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Abstract 

By using the reductive perturbation technique, ion-acoustic waves are studied in a generalised 
multicomponent plasma. The multiple ions modify drastically the characteristics of the 
solitary waves. In particular, the negative ions have a critical density at which the nonlinearity 
of the Korteweg-deVries (K-dV) equation vanishes and the ion-acoustic solitary wave is seen 
to be described by a modified K-dV (mK-dV) equation. Using higher order nonlinearities, 
the non-uniform transition of the K-dV equation to the mK-dV equation along with the 
conservation of the Sagdeev potential is described. Theoretical observations on the existence 
of the solitary waves, as expected, could be of interest in laboratory plasmas. 

1. Introduction 

The study of ion-acoustic solitons in plasmas is an area of active interest 
and recent reviewers have highlighted both theoretically and experimentally 
the various properties of the solitary waves. Many authors (Washimi and 
Taniuti 1966; Su and Gardner 1969; Jeffrey and Kakutani 1972; Taylor et 
al. 1972; Ikezi 1973; Tran and Hirt 1974; Das 1979; Lonngren 1983) have 
discussed extensively the evolution of ion-acoustic solitons in various plasmas 
through the derivation of a K-dV equation of the form 

o</> o</> 03</> 
OT +A</>~ +B 0~3 = 0, (1) 

where </> is the wave potential. Depending on the model considered, theoretical 
observations of the solitons show slightly different behaviour compared with 
those of the experiments. We may mention here the theoretical work of Das 
and Tagare (1975) and Das (1979) who studied the effects of negative ions 
on the solitons and showed that there exists a critical density of negative 
ions around the neighbourhood of which the amplitude of the solitary wave 
becomes infinitely large. Later, Watanabe (1984) studied the soliton's existence 
at the critical density at which the compressive and rarefactive solitons 
are observed. Furthermore, Raychaudhuri et al. (1985) and Verheest (1988) 
have made extensions to observe the interaction of negative ions with the 
solitons in the general multicomponent plasma. Studies on the soliton's 
behaviour in plasmas with the ionic species (Ar+, F-), (Ar+, SFij) have been made 
experimentally (Nakamura and Tsukabayashi 1985; Nakamura 1987) and show 
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agreement with the earlier theoretical ones, especially the existence of the 
compressive and rarefactive solitons in the plasma. Very recently, Singh and 
Das (1989) have studied theoretically the existence of a critical density of 
negative ions in a generalised multicomponent plasma, with the ionic species 
(He+, W), (Ar+, F-), (Ar+, SF6), (K+, Cl-) showing a matching relation with solitons 
observed experimentally. 

In the present paper we take a plasma model with ions and multiple electron 
temperatures to show how ion beams and negative ions interact in exhibiting 
the fascinating features of the solitons at the critical density of negative ions. 
As expected, this type of soliton could be present in laboratory plasmas. 

First of all, we consider a plasma with a small percentatge of non-isothermality 
and later, as a degenerate case, the solitons are studied in an isothermal 
plasma. We derive the K-dY equation to study the existence and behaviour 
of solitons at the critical density of negative ions, for which the nonlinear 
coefficient of the K-dY equation in an isothermal plasma vanishes, and requires 
the derivation of a mK-dY equation. Using an evolution equation involving 
higher order nonlinearities, the transformation of the K-dY equation to the 
mK-dY equation is also described and, finally, the salient features of the 
solitons are discussed in comparison with the results available to date. 

2. Basic Equations and Derivation of the K-dV Equation 

In order to study ion-acoustic waves of small amplitude, we consider a 
plasma consisting of positive ions, negative ions and ion beams with the 
multiple electron temperatures having the high and low values Teh and Tel. The 
basic normalised equations governing the plasma dynamics in a unidirection 
are the equations of continuity 

onex a 
at + ox(nex vex) = 0, (2) 

the equations of motion 

a Vex _ OVex ocf> 
at +vex ox +qexJ1ex ox =0, (3) 

supplemented by Poisson's equation 

o2cf> - +nh-""qexnex, -- =nel e L.. 
ox2 ex 

(4) 

where each of the normalised plasma parameters are defined as 

nex = nex/no, nel,h = nel,h/nO, J1ex = mi/mex, 

1 

Vex = vex(KTer/mex)-"2 , Tef = Tel Teh/(J1Teh + VTel) , (5) 
1 

X = x(KTer/4rre2 nO)-"2 , 
1 

t= t(4rre2no/mex)"2. 

