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Abstract 

Matrix elements for ionisation play an important part in electron-atom scattering calculations. 
Two methods for describing ionisation that can be incorporated into a scattering calculation 
are tested here against coplanar asymmetric experimental differential cross sections at 150 
and 250 eV. They are the distorted-wave Born approximation and the coupled pseudostates 
method. A method that incorporates the exact boundary condition for three charged bodies 
describes the data significantly better and shows an important direction for improvement 
of scattering calculations. 

1. Introduction 

The distorted-wave Born approximation (DWBA) plays a central role in the 
theory of electron-atom collisions. On the one hand it can be fully implemented 
in a calculation of the optical potential describing the effect of ionisation 
on scattering (Bray et al. 1989). This contribution is usually important. In 
many cases the total ionisation cross section is at least a quarter of the 
total cross section. On the other hand the DWBA has given quite a good 
description of fully (sometimes called triple) differential experimental cross 
sections (e.g. Madison et al. 1977) and of cross sections with integration 
over various dimensions of the five-fold kinematic space (e.g. Younger 1980; 
McCarthy and Zhang 1989). 

Because of its role in scattering theory it is essential to test the DWBA 
as thoroughly as possible in comparison with experiment for the prototype 
case of hydrogen. It has been somewhat neglected as a serious description of 
ionisation, possibly because of large numerical errors due to overtruncation of 
the partial-wave series in early calculations. It is also interesting to test it as a 
description of ionisation in comparison with other theories, particularly to see 
if there is a better ionisation theory that could conceivably be implemented 
in the optical potential for scattering. 

We compare three methods of calculating the differential cross section for 
ionising the hydrogen atom with coplanar asymmetric experimental data at 
150 and 250 eV. Two of these methods, the distorted-wave Born approximation 
(calculated for this work) and the coupled pseudostate method (Curran and 
Walters 1987) are tractable in a scattering calculation. The third is the only 
calculation up to the present that includes the exact boundary condition for 
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the charged three-body problem (Brauner et al. 1989). It has not yet been 
implemented in a scattering calculation. 

2. Methods for Treating the Continuum 

The first test that must be applied to methods for treating the continuum 
in scattering calculations is whether they work well for differential ionisation 
cross sections. This observes the continuum-excitation matrix elements on 
the energy shell. In this work we consider two basic methods. The first 
solves a two-body pseudo-problem for the interaction of an electron with a 
target in a discrete set of states represented by square-integrable functions. 
The higher-energy states in this problem are not actual eigenstates of any 
Hamiltonian. They are simply square-integrable functions or pseudostates 
chosen so that the two-body pseudoproblem represents accurately certain 
aspects of the real three-body problem. We use as our example the pseudostate 
ionisation calculation of Curran and Walters (1987). 

The second method to be studied here treats the electron-hydrogen problem 
formally as a three-body problem. We divide the space of target states for 
our present formal purposes into P-space which consists of the discrete states 
and Q-space which is the continuum. The scattering problem for P-space 
(McCarthy and Stelbovics 1980) can be treated by a discrete set of coupled 
equations for which the potential matrix elements include contributions from 
the complex polarisation potential, which we write as 

1 
(q'il v~Q)ljq)= f d 3k'f d3k(q'il 'P~-)(k',k)}p+)_~(k'2+k2) 

x('P~-)(k',k)1 VslJq}; i,jEP. (1) 

Here 'P~-) (k', k) is the three-body continuum wave function for ingoing spherical
wave boundary conditions and total electron spin 5, whereas Vs is the 
appropriate operator for which the corresponding matrix element is the 
properly-antisymmetrised T-matrix element for ionisation. The form of this 
operator that allows the antisymmetric problem to be treated entirely by 
the methods of two-body multichannel potential scattering has recently been 
derived by Stelbovics and Bransden (1989). Ionisation tests the ground-state 
on-shell combination of matrix elements 

d 5(T k k ~ ~ = (21T)4~L 25+ 1 H 
dkAdkBdEA ko s-4-1('Ps (kA,kB)lVsIOko}12 • (2) 

This is the differential cross section. 
For scattering it has so far proved possible to implement (1) only in the 

distorted-wave Born approximation (DWBA) in which 'P~-)(k',k) is approximated 
by the product of scattering solutions for each electron-ion subsystem (Bray 
et al. 1989): 

'P~-) (k',k) = X<-)(k')XH(k). (3) 
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In this sense the DWBA is again a two-body method. Its advantage compared to 
the pseudostate method is that it uses exact solutions of the two-body target 
continuum. Its disadvantage is that it is only an approximate solution of the 
real continuum problem whereas the pseudostate method is a numerically-exact 
solution of the pseudoproblem. Comparison with experiment will test how 
good an approximation to on-shell ionisation is the DWBA and how close the 
pseudoproblem is to the real three-body problem of on-shell ionisation. 

