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Abstract 

Implications of the observed large scale structure on the physics of the early universe are 
described. A short review of Soviet work on the subject is given, and the present status of 
the fractal model of the large scale structure is discussed. 

1. Introduction 

The properties of the present-day large scale structure are important and 
interesting per se, without any further implications. Astronomy has retained 
yet a strong 'geographical' approach to learn, map out and name the universe 
around us. In this respect the study of large scale structure serves to extend 
the borders of our maps. A perfect example of this approach is a recent atlas 
of the local structure by Tully and Fisher (1987). 

However, there is a physicist in every astronomer, too, who tells us that 
observational data are never respectable enough by themselves, and that we 
have to find out the meaning of it all. For the observed large scale structure 
there are two sides to this hidden knowledge-the way the structure formed 
and the nature of the initial seeds it formed from. There exist, as usual, a 
number of different theories for both problems. 

In order to understand the ways the observations may serve to decide 
between those theories, let us review the current theoretical picture of the 
formation of the large scale structure first. This also gives me an opportunity 
to give a short review of the present Soviet work on the subject, with particular 
emphasis on the fractal model. 

2. Initial Seeds for Structure 

The currently popular inflation scenario has, among other things, given 
us recipes to predict the initial perturbations responsible for the existence 
of structure in the universe (see e.g. the review by Linde 1984). Different 
possibilities here are based on different physical pictures of the elementary 
particles and fields at extremely high energies, the number of which seems 
to be comparable to the total number of theoreticians and is about one 
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thousand at least! In cosmology the number of presently popular pictures 
is, fortunately, much less. For our purposes they may be divided into two 
distinct classes-gaussian and non-gaussian initial perturbations. 

The gaussian perturbations represent the conventional idea of chaos as 
a gaussian stationary random field (see Adler 1981). This field can be 
represented as a sum of plane waves of different wavelength with random 
(homogeneously distributed) phases and amplitudes, which are chosen from a 
gaussian distribution. To completely describe these fields we need to fix only 
one function describing the dependence of the dispersion of the amplitude 
distribution on the wavelength (the spectrum of the field). 

The spectrum most used today is called the Zeldovich spectrum, which 
supposes scale-free perturbations of metric (gravitational potential in fact). 
Depending on the nature of the particles that form the main (dark) component 
of gravitating matter, the perturbations evolve in different ways, and their 
spectra at the epoch when the formation of structure starts may be totally 
different. The two possibilities people usually choose from at present are 
the hot dark matter spectrum and the much more popular cold dark matter 
spectrum. I shall describe those in more detail later on, when reviewing the 
scenarios of the formation of structure. 

Other, more recent and unconventional hypotheses are usually clumped 
together under the label of non-gaussian perturbations. One can call any field 
non-gaussian that does not conform to the conditions listed above, but most 
of the theories of the inflation stage seem to give us fields that have phase 
dependencies built in (Allen et al. 1987). Built-in phase dependencies are, of 
course, initial patterns, which may well be frozen into the present structure. 
An extreme example of the patterns possible is the proposal by Kofman and 
Linde (1987) to build completely empty voids into the matter distribution 
already from the beginning. 

Another interesting example is the well-known cosmic string scenario 
(Zeldovich 1980; Vilenkin 1981). The cosmic strings form no continuous field 
in space, but they may serve as seeds for later galaxy formation. Moreover, 
in this case we really do not need initial perturbations for the bulk of the 
gravitating matter. 

The last two examples belong to another picture of chaos-the fractal 
picture. Recent work in dynamical systems shows that this may really be 
the generic picture of chaos. Here we have no continuity of our fields in 
space, but we have built-in patterns and self-similarity of structures instead. 
In order to learn which type of chaos occurred in our past we must follow 
the evolution of initial perturbations up to the present-day structure. 

3. Dynamical Evolution of Structure 

It is easy enough to follow the evolution of the initial perturbations into 
fully formed structure if they are small (the so-called linear stage). This can 
be done, of course, only for perturbations that are initially small, and not for 
the strings, which are nonlinear from the very beginning. Things get more 
complicated and interesting when structure becomes nonlinear. These stages 
can be presently studied by numerical simulations only. 
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The first type of numerical simulation we shall review concerns models 
which are not very popular nowadays-those with hot dark matter (HOM). 
This model became high fashion in about 1980 with the measurement of the 
neutrino mass. The distinctive feature of the model is a sharp cut-off in 
the spectrum of the perturbations at a large wavelength, corresponding to a 
typical mass of a rich cluster of galaxies. The evolution of structure here is a 
top-down process, the large-scale skeleton forming first and then fragmenting 
into galaxies. There are no perturbations at smaller scales. 