Here J1 and v are the initial densities of the low and high temperature electron 
components, K is Boltzmann's constant, ex = i,j, b stand for positive ions, 
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negative ions and ion beams respectively, rnO( is the mass of the ath type 
particle moving with the velocity VO( and having the density nO(, net and neh 

are the densities of the low and high temperature electrons normalised later 
to the background plasma density no, and qO( = 1 when a = i, band qO( =-1 
when a =j. 

We assume the following boundary conditions at Ix I --+ 00 (omitting the bars 
hereafter): 

(i) Vi --+ 0 , Vj --+ 0, Vb --+ vhO) 

( ' ') (0) 
II nO( --+ nO(, net --+ J.l, neh --+ v; (6) 

(iii) ~ --+ 0, 

and (iv) the overall charge neutrality condition is maintained throughout the 
plasma and given by 

'" (0) L.qO(nO( =J.l+V. (7) 
0( 

Following Das et al. (1986), we consider a plasma with a small percentage 
of non-isothermality, introduced through the electron densities in the form 

3 

net = J.l{exp(J.l!Vp )-jbtdC!vp f}. 
{ ( p~ 1 ( p~ ) %} 

neh = v exp J.l+vp-jbh €2 J.l+vp , (8) 

where bt and bh are arbitrary constants depending on the electron temperatures 
and p = Tet/Teh. 

In order to derive the K-dV equation. we introduce the stretched space-time 
coordinates ~ and T as 

1 3 

~ = € 2 (x-At), T = €2t, (9) 

where ,\ is the phase velocity of the ion-acoustic wave and € measures the 
size of the perturbation. 

Furthermore, all plasma parameters are expanded asymptotically as a power 
series in € about the equilibrium state as 

(
nO( ) 00 ( n~) ) 
V - L ~ V(5) 

; - 5=0 ~~5)' 
(10) 

along with 

vjO) = vjOl = 0, ~(O)=O. (11) 

Substituting the relations (8)-(11) into the basic equations (2)-(4) and using 
the boundary conditions (6). the first order in € gives the following relations: 
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(A_V~»2 n~) = qa /1a n~) 1>(1) , (12) 

(A-v~»v~) = qa /1a 1>(1) , (13) 

Lqa n~) = 1>(1). (14) 
a 

The evaluation of the perturbed parameters from (12)-(14) yields the phase 
velocity A in the form 

(0) (0) (0) 
nj + /1j nj /1b nb _ 1 
':"'-~'--"-+ - , 

A 2 (A -VhO»2 
(15) 

from which one can get a fourth order equation in A and if all the roots are real, 
each root would indicate a possible solitary wave. It is well known that v~) 
equal to zero of a small value gives the stability of the waves. One can easily 
take v~) = 0 to study the stable ion-acoustic wave, as discussed by Das et al. 
(1989). Instability also arises due to the reflection of ions and ion beams which 
gives mUltiple streams in the plasma medium and is discussed later. However, 
in order to get the proper ion-acoustic solitary waves in ion-beam plasmas, 
we have chosen the initial velocity of the ion beam, functionally depending 
on the plasma parameters, in such a way that the instability of the waves 
does not play a part. For mathematical simplicity, and also to consider the 
possible stability of the waves, we have taken vhO) = 2A (Karmakar et al. 1988) 
to get the phase velocity of the ion-acoustic wave explicitly from the relation: 

A2 =," n(O) L.,t"a a . 
a 

(16) 

Thus, for studying the solitary wave solitons in our plasma, we choose the 
initial ion-beam velocity as 

V~) = 2A. (17) 

The variation of the phase velocity A is plotted in Figs 1 and 2. Fig. 1 shows 
that the phase velocity A decreases as the concentration ratio of negative ions 
and ion beams, nJO) /nhO), increases, whereas Fig. 2 shows that A increases with 
the concentration of negative ions, nJO) , for fixed ion-beam plasma parameters. 
Comparing Figs 1 and 2 we may conclude that in the plasma without ion 
beams, the phase velocity always increases with the addition of negative ions, 
but in the presence of ion beams the phase velocity behaves with opposite 
characteristics. 

