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A review is presented of theoretical and experimental aspects of the application of lasers 
to the field of electron-atom collision physics. Experimental techniques are briefly reviewed 
and various theoretical treatments of the laser-atom interaction are dealt with in some detail. 

1. Introduction 

The introduction of lasers to the study of collision processes followed 
the development of tunable dye lasers in the early 1970s. Laser techniques 
have now been applied to the investigation of superelastic scattering, stepwise 
excitation, photon recoil, spin-polarised collisions, Rydberg atom collisions 
and laser-assisted collisions. All these techniques depend upon one or more 
of the characteristic properties of laser light, its very high intensity, spectral 
resolution and polarisation. 

An understanding of the interactions between laser light and matter is clearly 
an essential aspect of the successful application of lasers to the investigation 
of collision processes. Theoretical methods for treating such interactions 
in<;:lude perturbation theory, which is appropriate for weak optical excitation; 
rate equations and more S~isticated, non-perturbative treatments, such as 
semiclassical density matrix and Heisenberg operator techniques. 

In this paper, a review is presented of experimental and theoretical techniques 
currently in use in which lasers are applied to ,the investigation of collision 
processes. Although the main purpose of this paper is to review such 
techniques as they apply to electron-atom collisions, some of the techniques 
discussed are either currently used to study other types of collision processes, 
such 'as ion-atom collisions, or could be. 

2. Experimental Applications of Laser Techniques to Atomic Collision 
Studies 

(a) Stepwise Excitation and Superelastic Scattering 

Fig. 1 shows two types of stepwise excitation schemes and a superelastic 
scattering scheme. In scheme I, electron excitation from the ground state I g} 
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to the first excited state 1 e) is followed by laser excitation to the higher excited 
state 1 i). The intensity and polarisation of the light emitted as the atom 
decays from state I i} to state 1 f) enables information about the initial electron 
excitation process from the ground state to be obtained. In scheme II, laser 
excitation from the ground state is followed by electron excitation between 
the excited states, with the fluorescence emission providing information on 
inelastic processes between excited states. The superelastic scattering process 
shown in Scheme III involves laser excitation from 1 g} to Ie} followed by 
de-excitation due to electron impact. 
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Fig. 1. (a) Electron-laser stepwise excitation scheme I. (b) Electron-laser excitation scheme 
II. (c) Superelastic scattering excitation scheme Ill. 

Since the early 1970s, considerable interest has been focussed on the 
development of experimental methods that enable scattering processes to 
be completely characterised. Such experiments were first realised with the 
development of two techniques, the electron-photon coincidence technique of 
Eminyan et al. (1974) and the superelastic scattering technique of Hertel and 
Stoll (1974, 1977). The electron-photon coincidence technique has recently 
been applied to a type I stepwise excitation scheme in the first demonstration of 
a stepwise electron-photon coincidence experiment (MacGillivray and Standage 
1988; Murray et al. 1989). 

The electron scattering processes can be represented by the electron 
scattering density operator pe , which is given by the following expression 
(Blum 1981): 

e 1 " Pmn= 2J +1 L (jmmfl Tllgmgmi}(lgmgmil PlJnmf), (1) 
g mgm;mr , 

where T is the electron excitation operator, IJg mg mi) and IJnmf} are substates 
of the initial and final states respectively, and mj and mf are the incident 
and scattered electron spin projection quantum numbers. Matrix elements of 
pe possess several symmetry properties that reflect the Hermitian nature of 
the operator and depend upon the axial or planar symmetry character of the 
scattering processes being considered. 
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In the case of planar symmetry scattering processes, such as occur in 
superelastic and electron-photon correlation studies (for a comparison of 
superelastic and electron-photon correlation techniques see Farrell et al. 1989; 
MacGillivray and Standage 1990) in which a scattering plane is defined by the 
incident and scattered electrons, the off-diagonal density matrix elements of 
the electron scattering density operator are in general nonzero. 

The superelastic scattering technique uses laser excitation of atoms in an 
atomic beam which are optically pumped by the laser into an aligned or oriented 
excited state. These atoms are de-excited by a beam of electrons directed 
into the interaction region and superelastically scattered electrons produced 
in the scattering process are detected by an electron analyser. The atomic 
collision parameters are obtained by measuring the superelastic differential 
cross section as a function of the laser beam polarisation. 