These models represented the observed structure well enough up to the 
moment when the inflationary universe became the 'true religion.' This universe 
has too large a matter density for the HOM model-the large scale structure 
evolves too fast and is too heavy and too hot to form galaxies. The present 
way out of these difficulties is to use unstable particles for the HOM, which 
decay just after the large scale features have formed and before galaxies begin 
to form. The last series of these models by Ooroshkevich et al. (1988) is 
definitely state-of-art and fits nicely all the observational data. It means that 
the top-down scenario is, in fact, alive and well. Of course, this model is 
definitely not fractal, and some fractal features may be introduced into it only 
in the process of the fragmentation of structure into smaller objects. 

Another conventional model is the cold dark matter (COM) model, which has 
no real cutoff in the spectrum, and leads to the formation of well-developed 
structure both at small and large scales. The formation of structure in this 
model goes bottom-up, with less massive objects forming first and then 
merging together. This is the current orthodox religion as far as simulations 
go. There are many groups active in this field, but for our review I shall 
mention A. Klypin's work (see Klypin et al. 1989) and that of M. Gramann 
from our observatory (see Gramann 1988). Gramann included the cosmological 
constant in her models to get rid of the self-destruction of structure, which 
is also a problem for COM models. 

Now COM models, starting from a normal gaussian field, may easily lead to 
an observed fractal large scale structure. This is due to a peculiar perturbation 
spectrum they have, which extends to very high frequencies. It is known that 
if we cut such a field at a certain level, the isosurface of the field we obtain 
is fractal (Adler 1981). Just this sort of cut is implied by current biasing 
scenarios of galaxy formation. 

Both types of simulations described above follow the dynamical evolution of 
a piece of the universe from the end of the linear stage (small perturbations) 
to the present day and beyond. This process takes a long time both in reality 
and in actual simulations, and simulations lead usually to accumulation of 
numerical errors, which seriously reduce the dynamical and spatial range of 
the results. Now, recently there has appeared a new technique to predict 
the pattern of the large scale structure at any moment without following the 
evolution at all (Kofman and Shandarin 1988). This approach was labelled 'the 
adhesion model' by its authors, meaning that dynamical processes inside the 
structures are ignored, and particles usually passing each other are meant to 
stick together. This technique is still young, but certainly promising. 

In contrast to the previously described models, the string models demand 
a numerical approach from the very beginning. It seems that those models, 
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beginning from a fractal start, remain fractal. Bennett and Bouchet (1988) 
demonstrated that the string network itself has a fractal structure, and Scherrer 
et al. (1989) showed that hot dark matter with string loop seeds leads to a 
structure resembling that from the cold dark matter and close to observations. 
This sort of structure is probably fractal too. This subject is not yet popular 
in the USSR. 

In summary, if the observed large-scale structure is fractal, it is rather 
difficult to say at once what the initial conditions were like. As we saw, it 
is probably possible to get a fractal structure both from a fractal initial state 
or from a continuous random field with a specific (CDM-type) spectrum. This 
means that we must study the fractal properties of the structure in more 
detail. But before doing this we must get the answer to the most important 
question-is the structure really fractal? 

4. Evidence for and against a Fractal Structure 

I have spoken of fractals so far without giving any definitions or examples 
of fractals. (I believe that this is not really necessary in Australia-anybody 
who has been in .sydney or seen its map knows well the beautiful fractal of the 
waterways which, first, resembles some superclusters we see and, secondly, 
has all the same problems of upper and lower fractal ranges found in the 
supercluster pattern.) Evidence for a fractal large scale structure in the sky 
comes from several sources, as described by Einasto (1990, present issue 
p. 145). There are, first, tight correlations between the correlation radius 
and the depth of a sample, and a similar dependence between the median 
void size and the sample size. There are also two more direct results-the 
power-law pair distribution function derived by Coleman et al. (1988) and the 
mass-distance behaviour in our neighbourhood studied by Klypin et al. (1989). 

The main facts used against the fractal picture are two (Peebles 1988). Those 
are the Poisson scaling behaviour of the two-dimensional correlation radius 
with the sample depth and the number count-apparent magnitude relation, 
which tells us that space is homogeneously populated by galaxies. 

Thus, the arguments for are essentially 'three-dimensional' and are based 
on data from our nearby neighbourhood (the CfA-I sample up to 8000 km S-1 

mainly). The arguments against are 'two-dimensional' and are based on samples 
extending to much larger distances. Let us look at the nearby region first. 

The distribution of galaxies in the region responsible for most recent 
statistical results is shown in Fig. 1. It is a cube aligned along the axes of 
the supergalactic coordinates, with a cube side of 8000 km S-1 H-1 (H is your 
own version of the Hubble constant). You look into this cube down from high 
supergalactic Z. Our Galaxy lies in the centre of the bottom face of the cube. 
The formation seen in the lower part of the figure is our Local Supercluster, 
while the Coma Supergalaxy hangs from the upper face of the cube, and they 
are connected with a solid bridge. This bridge spans a huge void between the 
two superclusters. The most striking feature of this picture is its regularity. 
Apart from some small clouds of galaxies it is essentially dominated by the 
main features listed above. 