The next higher order terms in A give the relations 

~ (1) ~ (2) (2) 
una (A (0) una (0) OVa 0 (1) (1) a:r - -Va)--ar + na --ar + o~(na Va ) = 0, (18) 

OV~) (0) OV~) (1) OV~) 01>(2) a:r -(A-Va )--ar + Va --ar + qa /1a ---ar = 0, (19) 

'q n(2) _ ,/,.(2) 021>(1) 4 (/1bl + Vbh f3h1>(1» ~ (II + Vf32)(,/,.(1»2 
L., a a - 't' - --2- -"3" 3 + t" 't', (20) 
a 0 ~ (/1 + vf3)"2 2(/1 + vf3)2 
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and with the use of the first order results, the elimination of V~), n~) and 
1>(2) from (18)-(20) gives after a straightforward mathematical manipulation 
the desired K-dV equation: 

where 

01>(1) I 01>(1) 0 3 1>(1) 
-- +{OCl1>(1) + OC2(1)(1))'2}-- + OC3 -- = 0 aT o~ 0~3 ' 

OCI 

OC2 

OC3 

3(/1 + vf3)2 LIX qlX /1~n~) -A 4(/1 + vf32) 

2.:\(/1 + vf3)2(njO) + /1j nr -/1b nhO» , 

3 

A3 (/1bl +Vbhf3'2) 

(/1 + vf3) ~ (njO) + /1j nr -/1b n~» , 

A3 

2(njO) + /1j njO) -/1b nhO» . 

(21) 

(22) 

Following Das et al. (1986), the K-dV equation (21) admits a solution in the 
form 

1>(1) = {4OC2 + ( 16oc~ OCl)t }-2 
15U 225U2 + 3U cosh(X/od , (23) 

I 

where 01 = 2(OC3/U)'2 is the soliton width and X = ~-UT. From which, under 
the condition OCI »OC2, the soliton solution of a simple K-dV equation derived 
in isothermal plasma is obtained as 

1>(1) = (3U/oct> sech2(x/Ol). (24) 

On the other hand, when non-isothermality is dominant, i.e. OCI «OC2, the 
solution is given as 

",(1) = 225U2 sech4(x/201). 
'f' 64oc~ 

(25) 

Now for a discussion on K-dV solitons, we must have a clear picture of the 
nonlinear coefficients OCI and OC2. First, OCI depends on the masses, densities 
of the charged particles and the phase velocity. The variation of OCI with the 
density ratio, njO) /nhO) , is shown in Fig. 1, where it is seen that OCI increases as 
the ratio increases, whereas it shows a different feature (Fig. 2) with negative 
ion concentration njO) for a fixed ion-beam concentration. Thus from Figs 1 
and 2, we observe that OCI may be positive, zero or negative depending on 
the various plasma parameters and, thereby, different features are exhibited 
in the form of compressive and rarefactive solitons. When the K-dV equation 
has the nonlinear coefficient OCl, in isolation, the case of an isothermal plasma 
arises and, correspondingly, the K-dV soliton solution (24) is obtained. A 
comparison of ()(l from Figs 1 and 2 shows that, due to the presence of ion 
beams and negative ions in the plasma, OCl>O or ()(l <0 corresponds to the 
compressive or rarefactive soliton. When OCI increases, the amplitude of the 



324 G. C. Das and Kh. I. Singh 

ion-acoustic wave decreases yielding an increase in soliton width. In the case 
of infinitely large amplitude, the ion-beam presence leads to the breaking up 
of the soliton into mUltiple solitons. 
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Fig. 1. Variation of the nonlinear coefficients ai, a2 and 
phase velocity .:\ with the density ratio njO) /n~) for the typical 
values JI=O·l, v=0·9, /3=0·5, Jlb=l·O, Jlj=0·5, bl=0·2 
and bh = 0·6 . 
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Fig. 2. Variation of the nonlinear coefficients a I, a2 and 
phase velocity .:\ with the negative ion concentration njO) for 
the same values of parameters as in Fig. l. 

