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Abstract 

The standard theory for secondary extinction based on intensity transfer equations has been 
extended to three-beam diffraction for a finite crystal in the Laue case. The expression 
for the primary diffracted intensity was used to first order to calculate correction factors 
for the two-beam integrated power assuming a type I mosaic crystal. The corrections were 
employed to study the effects of multiple diffraction on structure parameters and deformation 
density for three different crystals with unit-cell volumes in the range 385-1410 A3. In these 
data sets, 5-8% of all reflections with (sinO/A) :S 0 -7 A-I had relative shifts in integrated 
power tl'P/'P> 10%. The weak intensities are affected the most, and thus, among the 
weakest third of the data, 15-21% had relative corrections >10%. The crystallographic Rand 
goodness-of-fit factors were significantly improved after correction of the data for multiple 
diffraction. Atomic positional and displacement parameters, obtained from the refinements 
on corrected and uncorrected data respectively, have been compared, as have also pairs of 
deformation density maps. Rather unexpectedly, all shifts were very small, within 20" for 
atomic parameters and within 2·50" for the deformation densities. This implies that the 
effects of multiple diffraction are nearly random relative to the structure model and even 
relative to the deformation density. 

1. Introduction 

Multiple diffraction (MD) occurs in crystals when more than one reciprocal 
lattice node (r.l.n.) in addition to the origin lie very close or on the Ewald sphere. 
The mutual exchange of energy which takes place between the various beams 
involved may lead to either a diminution (Aufhellung), or an enhancement 
(Umweganregung) of the primary diffracted intensities. These effects were first 
observed by Wagner (1920) and Renninger (1937) respectively. The changes 
are systematic in the sense that weak reflections in general become enhanced, 
and strong reflections reduced. Over the last 25 years the importance of the 
effect of MD on diffracted intensities has been emphasised in a number of 
articles. Two main strategies have been proposed to reduce the influence of 
MD: to avoid n-beam interactions, or to identify them and correct the modified 
intensities. 

Santoro and Zocchi (1964) and Coppens (1968) suggested a procedure for 
elimination of errors in the observed intensities by rotating the crystal about 
the scattering vector of the primary reflection to positions where no significant 
intensity perturbations due to MD are observed. However, the geometric 
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conditions for n-beam diffraction are frequently satisfied, even for a crystal 
with a relatively small unit cell. The frequency of MD is proportional to VcI.\2, 
where Vc is the unit cell volume and .\ is the wavelength of the incident 
beam. It may be very difficult or impossible to find a position where multiple 
scattering effects are negligible, especially for weak primary reflections which 
are very easily affected by the Umweg mechanism. Consequently, it seems 
necessary to correct for MD in modern, accurate structure work. 

Moon and Shull (1964) introduced an approximate treatment of the intensity 
perturbations due to MD. Tanaka and Saito (1975) have revised and refined 
this procedure. Other contributions on MD and intensity corrections based on 
intensity transfer equations are e.g. Zachariasen (1965), Caticha-Ellis (1969), 
Prager (1971), Parente and Caticha-Ellis (1974), Le Page and Gabe (1979), Soejima 
et al. (1985), Rossmanith (1986), Okazaki et al. (1988) and Piltz (1988). Chang 
(1982) treated the intensity problem for n-beam diffraction in a dynamical 
formalism. Here we have developed a formalism based on intensity transfer 
equations within the framework of secondary extinction theories, cf. Becker 
and Coppens (1974). The results, to first order, are similar to those presented 
by Tanaka and Saito (1975). 

Asbrink (1970) has compared structure parameters obtained from data sets 
with and without excess MD due to symmetry. However, the number of 
interactions and the magnitudes of the intensity corrections were not known. 
The maximum differences between positional and isotropic thermal parameters 
were small, less than 3·50'. To our knowledge, a systematic study of the 
frequency and magnitude of MD, and its effects on refined atomic parameters 
and deformation density have not been reported before. We present here a 
theoretical background and experimental results for three different structures. 
Preliminary results from this work have been given (Hauback and Mo 1987; 
Mo and Hauback 1987). 

