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Abstract 

A variational method is used to find approximative solutions of the Hubbard model for the 
ground state of the bcc lattice in the weak and strong coupling limits. The neutral case (a 
half-filled band) is found to be antiferromagnetic for all values of the coupling constant. 
However, for other choices of the band· filling second phase transitions between different 
magnetic structures are found if the coupling constant is varied. 

1. Introduction 

Numerous studies have been done of the Hubbard model (Hubbard 1963. 
1964a. 1964b) for systems such as finite one-dimensional chains (Oles et al. 
1986). four-point systems (Heinig and Monecke 1972; Heinig et al. 1972) and 
real lattices (Dichtel et al. 1971; Steeb and Marsch 1974; Grensing et al. 1978). 
In Wannier representation. the Hubbard Hamiltonian has the form 

iI = L tijcbCju + U L n;Tni!. (1) 
;ju ; 

where the summations are performed over all lattice sites and n;u = cbc;u is 
the number operator. Owing to numerical complexity. the majority of these 
studies only discuss the neutral system. i.e. ne == Ne/N = 1. where N is the 
number of lattice sites and Ne is the number of electrons. 

The Hubbard model plays an important role in the modelling of magnetism. 
charge density waves and high-Tc superconductivity. since the interaction term 
of the Hubbard Hamiltonian can be written (Villet and Steeb 1990) as 

n;Tni! == t(1- OCt) + R;z + ~(oc; - 1)5r + ~(oc; + I)Rr· (2) 

Here 5; are the spin operators 

A 1 t t 
SiX = -Z(C;T C;l + C;l Cit). 

A 1 t t 
Sly = 2i(e;t c;l - c;lcn). 

S;z = ~(n;t - nil), (3) 
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and Ri are the quasi-spin operators 

RiX = ~(Ch CA + CilCjf), 

A 1 t t 
Riy = 2; (cit cil - CiTCi!), 

A 1 
Rlz = 2"(njf + n/! - 1). (4) 

Both the spin operators and quasi-spin operators form a Lie algebra under 
the commutator. 

In the present investigation a variational technique is used to investigate 
the ground state of the Hubbard model for the bcc lattice for various values of 
ne , and the dependence of the magnetic structure on the number of electrons 
per lattice site ne is found. A similar study (Penn 1966) was made for the 
sc lattice, but only for the weak-coupling case. Here both the weak (t> U) 
and strong (U» t) coupled regimes are considered. In the light of the above 
discussion it is foreseen that the the same variational technique can also be 
used to investigate charge ordering «R;z) '" 0) or high Tc superconductivity 
«Rix) '" 0). 

2. The Variational Principle 

Up to the present, the Hubbard Hamiltonian has been solved exactly for 
finite dimensional cases such as finite one-dimensional chains and a four-point 
system. Moreover, for the linear chain with cyclic boundary conditions, the 
ground state energy can be found (Lieb and Wu 1968) exactly with the help 
of the Bethe ansatz for N --+ 00, Ne --+ 00, ne = 1 and Sz = O. For more realistic 
systems, only approximative solutions can be found for the model. In particular, 
variational methods have been used widely in previous investigations. In 
general, two approaches are possible. In the first approach, the wave function 
of the system is varied to find an optimal solution for the ground state energy. 
The most well-known procedure of this kind is that of Gutzwiller (Gutzwiller 
1963; Hashimoto 1985; Metzner and Volhardt 1987). 

In the present study the second approach, in which the Hamiltonian is 
varied, is used to find an upper bound for the thermodynamic potential. This 
procedure is due to Mermin (1963). A trial Hamiltonian is varied to find an 
upper bound to the grand thermodynamic potential.Q. The same result as 
in this theorem can be obtained by specifying the grand canonical density 
matrix W as the statistical operator which minimises the grand thermodynamic 
potential 

A A A 1 A A 

.Q = trW(H - /JNe) + -ptrWln W (5) 

for all hermitean W with unit trace. Here Ne is the number operator, /J is 
the chemical potential and (3 = l/kB T, with T the temperature and kB the 
Boltzmann constant. Demanding o.Q = 0, one finds the unique result 

A e-{3(H-IJN) 
W= __ 

tre-{3(H-IJN) 
(6) 

Since 02.Q ~ 0, (5) is indeed minimised by (6). 
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In almost all interacting systems the traces in (5) cannot be calculated for 
the operator in (6). An upper bound to f2 is therefore found by minimising 
(5) over a more restricted class of trial density matrices which are chosen by 
considering the behaviour of the system for limiting cases of the model. 