We show the numerical variation of OC2 and the dispersive effect OC3 with the 
density ratio nr /nhO) in Figs 1 and 3 respectively. As OC2 and OC3 depend directly 
on '\, the nature of all three are similar. Thus, as in the case of '\, the nonlinear 
and dispersive coefficients decrease gradually as the concentration of density 
ratio increases. However, in a plasma with fixed ion-beam concentration, Fig. 2 
shows that the variation of '\, OC2 and hence OC3 are opposite in nature. Thus, 
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the introduction of negative ions along with ion beams modifies the existence 
and behaviour of ion-acoustic solitons compared with those obtained earlier 
in simpler plasmas. 
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Fig. 3. Dispersive effects ()(3 and ()(s plotted as functions 
of the density ratio nJO) /nhO) for the typical values Il = 0 ·1, 
v=0·9, /3= O· 5, with Ilb = 1·0, Ilj= O· 5 for ()(3: and Ilb = 1·1, 
Ilj = 2 . 5 for ()(s. 

We have already observed that, in the neighbourhood of the critical density 
of negative ions, the soliton amplitude can be large which emphasises the 
non-applicability of the reductive perturbation technique. In practice, it should 
not be so and thus a proper analysis of the existence of solitons in the plasma 
is required. Following White et al. (1972), we consider the solution of the 
basic equations in the form f = {(x-Ut) with respect to a shock rest frame 
moving with the velocity U and, from the conservation laws, we have 

notVot NotU, (26) 

V~ + 2qot Ilot cP = U2 , (27) 

where Not is the total density of the a-type charged particles. Eliminating Vot 
we get 

not = Not ( 1- 2Qa;otcp ) -~ 

Poisson's equation then takes the form 

d 2cp 1 

dx2 = nel + neh-2: Qot Not (1- 2Qot llotCP )-;; 
ot U2 

(28) 

(29) 

Equation (29) shows that the kinetic energy of the positive ion introduces a 
barrier at U = ..j2cp. The ion-acoustic wave propagates with a velocity smaller 
than ..j2cp and is reflected from this barrier introduced by the positive ions. 
Similarly, due to the ion beams, the ion-acoustic wave reflects again from the 
barrier at U = ..j2IlbCP. When Ilb> 1, the wave is reflected from the barrier at 
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U = J24>, which separates the plasma into two entirely different regions, and 
the solitons can be observed only in the region U<J24>. Similarly, the case J1b<1 
implies that the barrier at U = J2J1b4>, introduced by the ion beams, relects the 
wave but earlier than the barrier at U = J24>. Thus, the barriers ihtroduced 
by positive ions and ion beams form different plasma regions having multiple 
non-symmetrical wave propagations due to which the possible instability plays 
a part. In this type of reflection phenomena, the waves get reflected before 
attaining infinitely large amplitude. To continue the discussion, we consider 
Poisson's equation which, by using (26) and (27), is expressed in terms of the 
potential energy V(4)) as 

d24> _1 

dx2 =neI+neh-I,QIXNIX(I-2QIXJ1IX4» "2 = dV 
IX U2 - d4>' 

(30) 

which gives the solution for V(4)) as 

-V(4)) = J1(J1 + Vf3){ eXP(J1 !Vf3 )-ls-bI €1 (J1 !Vf3)%} 

V(J1 + vf3) { (f34» 8 b .! ( f34> )1. } + exp -- -15" h€2 -- 2 
f3 J1 + vf3 1 J1 + vf3 

1 

+ ~ U::IX ( 1- 2QIX;Z1X 4> r + constant. (31) 

Now, for a fixed value of U, the variation of V(4)) gives a maximum value 
at the nonzero roots of V(4)) given by (31). To study the existence of the 
ion-acoustic wave requires a determination of the quantity d2V/d4>2 for 4> = O. 
A necessary condition for the existence of the soliton wave is when this 
quantity is less than zero, whereas the quantity greater than zero predicts 
the formation of a shock in the plasma. From (30) we have 

d2~1 =_~(U2_A2). (32) 
d4> c/>=o U 

This shows that stable solitons will exist only when U>A, whereas U<A ensures 
the non-existence of ion-acoustic waves. Hence, we conclude that the existence 
of waves requires a necessary condition depending on the shock front velocity 
U and the phase velocity A. 