2. Theory 

(a) Intensity Coupling Equations 

We will here describe a formalism for three-beam diffraction in a finite, 
type I mosaic crystal based on intensity transfer equations (Darwin 1922; 
Hamilton 1957; Moon and Shull 1964; Zachariasen 1967). These equations 
can be written in the general form 

alp = -(Ji + I CTQp)Ip + I CTpQIQ, 
asp QIP QoFP 

(1) 

where CTpQ is the kinematical diffracting cross section per unit volume and unit 
intensity for the scattering process kQ --+ kp, with P,Q E (D,H,L) in the case of 
three-beam diffraction; ko is the wave vector along the incident beam, while 
kH and kL are the wave vectors along the primary and secondary diffracted 
beams respectively; Ji is the linear absorption coefficient, and Sp is a coordinate 
along the unit wave vector sp = kpjl kpl. The first term on the right side 
of (1) represents the decrease in intensity of beam Ip due to absorption and 
energy transfer into all other excited beams IQ (including the incident beam). 
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The second term accounts for transfer from all beams IQ into Ip. Making the 
transformation 

Ip = i p exp{ - ~ (Jl + R~ (TRQ)SQ} , (2) 

we obtain the set of equations 

oip = L (TpQiQ . 
aSp Q';'P 

(3) 

These equations are identical with the transformed version of Takagi's equations 
(Thorkildsen 1987). 

(b) Boundary-value Green Function for the Intensity Field iH in Case of Laue 
Diffraction 

The boundary-value Green functions for the intensity fields {la, IH, Id, i.e. 
the intensities of the beams propagating along ko, kH and kL at the point 
(SO,SH,S[) due to a point source at the origin, are obtained by applying the 
boundary conditions 

10(0, SH, s[) = O(SH) o(s[), IH(SO, O,s[) = 0, h(SO,SH, 0) = 0. (4) 

The same boundary conditions are valid for the fields {io.iH.id. Here 0 denotes 
the Dirac o-function. Due to the similarity with the wave beam formalism, 
the boundary-value Green functions for the intensity fields can be found 
by substituting (TPQ for i KpQ in the equations (20a-c) of Thorkildsen (1987). 
Defining the y-parameters: 

YaH = (TOH (THO, YOL = (TaL (TLO, YHL = (THL (TLH, 

T OHL = (TOL (TLH (THO + (TOH (THL (TLO, 

we have for the intensity field iH : 

_ I 

IH(so,sH,s[) = (THoIo{2(YoHsosH)z}o(s[) 

00 00 1 

+ L L m!n! 
m=O n=O 

I 

X ((THO I2n+m-d2{(yOLSO +Y~LSH)sdzl 
SL {(YOL So + YHL sH)sdz(2n+m-l) 

+ (THL(TW I2n+m[2{(yOLSO +YHL~H)Sd~l) 
{(YOL So + YHL sH)sdz(2n+m) 

I 

I n+m{2(YoH So SH) z} 
x I 

(YaH So SH) z(n+m) 

x (TOHLSOSHS[)m(YHLSHS[)n(YOLSOS[)n, 

(5) 

(6) 
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where the functions 1m are the modified Bessel functions. The field IH(so,sH,sr) 
is not defined for negative values for any of the coordinates. Thus the 
expression in (6) should be multiplied by u(so) U(SH) u(sr) , where u denotes 
the unit step function. 

(c) Power and Diffracting Cross Section 

The intensity field IH(so,sH,sr) expanded to the lowest order involving the 
r.l.n. L, thus excluding corrections to the intensity of the primary diffracted 
beam due to secondary extinction and absorption, becomes 

IH(so,sH,sr)=/oO"Ho (1-O"wso -O"LHSH)l5(sr)+ , ( O"HL O"w ) 
O"HO 

(7) 

where 10 is the intensity of the incident beam at the entrance surface. For a 
crystal cut in the shape of a parallelepiped confined by the unit vectors so, 
SH and SL, and with dimensions 10 x IH X h, integration over the entrance and 
exit surfaces gives for the power, cf. Moon and Shull (1964): 

{ I ( O"HL O"LO )} PH = 10 O"HO V 1 - L O"W 10 + O"LH IH - O"HO h . (8) 

To obtain an expression for the integrated power we must evaluate the 
diffracting cross sections {O"PQ}' Becker and Coppens (1974) have outlined a 
procedure for calculating 0" in the case of two-beam diffraction. Extending to 
the three-beam case we find for the actual crystal shape: 

. 2 
O"PQ = I KpQ 121p Sill (~PQ/2) . 