In the present investigation, different choices are made for the strong and 
weak limits of the Hubbard Hamiltonian. The results are obtained for finite 
temperature, and are straightforwardly simplified for the ground state. 

3. The Weak-coupling Limit 

In Bloch representation the Hubbard Hamiltonian has the form 

~ t u t t 
H = L €kCkuCku + N L <5(kl - k2 + k3 - k4)CktlCk2TCk3lck41, (7) 

ku klk2k3k4 

where k runs over the first Brillouin zone and <5 denotes the Kronecker symbol. 
The band energy is given by 

€(k) = L tnme-i(Rn-Rm) , 

nm 

where tnm is the hopping integral and the Rn are lattice vectors. 
When considering the Hubbard model in the weak-coupling limit (U < t, 

where t is the hopping integral for the nearest-neigbour terms in the expression 
for the band energy), inspection of (7) suggests that a useful form of the trial 
density matrix would be 

e-PO 
Wtrial = -po ' 

tre 

with 

~,t t 
0= L. [El (k)Ck)Ck) + E2(k)cklc kjl. 

k 

However, this form does not allow the incorporation of the magnetic structure 
of the system into the theory. This is achieved by the introduction of a 
unitary transformation for the operators in Bloch representation: 

A = e iS fie-iS. (8) 

Here the operator A can either be ctu or Cku and S is a hermitean operator 
given by 

S i '( - t - -t -) = "2 L. OCkCk)Ck+QI - OCkCk+QICk) • 
k 

(9) 
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It follows from (8) that 

( C~S») (COS ~ 
C~~ = -sin~ 

sin ~ ) ( ~~;) ) , 

cos ~ ck+QI 

and the trial operator becomes 

exp(-p L [E I (k)ct,Ck' + E2(k)ctCk!D 
k 

Wtrial = t t 
trexp(-p L [EI(k)Ck,Ckl +E2(k)cklcklD 

k 

(10) 

(11) 

In this approach, the quantities E I (k), E2(k), OCk and Q are variational parameters. 
The physical significance of the vector Q is discussed in Section 6. 

Using the requisite form of Wick's theorem, the traces in (5) can now be 
calculated and the thermodynamic potential can be written in terms of the 
basic quantities 

< ctlCkl > = [1 + ePEJ{k)rl := fl (k), 

< ctCkl > = [1 + ePE2(k)r l := f2(k), 

as well as the gap 

Ll = ~ L < ct,Ck+QI > = 2~ L sin ock[f2(k + Q) - fl (k)] 
k k 

and the total spin of the system, 

Sz = i L < ct,Ckl- ctCkl > = i L cos ock[f2(k) - fl (k)]. 
k k 

With the number of electrons per lattice site fixed by 

1 t 1 
ne = N L < ckuCku > = N L [fl (k) + f2(k + Q)], 

ku k 

the variational conditions 

ant = 0; 
aock 

ant = ant = O. 
aEI aE2 ' 

ant 
aQ;=O (;=1,2,3) 

(12) 

(13) 

(14) 

(15) 

(16) 
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then yield the quasi-particle spectrum 

El,2(k) =Xk ±Ek, (17) 

where 
I 

Ek := ([i(€k - €k+Q) - ~SZ]2 +.112 r ; Xk := i(€k +€k+Q) -J.I + iUne, (18) 

as well as the self-consistent equations 

.11(2 - !:!. 2: 1 sinh(pEk) ) 
N k Ek cosh(PEk) + cosh(PXk) = 0, (19a) 

2Sz + ! 2: (i(€k - €k+Q) - USz/N) ( sinh(pEk) ) = 0, (l9b) 
N N k Ek cosh(PEk) + cosh(PXk) 

ne - 1 + ! 2: sinh(pXk) 
N k cosh(PEk) + cOSh(PXk) = 0, (19c) 

2: 9;(k + Q) sinh(pXk) - Ek1 [i(€k - €k+Q) - USz/N] sinh(pEk) _ .. 
k cosh(PEk) + cOSh(PXk) - 0, 1= 1,2,3. (l9d) 