So far we have not shown the existence and behaviour of the solitons at 
the critical density of the negative ions for which the nonlinear coefficient ()(l 

of the K-dV equation derived in isothermal plasma is zero. In order to gain a 
deeper insight, we consider the higher order nonlinearities to derive a mK-dV 
equation. The critical density of the negative ions at which ()(l vanishes in 
isolation gives the relation 

\ 4 3(11 + vf3)2 '" 2 (0) 
1\ = 2 LQIX I1IX nIX . 

J1 + vf3 IX 

(33) 

However, it is not sufficient to describe the ion-acoustic solitary wave by 
the K-dV equation or by the mK-dV equation in the vicinity of the critical 
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density. One has to take into account quadratic and cubic nonlinearities in 
the evolution of the mK-dV equation. Such a choice of the nonlinearity leads 
us in Section 4 to a study of the transition of the K-dV equation to the mK-dV 
equation, as well as the conservation of the Sagdeev potential. 

3. Derivation of the mK-dV Equation 

To derive the mK-dV equation we use the stretched space-time coordinates 
~ and T (Watanabe 1984) 

~ = E(X-i\t) , T=E3i\t. (34) 

Following Das et al. (1986) the isothermality of the plasma is introduced 
through the electron densities 

nel = fl eXPCl !V(3) , neh = v eXPCl !~f3 ). (35) 

Using (10), (34) and (35) along with the boundary conditions (6), the basic 
equations (2)-(4) give, for the lowest order in E, 

(i\-v~»2n~) = qa Pa n~) cp(1), (36) 

(i\-v~»v~) = qa fla cp(1) , (37) 

L qa n~) = cp(l). (38) 
a 

From here the phase velocity i\ of the ion-acoustic wave can be obtained, as 
given earlier by (16). 

To the next higher order in E we obtain 

2 (0) (0) 
n(2) = 3Pa na (,.1..(1»2 + qa fla nO( ,.1..(2) 

0( 2i\ 4 'f' i\ 2 'f" 

v~) = PO( (::3 (cp(l»2 + qO(/:O( cp(2») , 

where PO( = 1 for lX = i,j and Pa = -1 for lX = b, and further 

'q n(2) = ,.1..(2) + P + Vf32 (,.1..(1»2 7 0( 0( 'f' 2(p + V(3)2 'f' , 

from which we obtain 

(39) 

(40) 

(41) 

(;2 ~flO( n~)-l )cp(2) + 1-(:4 ~qO( p~ n~)-(fl + v(32)/(p + V(3)2 )(cp(1»2 = o. (42) 

Now, the coefficients of cp(2) and (cp(l»2 in (42) vanish by using (16) and the 
condition of the nonlinear coefficient lXl to be zero given by (33), showing 
that Poisson's equation (41) is always satisfied when lXl in the K-dV equation 
(21) is zero. 
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Furthermore, the next higher order in E gives the relations 

(1) (3) (3) 
.\ ana _(.\_v~»ona +n~) OVa 

aT O~ O~ 

a (1) (2) a (2) (1) 
+ o~(na Va )+o~(na Va )=0, (43) 

(1) (3) 
.\ OVa (.\ (0» OVa a ( (1) (2» a:r- -Va ~ + O~ Va Va 

oqP) 
+ qa Pa ----ar = 0, (44) 

2 qa n~) = qP) + P + yf32 (cJ>(1)qP» 
a (p + yf3)2 

P + yf33 (1) 3 02cJ>(1) + (cJ> )-
6(p + vf3)3 ~ , 

(45) 

which can be Simplified using the earlier first and second order results in E. 

The elimination of v~), followed by some usual mathematical manipulation, 
gives the desired mK-dV equation in the form 

where 

a cJ>(1) a cJ>(1) 03 cJ>(1) 
-- +OC4(cJ>(1»2_- +ocs-- =0 aT o~ 0~3 ' 

OC4 
15(p + yf3)3 Xa p~ n~) -.\ 6(p + yf33) 

4.\ 4(p + Yf3)3(n\0) + Pj njO) -Pb n~» , 

.\2 
OC s (0) (0) (0» • 

2(n; + Pj nj -Pb nb 

(46) 

(47a) 

(47b) 