By appealing to the principle of microreversibility, it can be shown that the 
electron scattering processes for a superelastic process can be represented 
by the complex conjugate of the usual electron scattering density operator pe 
used to represent electron excitation processes. 

In a superelastic experiment, the experimental parameter measured is the 
differential cross section (J" of the superelastically scattered electrons that 
have gained energy in de-exciting the target atoms. The theoretical form of 
this signal is given by (MacGillivray and Stand age 1988, 1990); 

"oe e* (J"= L mnPnm , 
mn 

(2) 

where O~n are density matrix elements that represent the excited state 
populations and coherences formed in the optical pumping process. 

Experimental geometries employed in superelastic scattering experiments 
have placed the laser beam parallel to the scattering plane, perpendicular 
to it, or at some intermediate angle. The in-plane geometry enables the 
magnitude of diagonal and off-diagonal electron scattering density operator 
matrix elements to be obtained by measuring superelastic differential cross 
sections with the laser beam polarised parallel and then perpendicular to the 
scattering plane. The out-of-plane geometries enable a full determination of 
the magnitudes and signs of the matrix elements to be made, including a 
measurement of the coherence of the collisional process. 

The initial experiments of Hertel and Stoll (1974) were performed on e--Na 
atom collisions, over the energy range 5· 1 eV to 22· 1 eV and with the laser 
beam incident in the scattering plane. Later measurements by this group 
(Hermann et al. 1980) were performed with the laser beam incident from out 
of the plane. Other superelastic scattering experiments on sodium have been 
performed by Scholten et al. (1988) and Farrell et al. (1989) using a laser beam 
perpendicular to the scattering plane. For this geometry, a determination of 
the laser induced line polarisation is also required to analyse the data. 

Spin polarisation studies have been reported by two groups. Hanne et al. 
(1982) used a Mott detector to apply spin analysis to an unpolarised beam 
of electrons superelastically scattered from Na at 20 eY. Their measured spin 
polarisations were O· 095±0· 048 and -0· 068±0· 044 respectively for scattering 
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off the 32Pl/2 and 32P3/2 excited states of Na. McClelland et al. (1989; see 
other references therein) have performed a series of experiments in which 
a spin polarised beam of electrons was superelastically scattered off laser 
excited 32P3/2 sodium atoms. The polarised electrons were produced by a GaAs 
photocathode excited by a diode laser. The laser beam was incident at right 
angles to the scattering plane and was either circularly or linearly polarised. 
Superelastic scattering measurements were performed with the spin of the 
incident electron beam either up or down with respect to the scattering plane. 
The spin asymmetry was measured as a function of electron scattering angle 
using linearly polarised light. The use of circularly polarised light allowed 
the resolution of singlet and triplet contributions to the angular momentum 
transferred between the electron and the atom in the collision process and 
gave a measurement of the ratio of triplet to singlet differential cross sections. 

A superelastic scattering experiment has been performed by Register et 
al. (1978, 1983) on barium using a single mode laser to isolate the 1= 0 
nuclear spin isotopes. The laser beam was incident in the scattering plane. 
An unexpected asymmetry in the superelastic scattering signal was observed 
at small electron scattering angles. It has recently been established by Zetner 
et al. (1989) that the cause of this anomaly is due to the finite volume of the 
interaction region and detector solid angles. 

Stepwise excitation techniques have been recently reviewed by MacGillivray 
and Standage (1988). In this paper, an overview is presented and readers are 
referred to the above reference for a more detailed account. 

In type I stepwise excitation experiments, the intensity and polarisation of 
photons are detected in the spontaneous emission process from state I i) to 
I f). The fluorescent intensity is given by 

1= 2: Fn'm' Am'n'mn P~n . 
m'n/,rnn 

(3) 

The terms Am'n'mn represent either decay constants or Rabi frequencies associated 
with the laser excited transition. Matrix elements of the fluorescence emission 
operator F are given by 

Fn'm'=2:(n'l (.PI q)(ql (*.PI m'), 
q 

(4) 

where ( is the polarisation vector of the optical analyser, P is the electric 
dipole moment operator and I q) are substates of the final state If). 