In equation (l9d) the definition 

9;(k + Q) := O€k+Q 
oQ; 

(20) 

is used, where i = 1,2,3. The equations (20) can be solved simultaneously for 
.11, Sz, J.I and Q;. The thermodynamic potential can then be rewritten in terms 
of these quantities: 

.Q .11 2 (S)2 1 t-J = 11 + U ~ + ~Une(2 - ne) - J.I-73 tin 2 [cosh(PEk) + cosh(PXk)]. (21) 

4. The Strong-coupling Limit 

In the strong-coupling limit (U > t), inspection of the Hubbard model in 
Wannier representation suggests that the following form of the trial operator 
would be useful: 

( a[~ ,,- t - -t - ~" -t - ~" -t - ]) exp -I-' 1\1 L Cn1Cm Cnrcnr +1\2 L Cn1Cn1 +1\3 L Cn!Cn! 

Wtr;al = n t tnt n t . (22) 
tr exp(-p[.\.1 2: Cn1Cn1Cn!Cn! +.\.22: CmCn1 +.\.32: cn!cnd) 

n n n 
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The operators clt) and clt) respectively are the Fourier transforms of the 
operators c~~ and c~~ in equation (10), and the quantities ,lq, A2 and A3 play 
the role of variational parameters. 

The traces in (5) are calculated with the help of the appropriate version 
(Steeb 1976; Villet 1986) of Wick's theorem. The thermodynamic potential can 
then be written in terms of the distribution functions 

<l!> :=< flilflij >= [1 + ell('\I+'\2) + ell('\I+'\3) + ell('\ I +'\2+'\3) j, 

<1> :=< flil >=<l!> [1 + ell'\I+'\3)j, 

<!> :=< flij >=<l!> [1 + ell('\I+'\2)j, 

as well as the Fourier transforms 

s = ~ l: i(Ek - Ek+Q) cos LXk, 
k 

c = ! u[ 1 ~ ( ~ ~ sin LXk f -( ~ ~ cos LXk f l 
v = ~ l: [l: cos (LXk1-k2 -LXk2 )]2 

kl k2 2 

(23) 

(24) 

The quantities LXk, AI, A2 and A3 which occur in (24) are variational parameters 
and are fixed by the conditions 

o!2 t _ o!2 t _ o!2 t _ o· 
OAI - OA2 - OA3 - , 

o!2 t = o. 
OLXk 

(25) 

Owing to the involved form of (24), the last condition in (25) is not readily 
implemented in closed form. However, since it is straightforwardly established 
that the quantity Ll defined in (12) is of the order of U, it is natural to expand 
the quantities in (24) in terms of 

t 
1] := :1. (26) 

In (26) and the subsequent discussion, only nearest-neighbour hopping is 
considered and t is the hopping strength. Denoting the number of closed 
paths consisting of n nearest-neighbour steps by 

1 (1 )n An = Iii l: t Ek = l: c5(Pl +P2 + .. ·+Pn), 
k (Pl.P2 •...• Pn)E{nn} 

(27) 

where c5 denotes the Kronecker symbol and {nn} denotes the set of lattice 
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vectors connecting nearest neighbours, equations (24) now become 

5 = tl (A2IJ - tA4IJ3 + ... ), 

C = ~U[A2IJ2 - ~(3A4 +Al)IJ4 + ... J, (28) 

V = U[1 - tA2IJ2 + -h(11A4 + 3A2 2 + 2A2)IJ4 - ... J. 

With (28) taken to 0(IJ4 ), the conditions (25) now yield the following set of 
self-consistent equations for AI, A2, A3 and IJ: 

Al = V, (29a) 

A2 = S - 11 + 2C(<1> - <!»+ <!> (U - V), (29b) 

A3 = -5 - 11- 2C«1> - <!»+ <1> (U - V), (29c) 

[ Y 2 x 2 2 ] 3 3x 2 U S(11A4 + 3A2 + 2A 2) - T(3A4 +A2 ) IJ - ZA4 tIJ 

+UA2(X; -Y)IJ+xtA2=0. (29d) 

In (29) the definitions 

x :=<1> - <l> ; Y :=<1!> - <1><!> (30) 

have been used. The chemical potential 11 in (29) is fixed by the number of 
electrons per lattice site: 

ne =<1> + <!> . (2ge) 