The variation of the nonlinear coefficient OC4 with negative ion density in 
relation to the ion-beam density is plotted in Fig. 4. This shows that OC4 

increases as the density ratio increases in the ion-beam plasma. Again, we 
show in Fig. 5 the variation of OC4 with negative ion concentration for a fixed 
ion-beam concentration. It is seen that the nonlinear coefficient decreases 
gradually with concentration. Comparing Figs 4 and 5 we conclude that OC4 

increases or decreases depending on negative ion and ion-beam concentrations. 
Thus the ion beams in the plasma play an important role in the existence and 
behaviour of the solitons. Again, Fig. 3 shows the variation of the dispersive 
effect OCs in the plasma with density ratio. The overall variation shows that 
OC4 increases while the dispersive coefficient decreases with an increase in 
negative ion concentration. But in the absence of ion beams OC4 and OCs behave 
in the opposite way compared with the variations discussed earlier. 

The present analysis shows that at the critical density for which OCl of 
the K-dV equation (21) vanishes the nonlinear and dispersive terms of the 
mK-dV equation (46) are always positive. From Wadati (1973), equation (46) 
has multiple soliton solutions. 
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Fig. 4. Nonlinear coefficient OC4 as a function of the density 
ratio njOl /n~l for typical values of JI = 0 ·1, v = 0·9, f3 = 0·5, 
Jib = 1 . 1 and Jlj = 2· 5. 
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Fig. 5. Nonlinear coefficient OC4 as a function of the negative 
ion concentration nJOl for the same parameter values given in 
Fig. 4. 
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To obtain one solution we introduce the variable X = ~-UT defined earlier 
and, following Davidson (1972) and Das et al. (1986), the solution of equation 
(46) is read as 

cf>0) = cf>o sech(x/82), (48) 

I I 

where cf>o = ±(6U/CX4)'i is the amplitude and 82 = (CX5/U)'i the width of the 
ion-acoustic wave. The ± sign for the amplitude shows that for the mK-dY 
equation both the compressive and rarefactive solitons exist in the plasma. 
The solution (48) exhibits the characteristics of 'sech' shape solitary waves, 
differing from the K-dY solitons possessing the 'sech2' shape or 'sech4 ' shape 
solutions. 

4. Derivation of an Evolution Equation near Critical Density 

The derivation of the mK-dY equation (46) holds good only when the 
nonlinear coefficient CXl of the K-dY equation (21) is zero at the critical density 
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introduced by the negative ions. Keeping this in mind, we derive an equation 
in the vicinity of the critical density and later, analyse the transformation of 
the mK-dY soliton from the K-dY soliton. From Watanabe (1984), Poisson's 
equation on equating the terms of order €2 gives 

L qOl. n~i> _qPL f.l + v{32 (cp(l)2 
01. 2(f.l + v(3)2 

= (~ 2 n(O) _ f.l + v{32 ) (cp(l»2 
A4~qOl.f.l0l. 01. (f.l+ v{3)2 2 . (49) 

We consider now the case where the coefficient of (cp(l»2 on the right-hand 
side is nonzero but of order O(€). This leads the right-hand side to be of order 
€3 and it can be taken to be zero in order €2. Equation (42) is satisfied and 
this will be used to find Poisson's equation of order €3. Finally, the equation 
takes the form 

a 2cp(l) = (cp(3) + f.l + v{32 (cp(l)cp(2) + f.l + v{33 (cp(l»3_ L qOl. n~») 
a ~2 {f.l + v(3)2 6(f.l + v(3)3 01. 

+ (cp(2) + f.l + v{32 (cp(1»2_ L qOl.n~»). 
2(f.l + v(3)2 01. 

(50) 

Thus instead of (46), we obtain another mK-dY equation: 

acp(l) acp(l) a 3cp(l) 
-- + {OC ICP(1) + OC4(cp(l»2}_- + OCs-- = 0 

aT a~ a~3 • 
(51) 

where OCI, OCs are defined in (22) and (47). 
From Wadati (1975) the derived mK-dY equation (51) will have a multiple 

number of solitons. A parallel discussion on the nature of the solitons could 
be made but we will not do so here. To examine the soliton solution of (51) we 
consider the variable X = ~-UT as before and, following the usual procedure 
(Singh and Das 1989), we get 

d 2cp(l) = _ J... (-UCP(l) + OCI (cp(1»2 + OC4 (cp(1»3). 
dX2 OCs 2 3 

(52) 

The relation between the effective potential P and the perturbed wave potential 
cp(1) is 

d2cp(l) dP 
dX2 = - dcp(l) 

(53) 

which, along with (52), gives the potential P as 

P = _1_(_U(cp(1»2 + ~(cp(1»3 + OC4 (.-1.(1»4) 
20cs 3 6 'fJ • 

(54) 

To compare (54) with the exact stationary solution of the basic equations 
(2)-(4) we, following Watanabe (1984) and Sagdeev (1966), introduce the variable 
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x = x-Mt (M being the velocity of a localised wave travelling without changing 
the wave form) in equations (2)-(4) to read 

d2cp dS 
dX2 =- dcp' 

where S is the Sagdeev potential. 