(~PQ/2)2 ' 
(9) 

here 

I KpQI = (re AjVdl Fp_QI, (10) 

with III KpQI being the extinction length for the actual reflection, re is the 
classical electron radius and I Fp_QI the absolute value of the structure factor 
involved. The variable ~PQ is defined through 

{ sin28PQ } 
~PQ = 2rr KpQ A t1 - OIp(tfJ) Ip. (11) 

Here we have neglected any vertical divergence of the incident beam; t1 is 
the angle which measures the horizontal divergence, KpQ is a geometrical 
factor (Zachariasen 1945), OIp is the excitation error associated with beam Icp, 
and tfJ is the angle of rotation of the crystal about the scattering vector of 
the primary r.l.n. Under ordinary diffractometer conditions 0I0 = OIH = 0 and 
I KHOI = 1. 
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(d) Integrated Power in Type I Mosaic Crystals 

Expressions for the correction of intensity data due to multiple diffraction 
are commonly based on the assumption of a type I mosaic crystal (Zachariasen 
1967). In these crystals the width of the intrinsic cross section (T is much 
less than the width of the mosaic distribution function. This means that 

(lpKPQ sin28pQ)>>'\, 

(I KPQI 2 IpIQ)« 1, 

(12) 

(13) 

where the second inequality is assumed to assure that dynamical effects, 
caused by the wave nature of the beams, will be negligible. Equation (12) 
implies that the diffracting cross section, cf. (9), converges weakly to a Dirac 
function, i.e. 

lIm (Tp = -- 8 E1 - . , . QpQ ( ,\()(p) 
Ip-co Q 1 KpQI 1 KpQI sm28pQ 

(14) 

where we have introduced the quantity Q known as the average cross section 
per unit volume of the crystal, cf. Zachariasen (1945), 

2 ,\ 
QpQ =1 KpQI -:--28 . sm PQ 

(15) 

The mosaic distribution function w$Q(.18pQ) is given with respect to the 
deviation from the Bragg condition, .18pQ, in the scattering kQ -+ kp. The 
superscript d denotes the type of distribution function considered. Usually a 
Gaussian or a Lorentzian distribution function is assumed. Transforming to a 
representation based on the divergency angle E1, we have 

w$Q(Ed = 1 KpQI w$Q(.18PQ=1 KpQI Ed. (16) 

And the mean diffracting cross section, which is given by a convolution of 
the intrinsic diffraction function and the mosaic distribution, becomes 

- d ( '\()(p ) uPQ = (TPQ®w$Q = QpQ wpQ 1 KpQI E1 - sin28pQ . (17) 

Substituting this result for the coupling constant in equation (8), and performing 
the integration in El, we obtain for the integrated power: 

'PH = 10 ~o v 

{ 1 ( I did ~L Qw I d )} x 1 -"2 Qw a WW;HO + QLH H WLH;HO - ~O L W HL;W , (18) 

where 

W$Q;RS = L: dEl w$Q(Ed w~s(Ed. (19) 
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This result is equivalent to equation (9) of Tanaka and Saito (1975). We 
have, however, used the concept of excitation error, OCL, rather than a delay 
angle, (, to take account of the fact that the two r.l.n. Hand L need not be 
simultaneously on the Ewald sphere. 

(e) Practical Considerations 

To be applicable in the X-ray case polarisation effects must be accounted 
for in (18) (Zacharias en 1965). As seen from (1), absorption and scattering 
are coupled in the basic equations. Absorption does not enter the expression 
for 'PH explicitly, to the order of approximation considered. However the 
pathlengths 10, lH, h are calculated as absorption weighted mean pathlengths, 
cf. Becker and Coppens (1974). 

The distribution function w$Q is taken to represent the total broadening of a 
peak profile caused by beam divergence, spectral dispersion, crystal mosaicity 
and crystal size. In the Gaussian case it is written (d = Ga): 

-Ga (4In2)~ 1 { (tJ8PQ)2} wpQ(tJ8PQ)= -- --exp -41n2 -- , 
IT xPQ xPQ 

(20) 

while in the Lorentzian case (d = Lo): 

(2) 1 1 __ . w~Q(tJ8PQ) = IT xPQ 1 + (2tJ8PQ/xPQ)2 (21) 

Here xPQ is the half-width of the distribution considered. Generally the 
half-width can be written as xPQ = x + f(8pQ) , where a functional dependence 
on 8PQ is included to allow for spectral dispersion (Tanaka and Saito 1975; 
Soejima et al. 1985). 