The thermodynamical potential now becomes 

Dr 2 1 
N=V-211-X c+(ne-<l><l>)(U-V)+pln<l!>. (31) 

5. The bee Lattice 

The results in Sections 3 and 4 are quite general, except for the assumption 
of nearest-neighbour hopping in Section 4. In the present investigation, the 
bcc lattice is the model system. With nearest-neighbour hopping, the band 
energy in (18) is then given by 

(klQ) (k2Q) (k3Q) €k=8tcos 2 cos 2 cos 2 ' (32) 
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where a is the cube edge. The derivative (20) becomes 

(lI(k + Q) = -4at sin [(k; +2OJ)a] cos [ (kj +2Qj)a] cos [(k, +2QJ)a] (33) 

for any permutation (ij/) of (123). In the strong coupling limit, equation (27) 
yields the values A2 = 8; A4 = 216 for the bcc lattice. 

6. Magnetic Structure of System 

The Coulomb interaction can be approximated by a one-particle term by the 
introduction of magnetic fields Hn at each lattice site Rn. The contribution 
of these fields to the energy of the system is given by 

_ t _ _ t ( Hnz Hnx - iHny ) -T 
H = :L Cn (Hn.CT)Cn = :L Cn. cn • 

n n Hnx + IHny -Hnz 
(34) 

In (34) the components of CT are the Pauli matrices, c~t) is the row vector [c~t), c~1)1 
and T indicates the transpose of the vector. Using the Fourier transform to 
Bloch representation it is then found that the rotation (9) diagonalises the 
Hamiltonian and that in the absence of an external field 

Hnx = 2..1 sin(Q. Rn) ; Hny = -2..1 cos(Q. Rn). (35) 

The quantity Q can therefore be identified with a specific spin structure. Two 
such systems are shown for the bcc lattice in Fig. 1 (ferromagnetic case) and 
Fig. 2 (antiferromagnetic case). 

7. Ground-state Calculations 

The self-consistent equations for the weak- as well as strong-coupling limit 
were solved for the ground-state. The distribution functions in (12) and (23) 
then become step-functions, leading to some numerical difficulties for the 
weak-coupling limit but considerably simplifying the strong-coupling case. 

From equation (19a) it is evident that in that the weak-coupling limit the 
solution ..1 = 0 always exists. This is easily identified as the paramagnetic 
phase of the system. This case was investigated for all values of ne. 

Numerically it was found that local minima in the ground-state energy 
occur for integral and half-integral values of the components of Q/rr. The 
self-consistent equations were therefore solved for all the distinguishable 
values to obtain the solution with lowest energy. 

Since the bcc lattice is an AB lattice, the chemical potential for a half-filled 
band becomes Jl = ~U, and the equations (19) and (29) are considerably 
Simplified and reduced in number. In Fig. 3, the ground-state energy is plotted 
as a function of the coupling constant U for various limiting cases. Only 
the results for Q = 0 (ferromagnetic phase) and Q = 2rrz (antiferromagnetic 
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Fig. 3. The dimensionless ground-state energy E = E/(8tN) as a function of the dimensionless 
coupling constant if = U/(8t) for (a) t = 0, (b) the paramagnetic phase, (c) the ferromagnetic 
phase, (d) the anti ferromagnetic phase (strong coupling) and (e) the antiferromagnetic phase 
(weak coupling) in the half-filled case. 
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Fig. 4. The dimensionless ground-state energy E = E/(8tN) as a function of the dimensionless 
coupling constant if = U/(8t) for (a) t = 0, (b) the paramagnetic phase, (c) the antiferromagnetic 
phase (weak coupling), (d) the antiferromagnetic phase (strong coupling) and (e) the 
ferromagnetic phase in the quarter-filled case. 
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phase) are shown, since none of the other values of Q yield a mInImUm 
in any of the cases under consideration. It is evident from Fig. 3 that the 
antiferromagnetic state yields the lowest energy for all values of the coupling 
constant. This is in agreement with results obtained in other studies of 
AB lattices (Steeb and Marsch 1976; Grensing and Steeb 1978; Vanderzande 
1985). 