For many years the major difficulty in understanding the target continuum 
in electron-atom scattering has been the essentially three-body nature of the 
boundary condition for three charged particles. Recently the exact boundary 
condition has been established by Brauner et al. (1989). They calculated 
ionisation cross sections using the approximation that the three-body wave 
function is a product of three functions, one for each two-body subsystem. 
This approximation would include a factor <t>(k' - k) in (3), which asymptotically 
is the correct phase factor for the two-electron subsystem. They showed that 
this approximate three-body wave function has the correct boundary condition. 
While this approximation has not yet been incorporated into a calculation 
of the polarisation potential (1) its value has been assessed in the on-shell 
ionisation problem. It has proved spectacularly successful in describing relative 
differential cross sections for coplanar asymmetric ionisation. 

3. Normalisation of Experimental Cross Sections 

It is of course necessary to have absolute experimental cross sections to 
form a good idea of the validity of a theoretical method. Absolute differential 
ionisation measurements are very difficult and have only been made on rare 
occasions (Beaty et al. 1977; Stefani et al. 1978; van Wingerden et al. 1979, 
1981). 

Two basic methods have been used to put relative measurements on an 
absolute scale. Both depend to some extent on the validity of the first 
Born approximation for the double differential cross section. For example 
Lahmam-Bennani et al. (1983) integrate the asymmetric differential cross 
sections over all directions of the slower electron to estimate the double 
differential cross section. This is normalised by comparison with measured 
double differential cross sections put on an absolute scale by using the Bethe 
sum rule (Lahmam-Bennani et al. 1980). The Bethe sum rule is valid if 
the first Born approximation describes the double differential cross section 
accurately enough. The other method is to use the optical limit. As the 
momentum transfer to the fast electron tends to zero the double differential 
cross section can be simply related to the optical oscillator strength regardless 
of the validity of the first Born approximation for higher momentum transfer 
(Inokuti 1971). The optical oscillator strength is obtained from photoionisation 
measurements. This is the basis of the normalisation method used by Jung 
et al. (1985) and Ehrhardt et al. (1986). Avaldi et al. (1987) have used a 
combination of these methods, integrating the differential cross sections to 
obtain double differential cross sections for comparison with relative double 
differential cross sections measured as a function of momentum transfer and 
normalised by extrapolating to the optical limit. Lahmam-Bennani et al. (1987) 
find very good agreement between the three methods. 
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Fig. 1. The differential cross section for the ionisation of atomic hydrogen by electron 
impact. Closed circles: experimental data of Ehrhardt et al. (1985, 1986), Klar et al. (1987), 
open squares: experimental data of Lohmann et al. (1984), solid curve: DWBA (this work), long 
dashes: coupled pseudostate method (Curran and Walters 1987), short dashes: calculation 
incorporating the exact three·body boundary condition (Brauner et al. 1989). Eo = 250 eV, 
E8 = 5 eV, (a) 8A = 3°, (b) 8A = 5°, (c) 8A = 8°. 
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The hydrogen ionisation data of Ehrhardt et al. (1985, 1986) are used 
in the next section for comparison with theory. They have been put on an 
absolute scale as described above. We have used their normalisation although 
we recognise the strength of the argument of Brauner et al. (1989) that 
it depends to some extent on the validity of the first Born approximation, 
which they have shown to be quite inadequate at the present energies in 
comparison with a much better calculation. The reader should recognise that 
the relative cross sections agree almost perfectly in shape with this calculation 
and consider whether to regard the calculation as a better way of normalising 
the experiments than the above methods, in spite of the agreement of the 
three somewhat independent determinations. 

The relative experimental data of Lohmann et al. (1984), normalised to the 
second Born calculations of Byron et al. (1983), are included in the comparison 
in the next section. They essentially agree with the data of Ehrhardt et al. 

To obtain a further clue to the normalisation question we have compared 
the DWBA for the total ionisation cross section to the experimental data of 
Shah et al. (1987), whose absolute determinations agree closely with their 
relative measurements normalised to the Born approximation at 500 eV. (Note 
that Brauner et al. find a significant but small departure of the three-body 
method from the Born approximation at 2000 eV for the differential cross 
sections considered.) At 150 eV the experimental and DWBA values (in rra6) 
are respectively o· 524±0· 006 and 0·63. At 250 eV the corresponding values 
are o· 389±0· 003 and 0·41. 

