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The velocities of longitudinal sound waves in powdered media are considerably less than the 
corresponding value in bulk material. To understand this further, an examination has been 
made of how the sound velocity varies with pressure for the particular case of ultrasonic 
wave propagation in fine-grain sand. An analysis of the data has been made by treating the 
particles as linear chains of coupled oscillators. 

1. Introduction 

Over the years a considerable amount of work has been done on ultrasonic 
wave propagation in polycrystalline aggregates (see e.g. the review by Anderson 
1965). Furthermore, Leach et al. (1977, 1978) have used acoustic emissions 
to determine particle size and size distribution in powders made up of rigid 
particles. There have also been some acoustic studies of anharmonic echoes 
in piezoelectric powders (reviewed by Kajimura 1982) and memory echoes in 
piezoelectric powders (reviewed by Melcher and Shiren 1982). However, the 
problem of wave propagation in powders does not appear to have enjoyed 
the same attention. 

In an attempt to remedy this, the present work represents an extension 
of some preliminary studies of elastic wave propagation in powders (Brettell 
1987), in which it can be shown that materials in powder form have longitudinal 
sound velocities which are one to two orders of magnitude lower than when 
in bulk form. In particular, the present measurements on raw fine-grain sand 
yield sound velocities in the range 230-460 m S-l depending on pressure. This 
compares with a longitudinal sound velocity of 6· 6x103 m S-l in bulk Si02. 

To explain these low velocities the powders have been treated as linear 
chains of coupled oscillators in which the interparticle contact regions are 
'springs' which have force constants which increase with increasing pressure. 

2. Theory 

It has been previously shown (Brettell 1987) that if the particles can be 
regarded as linear arrays of identical spheres, each of radius Ro and density 
p, then the spheres may be treated as though they are coupled by springs of 
stiffness coefficient: 
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(1) 

where E is Young's modulus, a is the contact radius between the spheres 
and 11 is Poisson's ratio. The contact radius a is determined by the value of 
a compressive force applied along the length of an array. The total sample 
consists of an arrangement of parallel arrays leading to simple cubic stacking 
of the spherical particles. 
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Fig. 1. Linear array of identical spheres. each of radius Ro. and with 
interparticle contact radius a. (b) Equivalent electrical transmission line. 

Table 1. Acoustical quantities with their electrical analogues 

Compliance 

Acoustical 

I-p2 
----w-

Phase velocity c = G(p) VB( flo )1/2 (w « wo) 

Cut-off frequency ~ = V1~~) (flo )112 

Electrical 

Inductance L 

Capacitance C 

When an array is subject to an additional longitudinal wave, assumed simple 
harmonic, the wave travels along the array with a velocity c according to 

! 
c wG(Il) (a )2 

VB = Wo sin-l (w/wo) Ro ' 
(2) 
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where VB is the bulk longitudinal velocity of sound waves through a 
polycrystalline (Le. isotropic) medium composed of the same material as that 
of the spheres, 00 is the the angular frequency of the wave, 000 is the cut-off 
angular frequency and G(/l) is given by 

1 

G( ) = (i 1- 2/l )2 
/l rr (l - /l)2 

(3) 

The result represented by equation (2) was derived (Brettell 1987) by combining 
the theory of linear coupled oscillators (Morse and Ingard 1968) with elasticity 
theory (Timoshenko and Goodier 1970). Since the electrical analogue of an 
array may be regarded as the transmission line shown in Fig. 1, the acoustical 
and electrical analogues are those given in Table 1. 

Let us now assume that the powder is packed, in simple cubic form, 
in a cylinder of cross-sectional area rrR2, and that a uniform pressure acts 
perpendicular to this cross section. The maximum cross-sectional area of a 
sphere is rrR6 but this will be contained in a cross-sectional area 4R6, so that 
the number of contacts n in one monolayer is rrR2/4R6. 

For a total force F' on rrR2, the force per contact then becomes 

F= F' =F' 4R6 
n rrR2 ' 

from which the pressure p is given by 

F' E a3 

p = rrR2 = ~ 1 - /l2 R6 . 

Writing the 00 « 000 expression for c in Table 1 in terms of pressure, we then 
obtain 

( 2 )1/6 
C = G(/l) VB 3(1 ~ /l ) p1/6. (4) 

3. Experimental Method 

The measurements were made using an ultrasonic pulser/receiver SPIKE 
150 PR from PAR Scientific Instruments. The instrument provided a 150 volt 
pulse of width 100 ns and rise time 5 ns, which in turn excited a 100 kHz 
PZT transducer. A separate identical transducer was used as receiver. 