Now, all our statistical samples are usually cones with a tip in our location, 
with axis aligned almost along the supergalactic Y-axis (directed upwards in 
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the figure). and extending 50· from the axis. These cones lie entirely inside 
our cube. and when we increase the sample depth. they encompass more and 
more of the void between the two superclusters. It can be shown that the 
correlation amplitude (the value of the correlation function at zero separation) 
is inversely proportional to the filling factor of the sample (Saar 1989). Thus 
the correlation radius (or amplitude) dependence on the sample depth really 
does not need fractals. although it can be explained by a fractal distribution 
of galaxies. 

rID 
x 

Fig. 1. The distribution of galaxies in our neighbourhood. 

Anyway. the mathematical model behind the correlation picture-the stationary 
random field-cannot describe the observed situation at all. The distribution 
of galaxies in Fig. 1 is far from a stationary random field. It means that if the 
fractal picture does not work. we must look for something radically different. 

The two results on the slope of the pair distribution and mass-radius 
relation. although formally supporting fractals. are not very decisive either. 
Both are very 'galacto-centric'. meaning that the results for large-distance 
behaviour concern only one region of reference, that of our closest vicinity, 
and it is impossible to say how well they describe the whole sample. So we 
have at hand only one really good argument for fractals-that concerning the 
behaviour of the void sizes. 

Now, ironically. there exists one more argument of a negative kind that in 
fact works to support the fractal picture. This is the fact that fractal features 
are very difficult to measure for the kind of severely undersampled samples 
we have. Fractal characteristics are usually determined looking for power-law 
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dependencies between spatial scales and densities, separations, etc. Now, in 
our best complete samples we have less than one thousand galaxies, meaning 
that the range of scales that can be studied is less than 1: 10. And even 
there both the discreteness effects (too few points per unit spatial scale) and 
the edge effects are severe. As an example I show in Fig. 2 the results of a 
practical determination of the fractal dimension for a Poisson distribution of 
10000 points in a square (solid circles). The curve shows the correction for 
the discreteness effects (undersampling), and the large-scale deviation comes 
from the edge effects. So, although the density of points is much larger here 
than in observed samples, we do not even reach the real dimension of two. 
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Fig. 2. Dependence of the fractal (box-counting) dimension Do on 
the scale 1 (measured in units of the size of the region) for a 
Poisson point distribution in a square. The curve shows the effect 
of undersampling (too few points in a cell of size /). 

A similar effect dominates the observed sample in Fig. 3 (the CfA-I cone 
up to 8000 km S-1). Here we see good fractal behaviour only in the case of 
a biassed COM Simulation, and observational data do not seem to support 
fractal behaviour at all (no fixed dimension). Correcting this for discreteness 
effects gives us the bold line with D "" 1 . 8. This result has not been corrected 
for edge effects as yet. 

What about the deep (20) results? They are, firstly, not very clearly 
established. Most of the correlation scaling results do not have proper error 
estimates, coming from earlier times than the present error estimation methods, 
and the number count results depend on the luminosity function used. And, 
of course, the galaxy distribution is not Poissonian at all, as these results 
try to tell us. This means that they are extremely insensitive to details of 
structure of sizes up to 50 Mpc (the sizes of the observed voids). 

Anyway, it is safe to assume that there must exist an upper limit to the 
size of fractal regions, and really deep samples must be homogeneous. As 
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Fig. 3. Fractal dimension versus scale size for three samples: curve 
f gives the results for a full COM simulation (all particles); b for 
a biassed version of the same simulation; and 0 for a complete 
sample of galaxies in the CfA-! cone up to 8000 km S-I. The bold line 
shows the effect of an undersampling correction on the observational 
results. 

165 

emphasised by Mandelbrot (1989), there are many ways of crossover from a 
fractal to a homogeneous density distribution. Judging by the present 3D 
samples we have, the crossover region cannot begin nearer than 50-60 Mpc. 
And probably the way of crossover will help us to choose between different 
models and initial conditions. Surely the crossovers for string models and for 
a biassed COM model are entirely different. 

5. Conclusions 

As we have seen, the situation at present is unclear. The correlation picture 
is not fit to describe the nearby structure, but we do not know yet if fractals 
are better. To learn this we must, firstly, get data for deeper samples to study 
the crossover scales and, secondly, get more data for nearby regions, too, to 
sample better the structure details. Of course, in order to improve the spatial 
resolution ten times we must measure the redshifts for a thousand times more 
galaxies--we will certainly run out of galaxies before this can be done. I do 
hope that there are enough galaxies left to measure in the southern sky! 
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