For the non-neutral case (ne of 1), the equations (30) and (29) are solved only 
with some difficulty, and this case is therefore not common in the literature. 
In the present study, these equations were solved for a quarter (ne = i) and 
three-quarter (ne = i) filled band. Since the results are linked by particle-hole 
symmetry, only the quarter-filled case is discussed. 

From Fig. 4 it can be seen that the ferromagnetic phase is the lowest energy 
solution for U ~ 1 ·5. For lower values of U the phase seems undetermined. 
However, this question can be resolved by calculating the total spin of the 
system. From Fig. 5 it is then clear that a second-order phase transition occurs 
from the ferromagnetic phase to the paramagnetic phase at U"" 11 ·2t. This 
result completely contradicts studies of finite-dimensional systems, where the 
ground state invariably is antiferromagnetic. It also contradicts the the results 
of Morris and Cornwell (1968), who find that for the sc lattice (idealised to 
simplify computation) the SDW state is the one of least energy. However, in a 
comparable study of the sc lattice (Penn 1966) the possibility of a ferromagnetic 
state does exist, at least for the weak-coupling domain. Though comparison 
with the latter author is difficult because of the different approach to the 
present study, as well as the fact that Penn's calculations were essentially in the 
weak-coupling domain, further support for a ferromagnetic state is found in 
the results of a rigorous study (Nagaoka 1966) of the strong-coupling behaviour 
of an almost half-filled band. In an investigation by Hashimoto (1985) where 
the Gutzwiller (1963) method was employed, ferromagnetism was also found 
in the bcc lattice. The phase transition in this study is found outside the 
ferromagnetic domain calculated by Hashimoto (1985). This discrepancy could 
be due to the fact that Hashimoto used an improved Gutzwiller method in the 
strong-coupling domain while the results of this study are essentially those 
of the weak-coupling limit, as is borne out by the following. 

A remark is necessary on the strong-coupling limit. The truncation of the 
expansions in (28) leads to the result that (29d) cannot be solved for small U. 
Instead of entering on a laborious calculation of 0('16 ) in (28), the curve obtained 
from the third-order equation was extrapolated backward numerically and the 
extrapolated part is indicated by a dotted line in Figs 3 and 4. It is furthermore 
established numerically that the weak-coupling calculations consistently yield 
a lower ground-state energy than the strong-coupling calculations, at least for 
U .::; 30t. It therefore seems reasonable only to consider the weak-coupling 
limit in subsequent calculations. 

From the foregoing the fact emerges that the magnetic configuration of 
the system in its ground state can be controlled by varying the band-filling. 
This is illustrated in Fig. 6, where the ground-state energy for the ferro- and 
antiferromagnetic phases is plotted as a function of the band-filling for a 
chosen value of U. It is obvious that a phase transition occurs between the 
two phases at ne "" 0.95. 
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Fig. 5. The spin per lattice site Sz = Sz/N as a function of the dimensionless coupling 
constant if = U/(8t) for ne = t. 
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Fig. 6. The ground-state energy E = E/(8t) as a function of the bandfilling for the ferro
(fm) and anti ferromagnetic (afm) phases. 



Solutions of Hubbard Model 345 

8. Summary and Conclusions 

Since the Hubbard Hamiltonian is especially designed for electrons moving 
in a single narrow band, the theory in the present investigation will have 
difficulty in for instance treating the degenerate d-bands of a physical system 
like Cr. This limitation will be overcome in future studies by extending the 
model to a doubly-degenerate one, an approach that has already been used 
for the neutral case. Also, only nearest-neighbour hopping has been included. 
The limitations of this approach will be investigated in further studies by also 
including second nearest-neighbour hopping, an approach that also has been 
followed for a half-filled band in various systems. Phonon contributions to 
the ground state have also been ignored. An attempt to include these in the 
study of a finite system has already been made by Steeb et al. (1986). 

In spite of the limitations mentioned above, the central result of this study, 
namely that the magnetic structure of the ground state of a system can be 
varied by varying the band-filling, does offer many possibilities for further 
studies. In particular, systems like Cr alloys, in which the magnetic behaviour 
can be dramatically varied by varying the number of electrons per site (Alberts 
and Burger 1978; Alberts and Lourens 1984), seem amenable to this approach. 
It is proposed that future studies be undertaken in which a properly extended 
Hubbard Hamiltonian will be used to investigate the behaviour of these systems 
in the ground state as well as at finite temperature. 
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