contributions to the probability of 
double emission from the 'crossed' Thomson scattering process and from the 
'crossed' nonlinear scattering process. These processes may be represented by 
diagrams constructed according to the rules given above. Fig. 2a represents 
the Thomson-scattering-like (hereafter abbreviated to TS-like) double emission 
process, and Fig. 2b represents the 'nonlinear' double emission process. In 
this diagrammatic description, the 'crossed' relation refers to the fact that 
the diagram for TS-like double emission (Fig. 2a) may be obtained from the 
diagram for Thomson scattering (Fig. 1 a) by taking the wave line for k' 'across' 
the ion line, i.e. by transferring the wave line for k' from the initial state 
(below the ion line) to the final state (above). The diagram for 'nonlinear' 
double emission (Fig. 2b) may be obtained from the diagram for 'nonlinear' 
scattering (Fig. 1 b) in exactly the same way. 

It follows from this 'crossing symmetry' that the probability for double 
emission may be obtained from the probability for scattering, equation (15) 

(a) 

p 

(b) 

p 

Fig. 2. Diagrammatic representations of double-cyclotron emission. Fig. 2a represents the 
Thomson-scattering-like process and Fig. 2b represents 'nonlinear' double emission. 
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et seq., by making the replacement k' -+ -k' according to the conventions 
(Melrose 1980b, p. 171; Melrose 1986, p. 83) 

So far we have used a hat to denote all quantities which refer specifically to 
scattering. From here on we use the same symbols, without the hat, for the 
related quantities which refer specifically to double emission. The probability 
of double emission is thus 

WMM,(k,k',p;s) = wMM'(k,-k',p;s). (26) 

Using equation (15) and rewriting laMM,(k,-k',p;s)1 2 as laMM'(k,k',p;s)1 2 we have 

(k k ' .) - 2rrq4 1 aMM'(k, k', p; s)1 2 R (k) (k') 
WMM' , ,p,s - m2E6 IWM(k)WM,(k')1 M RM' x 

xO[wM(k)-kIlVII+WM,(k')-kOVIl-sDr ]. (27) 

Continuing in this way, we have from (16) 

aMM,(k, k', p; s) = alJ'M,(k, k', p; s) + a~Xt,(k, k', p; s) (28) 

with 

(29) 

and 

(30) 

To obtain explicit expressions for the quantities in (30) the change of sign of 
k' is effected by making the replacements 

k' k'· ,1,' ",' 11-+-11' 'Y-+'Y+ rr (31) 

in the equations for aLs(k,k',p;s) and aW(k,k',p;s). 
Consider first the Thomson scattering contribution. 

imply 
Equations (18) and (30) 

00 

a17(k,k',p;s)= L eXij(s+t',k;t',-k';p). (32) 
t'=-oo 

Now making the replacements (31) we find 

w~, = wM'(k') - t'Dr - kitVIl -+ -wM,(k') - t'Dr + kitVIl (33) 
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so if we arbitrarily relabel t' as -t' we have W~, -> -W~,. Relabelling t' as -t' in 
(32) gives 

00 

aES(k,k',p;s)= L &ij(s-t',k;-t',-k';p). 
t'=-oo 

Rewriting (34) in the form of (27-30) we obtain 

00 

aEs(k,k',p;s)= L (Xij(s-t',k;t',k';p) 
t'=-oo 

where 

(Xij(s - t', k; t', k'; p) = &ij(s - t', k; -t', -k'; p) . 

Using the standard identity }-t(z) = (-l)t}t(z) and (20) one finds 

V*(-k',p; -t) = (-l)fV(k',p; t). 

(34) 

(35) 

(36) 

(37) 

Next we have the quantity Tij(W) which is to be evaluated at W = Wt or W = W~,. 
In the case of Thomson scattering the resonance condition is Wt - W~, = 0 
and the two possible arguments are equal. For the case of double emission 
the argument of the a-function in (27), with t = s - t' in (35) implies that 
the resonance condition is Wt + W~, = 0 so the possible arguments now have 
opposite signs. Since 

TU(-W) = Tij(W) = Tji(W) (38) 

it matters whether we write TU(Wt) or Tij(W~') in (19) before making the 
replacement W~, -> -W~,. A calculation based on the covariant formulation, 
which is omitted here, indicates that TU is to be evaluated at W~,. Now (36) 
and (19), with (37) and (38), imply 

( 'k.t'k'.) exp[-iE(tl/J+t'l/J')]{, , * , (Xij S - t, , , ,p = ,WtWt,]t(z)}tl(z )TU(Wtl)-
YWt W t, 

with t = s - t'. 
The 'nonlinear' term follows simply from (31) and (22): 

al\TL(k k' . s) = 2m(-l)s exp[-iES(l/J + l/J')] (X"" (k -k' k + k')x 
lj , ,p, qEo [wM(k) + WM'(k')j2 1)1, , 

Aim (k + k') , 
X A(k+k') Vm(k+k,p;s). (40) 

Finally, we repeat that although we have considered explicitly the probability 
of double-cyclotron emission in this section, it was shown in §2 that this 
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quantity may equally well be referred to as the probability of double-cyclotron 
absorption. 

4. Summary 

In this paper we have presented the equations which describe, in the context 
of a general semiclassical theory, the processes of double-cyclotron absorption 
and emission. The equations describing the evolution of the distribution 
function of the absorbing ions, and of the occupation numbers of the absorbed 
and emitted waves, have been presented. We have then presented a general 
expression for the pivotal quantity, the absorption probability WMM,(k,k',p;s), 
which has been derived from the scattering probability of Melrose and Sy 
(1972a) using a crossing symmetry relation. All quantum effects have been 
neglected. 

The relevant final equations are as follows. The evolution of the wave 
distribution, described semi classically by the occupation number NM(k) , is 
given by (8). The evolution of the particle distribution function f(p) is described 
by (12) to (14). Finally, the 'absorption probability' is given explicitly by (27) 
to (29), (35), (39) and (40). These equations constitute a general, semiclassical 
formulation of the processes of simultaneous emission and absorption of two 
gyromagnetic waves by ions in a magnetised plasma. 

Reduction of these equations to a form suitable for treatment of the processes 
discussed in the Introduction requires a careful consideration of various terms 
in the absorption probability. This is discussed in detail by Ball (1989). 
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