The raw fine grain sand, 125-300 /lm diameter, was packed in a cylindrical 
container of 2·6 cm2 internal cross-sectional area. The container was mounted 
vertically with the receiver transducer in contact with the sand at the bottom and 
the transmitter transducer in contact with the sand at the top. The as-supplied 
transmitter transducer came in a steel casing which had the same diameter as 
the sample and which supplied a minimum pressure to the sample of 1 . 7 kPa. 
The pressure p is that defined in the previous section. Increasing the pressure 
was achieved by adding weights onto the steel casing of the transmitter. 

The velocity of sound was determined from transit time measurements of 
the first received signal in samples of length 1·0 cm. 
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4. Results and Discussion 

The results of measurements of velocity of sound as a function of pressure 
are shown in Fig. 2. The straight line through the upper points is an attempt 
to correlate the observed data with the long wavelength formula given by 
equation (4). This line is represented by c = lXpl/6, where lX = 73 m S-l Pa-1/ 6 , 

with lX being chosen to give the best fit to the experimental data. Taking 
E = lOll N m-2 and 11 = 0 . 04, the theoretical value of lX is 1· IxI02 m S-l Pa-1/ 6 • 

The discrepancy between the experimental and theoretical value is attributed 
to the existence of a distribution in particle size and a packing structure that 
is other than simple cubic. 
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Fig. 2. Velocity of longitudinal sound waves in fine-grain sand plotted 
as a function of pressure. The pressure is applied in the same direction 
as that of the propagated wave. 

The long wavelength approximation at the higher pressures gives a good 
fit to the experimental data with regard to the pl/6 variation, but at the lower 
pressures the sound velocities are less than predicted. This suggests that 
as the pressure is lowered then we approach the critical cut-off frequency 
wo/2rr. Here the dispersion relation given by equation (2) predicts a lowering 
of the sound velocity with increasing 00/000. The transducer frequency is fixed 
but from Table 1 we see that 000 decreases with decreasing afRo and hence 
decreasing p. 

For a distribution of particle size the cut-off frequency would presumably, 
by analogy with the acoustical branch of the one-dimensional diatomic lattice, 
be determined by the radius of the larger particles. If we therefore use the 
value Ro = 150 11m, and calculate c for a cut-off frequency of 100 kHz, i.e. 
the frequency of the transducer, we have c = (2/rr)wo Ro = (2/rr)wRo = 60 m S-l. 
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Alternatively, if we determine the velocity at the cut-off frequency from the 
actual velocity of sound measurements, the theoretical dispersion relation 
predicts a value for c, at this frequency, which is 2/rr times that predicted 
in the long wavelength approximation (i\» 4Ro). If in Fig. 2 therefore, we 
extrapolate both (1) the curve through the experimental points and (2) the long 
wavelength approximation line, bringing them both to that pressure which 
corresponds to this 2/rr ratio, we obtain a value for c of about 150 m S-1 at 
the point of cut-off (i\ = 4Ro). 

With the present equipment, a direct measurement of the cut-off frequency 
proved difficult since the received signal became weaker the lower the pressure. 
Although from a transmission line point of view we would expect this to occur 
near the cut-off frequency, the signal output did in fact show a continual 
decline in amplitude in going from the highest pressure down to the lowest. 
In the most part this was attributed to the acoustic impedance mismatch 
between transducer and powder. 

For w « Wo the acoustic impedance of the powder is given by Z = p' c, where 
p' is the powder density. For simple cubic packing we can write p' = rrpl6 
where p is the bulk density, although, for the fine-grain sand used in the 
present studies, the poured density is p' = O· 60p. If we assume that p' does 
not vary Significantly with the applied pressure, the predominant variation in 
Z will come from the sound velocity variation, so the lower the value of c, 
the greater the impedance mismatch and the weaker the output signal. 

5. Conclusions 

The results show that, although the velocity of a longitudinal sound wave 
in fine grain sand is pressure dependent, the observed sound velocities are 
considerably less than the corresponding velocity in bulk Si02. This is believed 
to be typical of powdered media, and the low velocities appear to be well 
explained using the model of linear coupled oscillators. 
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