More than one secondary reflection are usually close to the Ewald sphere. 
To first order of approximation it is legitimate to neglect the effect of mutual 
coupling between the secondary diffracted beams. Thus, the joint effect on 
the integrated power of the primary diffracted beam is found by summing 
the contributions from each three-beam case independently. With 10010 PHO v 
being the standard kinematical expression for the two-beam integrated power 
of the primary diffracted beam in the X-ray case [PHO is the polarisation factor 
(1+cos228HO)/2], the relative change in the integrated power due to three-beam 
interactions is written: 

tJ 'PH 010 PHO 10 
'PH XHO 

x t { -wfO;HO( ~~) - wfH;HO( ~~) C~) 

+ ~L;LO( ci::~) (~~) (:~)}. (22) 

The W terms represent the product of the appropriate polarisation factor, 
xHo/2 and the W term defined in (19). 
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The first and second terms in (22) represent a diminution (Aufhellung) of 
the integrated power, the third is an increase (Umweganregung). With only 
one secondary reflection L contributing, and the primary I FHOI small and I hoi 
and I FHLI large, Umweganregung predominates. Aufhellung is favoured when 
the intensities of the primary and at least one of the secondary and coupling 
reflections are strong. 

The procedure proposed by Tanaka and Saito (1975) can be used to identify 
the geometrical conditions for MD. All secondary r.l.n. localised within a shell 
of thickness 2.1 about the Ewald sphere are assumed to satisfy this condition. 
The thickness of the shell should reflect all the broadening factors of the 
experiment, however, its exact geometrical shape is not crucial since the 
strength of an interaction is modified by the damping term WPQ;RS, which 
depends on the actual distance of the corresponding r.l.n. from the Ewald 
sphere. 

Table 1. Crystal data and survey of experimental conditions for l,2-bis(phenyl­
sulfonyl)ethane modification 1 and 2 (PPDS 1 and 2) and l,2·bis(methylsulfonyl)ethane 

(MMDS) 

MMDS PPDS 1 PPDS 2 

Composition C4 HlO O4S2 CI4HI4 0 4S2 CI4HI404 S2 

Space group P2J!c P2J!n Pna21 
a (A) 6·112(5) 8·457(1) 24·249(1) 
b 5·907(2) 10·045(1) 11·079(1) 
c 10·697(4) 8·965(1) 5·257(1) 
f3 (deg.) 91·53(1) 116·04(2) 90·0 
V(A3) 386 ·0(4) 684·3(2) 1412·4(3) 
T(K) 86(1) 85(1) 86(1) 
,\.tA) o· 71073 0·71073 0·71073 
Z 2 2 4 
Dx (Mgm-3) 1·6024(17) 1· 5063(4) 1·4597(3) 
J-I(mm-I)A 0·620 0·381 O· 370 
Size (mm) -0·61xO·27xO·21 -0·45xO·48xO·48 -0·49xO·22xO·19 
Max. (sin8)/'\ (A-I) 1·265 1·265 0·904 

A Mass absorption coefficients taken from 'International Tables for X-ray Crystallography', 
Vol. IV (1974). 

Table 2. Experimental parameters for the MD corrections 

MMDS PPDS 1 PPDS 2 

Ll (A-I) 0·002 0·002 0·002 
Observed range in 

half-widths x (deg.) 0·14-0·18 0·14-0·18 0·13-0·17 
x used (deg.) 0·15 0·20 0·15 
Distribution function Gaussian Gaussian Gaussian 

3. Experimental 

Table I gives crystal data and a survey of the experimental conditions 
used for the analyses of three different crystals, 1,2-bis(phenylsulfonyl)ethane, 
(C14H1404S2), the monoclinic PPOS 1, and the orthorhombic modification, 
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PPDS 2, and 1,2-bis(methylsulfonyl)ethane (C4HlO04S2), MMDS. All data sets 
were collected at 85-6 K without attenuators with Nb-filtered Mo KN radiation 
using the w/28 scan mode on a Picker FACS-I diffractometer. More complete 
descriptions of the experiments are given by Thorkildsen (1983) for PPDS 1 and 
MMDS, and by Hauback and Mo (1990) for PPDS 2. All data sets were corrected 
for long-term variations, coincidence loss, Lorentz factor, polarisation, scan 
truncation errors, absorption and extinction. The effects of MD were studied 
by comparing: 

• intensity data uncorrected and corrected for MD, 
• the two parent sets of refined structure parameters, 
• in two cases, corresponding sections through the deformation density 

distribution. 