4. Comparison of Theory and Experiment 

We have computed the differential cross section in the distorted-wave 
Born approximation (2), (3). It is represented in Figs 1-6 by solid curves. 
The pseudostate calculation of Curran and Walters (1987) is represented by 
long-dashed curves and the calculation of Brauner et al. (1989) by short-dashed 
curves. The solid circles represent the experimental data of Ehrhardt et al. 
(1985, 1986), and the open squares those of Lohmann et al. (1984). 

The kinematic variables are defined as follows: Eo is the incident kinetic 
energy; EA, eA and EB, eB are respectively the kinetic energy and polar angle 
(with respect to the incident direction) of the faster and slower electron. All 
three electron directions are coplanar. Units are eV and degrees. 

We note first the essentially perfect shape agreement of the calculation of 
Brauner et al. with experiment and remind the reader to consider whether 
the experiments should be normalised to this calculation. Clearly the use of 
the three-body boundary condition is a major development in understanding 
ionisation. 

The two methods that can at present be implemented in a scattering 
calculation are in reasonable semiquantitative agreement with each other and 
with experiment. We first consider the binary peaks at negative values of eB. 
In general the DWBA produces somewhat larger values than the pseudostate 
method. Minor shape disagreements occur in the EB = 10 and 14 eV cases for 
Eo = 250 eV (Figs 2 and 3). In each case the DWBA is closer to the experimental 
peak. Both methods produce larger cross sections than the three-body method. 



296 I. E. McCarthy and X. Zhang 

41r----------------------------------------. 

3 
(a) 

2 

I Jt// ~ 
? 

::I )' \ 
~?? 

~ 
)),1 Is&? - - - - - _ c: 

0 ·u 
Q) 
<f) 

<f) 
<f) 

e 
u 
<ii 
E 
~ 

IIYI,?II~\ (b) Q) 
:j::: 

(5 2 

o t--- - -.--' ~- - - -9'O=T~ 'r' ----..., 

I 
-180 -120 -60 o 60 120 180 

9B (deg.) 

Fig. 2. As for Fig. 1 with Eo = 250 eV. E8 = 10 eV. (a) 9A = 5°. (b) 9A = 8°. 

For the smaller cross sections at positive values of eB there are more 
noticeable differences between various theories and with experiment. For 
EB = 5 eV at Eo = 250 and 150 eV there is very close agreement between the 
pseudostate and three-body calculations for the smallest values of e A (Figs 1 a 
and Sa) and they both agree with the experimental trend. DWBA agrees 
roughly with the overall magnitude of the cross section but not at all in shape. 
For Eo = 250 eV. eA = 5° and EB = 10 and 14 eV (Figs 2a and 3a) the DWBA 
and pseudostate calculations agree qualitatively with each other but disagree 
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Fig. 3. As for Fig. 1 with Eo = 250 eV, E8 = 14 eV, (a) BA = 5°, (b) BA = 8°. 
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markedly with experiment. For the largest values of OA in all cases cross 
sections for positive OB are quite small and qualitatively described by DWBA 
and the pseudostate calculation. 

5. Conclusions 

There is little to choose between the two methods for ionisation that 
can be implemented in a scattering calculation. These are the DWBA and 
the pseudostate method. Both agree at least semi quantitatively with relative 
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Fig. 4. As for Fig. 1 with Eo=lSOeV, EB=3eV, (a) 9A=4°, (b) 9A = 10", (c) 9A=16°. 
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Fig. 5. As for Fig. 1 with Eo = 150 eV, E8 = 5 eV, (a) 8A =4°, (b) 8A = 10°, (c) 8A = 16°. 
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experimental cross sections normalised by methods that depend to some extent 
on the validity of the Born approximation. This is true particularly for the 
large cross sections in the binary peak. Here DWBA is somewhat larger and 
where there is slight shape disagreement DWBA is closer to experiment. 

The implementation of the three-body boundary condition produces a 
dramatic shape improvement over the methods that involve essentially two
body physics. There is force in the argument of Brauner et al. (1989) that 
the Born approximation is so bad that it cannot be trusted to help in putting 
the relative experimental cross sections on an absolute scale. However at 
150 and 250 eV the DWBA gives a total ionisation cross section in quite close 
agreement with experiment, suggesting that the absolute cross sections given 
by the three-body method are too low if we assume that the trend shown in 
the present differential cross sections remains for all of the kinematic space. 
In the present examples the three-body differential cross sections can be up 
to 30 percent lower than the DWBA cross sections. 

It is clear that the implementation of the three-body boundary condition 
in the optical potential for the scattering problem would be a very promising 
direction for an ultimate understanding of scattering. 
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