(55) 

Using M = A(1 +U) and assuming S -+ 0 when cp -+ 0, we get for the small 
wave amplitude cp together with U ~ 1 

S"" _1_ (_Ucp2 + ~ cp3 + OC4 cp4) . (56) 
20cs 3 6 

Comparing the identical relations (54) and (56) we observe that (54) is true not 
only in the vicinity of the critical density of negative ions but is applicable over 
the whole range of negative ion concentration. Furthermore. our present plasma 
model, though it differs from that of Watanabe (1984). does not affect the nature 
of the transition of the K-dV equation to the mK-dV equation and vice versa. 

The nature of the nonlinear coefficient OC4 shown in Figs 4 and 5 depends on 
the concentration of negative ions and ion beams. The presence of negative 
ions ensures the occurrence of compressive and rarefactive solitons, whereas 
positive ions and ion beams modify the behaviour of the solitons giving only 
compressive solitons. Furthermore, the combination of mUltiple ions of both 
kinds, ion beams and multiple electron temperatures in the plasma leads to 
a slower exhibition of the critical density of negative ion concentrations and, 
consequently. exhibition of the rarefactive soliton in the plasma occurs later. 

5. Conclusions 

Emerging from the present study on the ion-acoustic solitary waves in a 
generalised multicomponent plasma are results which show the main interaction 
of the negative ions, ion beams and the solitons at the critical density observed 
in the plasma. In a plasma with positive ions, ion beams and electrons the 
K-dV equation always gives compressive solitons, whereas the presence of 
negative ions gives either the compressive or rarefactive soliton depending on 
the sign of the nonlinear coefficient ocr. As the concentration of negative ions 
increases, ocr correspondingly decreases (Fig. 2) and thereby the amplitude of 
the ion-acoustic wave increases considerably. With a higher concentration of 
negative ions, a situation may arise in which the soliton amplitude is infinitely 
large and the charge separation providing the dispersive effect will not be 
sufficient to prevent the steepening of the wave, as well as the breaking 
up of the soliton. However, it has been shown that the waves get reflected 
from barriers introduced by positive ions and ion beams before attaining 
infinitely large amplitudes. The barriers at U = J2J1iX cp introduced by positive 
ions and ion beams depend on the mass ratio J1iX. In the case J1b> 1, i.e. 
lighter ion-beam mass, the wave gets reflected from the barrier at U = J2cp 
introduced by the positive ion, whereas for J1b < 1 the reflection occurs from 
the barrier at U = J2J1bCP introduced by the ion beam, but earlier than the 
barrier at U = J2cp. Furthermore. it has been shown that Poisson's equation 
yields a condition for the existence of the stable soliton and requires the 
condition U> A, otherwise the stable solitons will not be in the plasma. 
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The study of the mK-dV equation at the critical density of negative ions 
yields both the compressive and rarefactive solitons, depending on the sign of 
the soliton amplitude. In the vicinity of the critical concentration of negative 
ions, the transition of the K-dV to the mK-dV equation and vice versa has 
been described with the help of another mK-dV equation (51) involving higher 
order nonlinearities. Moreover, the discussion and conservation of the Sagdeev 
potential show that the mK-dV equation (51) holds good for all values of 
negative ion concentration. Finally, we conclude that the presence of negative 
ions and ion beams along with mUltiple electrons in the plasma not only 
drastically modifies the characteristics of the ion-acoustic waves, but also 
predicts a slower exhibition of the critical density of negative ions compared 
with a plasma without ion beams. Consequently, rarefactive solitons appear 
later in relation to negative ions. The present study calls for further work in 
order to clarify the significance of these results for laboratory plasmas. 
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