Table 2 shows the experimental parameters used in the corrections applying 
(22). The thickness 2.1 of the shell about the Ewald sphere is probably 
overestimated as the range of three-beam interactions in these crystals is of the 
order 0·0005-0·001 A-I. However, the only consequence of retaining values 
up to 0·002 A-I is to include additional multiple-beam cases with negligible 
correction terms. 

The profiles of several three-beam interactions have been studied in detail, 
and the half-widths x have been evaluated by rotating the crystal about the 
scattering vector of the primary reflection over the exact three-beam position 
(IJI-scan). The observed range in x was estimated from several profiles in PPDS 1, 
PPDS 2 and MMDS. In most cases, the strong secondary and coupling reflections 
have Bragg angles ::=;25 0

, and line broadening due to wavelength dispersion 
is very small. The mosaic distribution seemed to be fairly isotropic in the 
three crystals and, therefore, we have used for each crystal a single isotropic 
half-width x. The type of distribution function, Gaussian or Lorentzian, was 
determined according to Helmholdt and Vos (1976). 

Absorption weighted pathlengths for the three beams, i.e. la,IH,I[, were 
calculated by the analytical method (de Meulenaer and Tompa 1965; Thorkildsen 
1983) for PPDS 1 and MMDS. For PPDS 2 average pathlengths, Ii = 3r /2, were used, 

Table 3. Number of reflections corrected for MD and frequency of large 
corrections 

MMOS PPOS 1 PPOS 2 

Range in s = (sine)/A (A-I) <0·75 <0·73 <0·714 >0·714 
Total number of reft. corr. 3127 4714 4928 4698 
Percent. of all reft. with f:::.P/P> 5%A 7·6 10·5 9·0 10·9 

> 10% 5·9 7·5 5·5 6·2 
> 100% 1·6 2·5 1·3 1 ·1 

Percent. ofreft. with w> 0, f:::.P/P> 5%A 5·9 8·3 5·0 0·3 
> 10% 4·2 5·4 2·4 0 
> 100% 0·7 1 . 1 0·2 0 

Fmin, limit in Fo defining weak reft. 6·7 6·0 10·0 8·7 
Percent. of reft. with F < Fmin 39 34 30 58 
Percent. of reft. with F < Fmin and 14·6 2l·0 18·3 10·7 

f:::.P/P> 10% 

A f:::.P /P is defined as (I FI ~orr - I FI ~ncorr)/I FI Eorr where the corrections are due to MO. 
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where r is the average radius of the crystal. Test calculations showed relatively 
small changes in the correction factors when average pathlengths were used. 

To reduce computing time we required I h I, I FH-L I > Fmin in the terms for 
Aufhellung, and I FH-LII hi /IFHI > Fmin for Umweganregung terms. For PPDS 1 
and MMDS we used Fmin = 10·0, and for PPDS 2, Fmin = 20· O. 

The corrections were calculated with the program M-DIFF (Thorkildsen 1984) 
on SPERRY 1100 and IBM-AT computers. 

4. Results 

Table 3 gives the statistics for the MD corrections. For PPDS 1 and MMDS 
all reflections with F2 > CT(F2) were given weights w > O. For PPDS 2, the 
threshold is 2CT(F2) and 4CT(F2) for data in the ranges s = (sine)/" < 0·714 A-I 
and 0·714 < s < 0·904 A-I respectively. Intensities beyond s = 0·73-0·75 A-I 
were corrected only in the data for PPDS 2. Even though the fraction of 
large corrections in this s-range is comparable with that for reflections with 
s < 0·714 A-I, the number of reflections above threshold with significant 
corrections is very small. This is attributable to the very few strong reflection 
intensities above s ~ 0·70 A-I. Therefore, correction of data with s ~ 0·7 A-I 
seems to be satisfactory. 

In the three data sets, 5·5-7·5% of all reflections with s < 0·71-0·75 A-I 
had /J.P/P> 10%. As seen from the last rows of Table 3, most of the large 
corrections involve the weak reflections. Among the weakest third of all 
intensities, 14·6-21·0% had /J. P /P > 10%. These fractions are reduced to 
7·8-14·8% when only reflections with w> 0 are considered. In fact, for the 
strongest two-thirds of the data, less than 0 ·4% of the reflections for the three 
crystals were corrected more than 10%. There were no Aufhellung situations 
with /J.P/P > 5%. 

Table 4. Influence of correction for MD on the averaging of equivalent reflections 
The range of reflection considered and definition of weak reflections are given in Table 3 

RintA all reflections Rint weak reflections 
Without corr. With corr. Without corr. With corr. 

MMOS, all corr. included 0·018 0·018 0·059 0·051 
I CORRI < 5%B neglected 0·017 0·054 

PPOS I, all corr. included 0·017 0·019 0·080 0·062 
I CORRI < 5%B neglected 0·016 0·063 

PPOS 2, S <0· 714 A-I 0·038 0·036 0·211 0·199 
s<0·714A-I 0·104 0·105 

A The agreement index is Rint = XI Fr - F~ I /XF~, where F~ is the weighted average of Fr and 
F~. 
B CORR is the relative correction of I FI ~ncoff' 

Two equivalent data sets were measured for each crystal. Results from the 
merging procedure are given in Table 4. Both data without and with correction 
for MD were weight-averaged. Corrections for Aufhellung tended to reduce 
the agreement between some strong equivalent reflections, and in addition 
to the runs including all corrections, merging was also performed neglecting 
corrections <5% for MMDS and PPDS 1. In the latter case, only Umweganregung 
cases are considered, and the overall Rint is slightly improved. As expected, 
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Table 5. Survey of the refinements 
For MMDS and PPDS 1: first row, data not corrected for MD; second row, data corrected 
for MD and all corrections included; and third row, data corrected for MD and I CORRI < 5% 

neglected. PPDS 2 entries are only given for two first rows 

MMDS PPDS 1 PPDS 2 

s = (sin9)/A (A-I) <0·75 <0·75 <0·70 
<0·75 <0·75 <0·70 
<0·75 <0·75 

Scale factor k 10·590(18) 11·874(19) 1 ·989(3) 
10·602(17) 11 ·885(18) 1·990(2) 
10·587(17) 11· 855(18) 

R(F) =2:(1 Fol -kl Fel )/2:1 Fol 0·019 0·025 0·024 
0·017 0·023 0·023 
0·018 0·024 

1 
Rw(F) = [2:w(1 Fol -kl Fel )2/2:wFo2)2 0·029 0·036 0·027 

0·027 0·034 0·026 
0·027 0·034 

1 
GOF = [2:w(1 Fo I - kl Fe I )2/(NO - NY)];; A 4·96 7·01 1·97 

4·75 6·64 1·89 
4·78 6·64 

Max. shift/error 0·019 0·013 0·029 
0·001 0·004 0·026 
0·004 0·091 

A NO is the number of reflections with w F 0, and NY the number of variables. 

Rint for the weak reflections is significantly improved in all data sets after 
corrections for MD. 

Some refinement characteristics for the data sets are summarised in Table 5. 
Both R factors and goodness-of-fit (GOF) are generally improved, in particular 
the GOF, compared with the least-squares refinements with uncorrected data. 
The refinements including all correction factors are slightly better than those 
where corrections <5% had been neglected (MMDS and PPDS 1). The shifts in 
scale factor k are within 20-. 

Table 6. Effect of MD on positional and displacement parameters, and bond lengths 
and angles 

Each entry gives the number of shifts greater than la/largest shift 

Positional Displacement Bond Bond 
parameters parameters lengths angles 

MMDS 1/1 ·10" 0/0·60" 1/1· 00" 1/1 ·50" 
PPDS 1 2/1·70" 0/0·80" 1/1·20" 0/0·70" 
PPDS 2 0/0·90" 0/0·90" 0/0·60" 0/0·50" 

The influence of MD on refined parameters is shown in Table 6. There are 
almost no parameter shifts exceeding 10-. This is rather surprising in view 
of the large number of significant intensity corrections. The total number of 
changes > 1 0- for all parameters is 3, 3 and 0 for MMDS, PPDS 1 and PPDS 2 
respectively. It is noteworthy that positional and displacement parameters 
seem to be equally modified by MD. 
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Deformation densities are known to be highly sensitive to errors and 
changes in the data. Therefore, deformation density maps were calculated 
from corrected and uncorrected data sets for MMDS and PPDS 1, with data 
below s = 0·85 A-I. Non-hydrogen parameters were taken from refinements 
with s> 0·90 A-I. All correction coefficients were used. Several sections were 
calculated through the deformation densities. Fig. 1 shows sections through 
one of the s-o bonds in the two structures. Figs 1 a and 1 c are based on data 
uncorrected for MD, this correction was included for the calculations of maps 
(b) and (d). With the standard deviation in the maps estimated at 0·025 eA-3 
away from the nuclear positions, the maximum differences between corrected 
and uncorrected maps are again unexpectedly small, within 2· 5(T for both 
crystals. The maps excluding Aufhellung situations (only corrections >5% 
considered) were very similar to those in Fig. 1, and the maximum difference 
between uncorrected and corrected maps was slightly reduced to 2(T. 

S. Discussion 

The ratios of structure factors, the mosaic character and toe size and shape 
of the crystal are important parameters for the magnitude of the intensity 
shifts. The width of an interaction profile increases and the height decreases 
with increasing crystal mosaicity. The pathlengths Ip depend on the size and 
orientation of the crystal, and shorter Ip values in (22) cause reduced intensity 
perturbations. This effect was also discussed by Moon and Shull (1964) and 
Asbrink (1970). 

The most critical experimental parameter for calculation of intensity 
perturbations is the half-width x of the total broadening function. In the 
present work, we have used a single isotropic value of x for each crystal 
due to the restricted range of Bragg angles. We obtained good agreement 
between calculated and observed changes in the integrated power when 
the corrections were not too large, IlP/P:$ 20-30%. However, large shifts 
could not be reproduced by (22) with a single value of x. For example, 
three profiles in PPDS 1 with relative corrections 82-126% had experimental 
half-widths x = 0 ·17-0 .18 0 , while x had to be adjusted to 0 ·13, 0·36 and 
0.58 0

, respectively, to reproduce the changes in integrated power. For large 
corrections there is a tendency of the formalism in (22) to overestimate the . 
shifts. 

The theory, as developed to lowest order, is based on small extinction 
and small absorption, which imply (TPQ IQ «1 and JlIQ «1. For the crystals 
studied, (T max - 0·1 mm-I while Jl - 0·5 mm-I , and Jlt:$ 0·2, where t is the 
maximum pathlength through the crystal. Thus, the major correction to the 
approximation involved in (8) is due to absorption. This correction term is 

{( /~ 101H) (ib 101H) Jl 3 + ~ (TLH + 3 + ~ (Tw 

_( Ii + h IH + h 10) (THL (TW}. 
6 4 4 (THO 
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Fig. 1. Deformation density without and with MD. Contours are at 0·05 eA-3 with negative 
contours broken, while zero contours are not shown. (a) MMDS: plane through O(1)-S rotated 
55° from the normal of 0(1)-S-0(2) in a direction towards 0(2), without MD correction; (b) as 
(a), but with MD correction. (e) PPDS 1: plane through O(2)-S perpendicular to 0(1)-S-0(2), 
without MD correction; (d) as (e), but with MD correction. 
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And consequently, in an Umweganregung situation with 10 - IH - h - 1 we 
find that the first order change in the power is about 30% too large. Very 
recently, Piltz (1988) has developed a new set of intensity transfer equations for 
MD. From a few Umweganregung examples, the corrections were significantly 
improved compared with the application of (1). However, Aufhellung situations 
are treated in the same way by Piltz (1988) and the present authors. 

To handle cases with strong interaction between the beams correctly, or 
in cases where the size of the mosaic grains exceeds the extinction length, 
dynamical theory, i.e. wave equations, should be used to derive expressions 
for the intensity perturbations. Values of the power PH at the exact three-beam 
point_ in typical Umweg situations, calculated to first order using Takagi's 
equation (Thorkildsen 1987), show a decrease of about 50% from values 
obtained with the formalism based on energy transfer equations. Thus, the 
evaluation of corrections due to three-beam interaction faces much the same 
problems as the evaluation of corrections for extinction. 

The corrections for MD are systematic relative to the distribution of I FI2 in 
the sense that the predominant effect is a correction of weak intensities for 
Umweg enhancements. Our observations imply that the MD corrections are 
nearly random relative to the atomic parameters and even to the deformation 
density, and lead to negligible changes in coordinates and Uij values, and to 
very small changes in 8(p). There seems to be more noise in the uncorrected 
maps, and the standard deviations are slightly larger. 

To conclude, we observe that MD appears to be a minor source of error in 
accurate studies of structure and charge density in mosaic crystals. Compared 
with the problems associated with corrections for extinction and absorption, 
the effect of MD seems to be of secondary significance. 
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