For type II stepwise excitation schemes, it can be shown that the fluorescent 
intensity is given by 

1= 2: Fn'm' O~n fm'm f~'m, (5) 
m'n/,mn 

where O~n are matrix elements of the optical excitation operator for the laser 
excited step and f m'm are amplitudes representing electron excitation between 
substates of the the excited states Ie) and Ii). 
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Type I excitation schemes have been used to investigate electron collisions 
with neon, calcium, mercury and helium atoms. An important aspect of some 
of these investigations is the use of the stepwise technique to study the 
impact excitation of metastable atoms. Absolute cross section measurements 
have been made using stepwise excitation techniques on the 2p5(3s) states 
of neon, including the metastable states 1S5(3P2) and 1S3(3PO) as well as the 
states 1s2(lPd and 1S4(3Pd (for details see Phillips et al. 1981a, 1981b; Miers 
et al. 1982; Phelps et al. 1982; Zetner et al. 1986). The calcium investigations 
were performed by Oobryshin et al. (1982) and produced absolute total cross 
sections for the 43Po,1,2 states. Zetner et al. (1986) also investigated the cross 
section of the helium 21 S metastable state near threshold. 

Type I experiments performed on e--Hg atom collisions have been used by 
McLucas et al. (1982a, 1982b) to investigate the role of spectroscopic structure 
in collision processes. The spectral resolution offered by a combination of 
single mode laser excitation and atomic beam techniques enables the hyperfine 
structure of the laser excited transition used in the stepwise excitation scheme 
to be resolved. Evidence was found that the Percival-Seaton hypothesis-that 
the nuclear spin plays no active part during the collision process-broke down 
near threshold for excitation of the 61 PI state of mercury. It was suggested 
that a negative-ion resonance might be responsible for this effect. Relative 
total and partial cross section measurements were also obtained for the 61 PI 
state. 

The investigation of the electron impact excitation of the 63P2 metastable 
state of mercury near threshold has been performed by two groups using c. w. 
single mode (Webb et al. 1985b) and pulsed laser (Hanne et al. 1985) techniques. 
It should be noted that in such experiments, the stepwise technique provides 
additional data, which are not otherwise available, on the partial total cross 
sections for the electron impact excitation of the metastable state. These data 
are accessible because two optical excitation/emission steps occur following 
the initial excitation of the J = 2 angular momentum state. 

The extension of stepwise excitation techniques to electron-photon correlation 
studies has recently been reported by Murray et al. (1989) in an experiment 
which used mercury as the target species. This experimental technique 
combines the ability of the coincidence technique to completely characterise 
the electron excitation process with the advantages of the stepwise technique 
in being able to provide high spectral resolution and thereby directly eliminate 
the effects of spectroscopic structure in investigation of collisions, access 
VUV transitions and provide a new means of investigating the excitation of 
metastable states. Theoretical aspects of the stepwise correlation technique 
have been dealt with in Webb et al. (1984a, 1984b), MacGillivray and Stand age 
(1988) and Murray et al. (1990a). 

Type II stepwise excitation techniques that have so far been reported have 
involved the study of inelastically scattered electrons from laser excited sodium 
and barium atoms. Measurements were made by Hertel and Stoll (1974) of the 
differential cross sections for the 32P-42S and 32P-3 20 transitions, where the 
initial 32P state was prepared by laser excitation. Hermann et al. (1977) showed 
how angular correlation parameters could be obtained for these transitions 
using type II stepwise techniques. Their approach was similar to that used 
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for a superelastic scattering experiment except that inelastic differential cross 
sections are monitored as a function of laser polarisation. 

Other experiments on the excited state total cross sections of the sodium 
3P-3D transitions have been performed by Stumpf and Gallagher (1985). 
Differential cross sections for inelastic scattering off excited levels of barium 
have been performed by Register et al. (1978). 

(b) Laser-assisted Collisions 

In laser-assisted collisions, the laser photon can be thought of as having the 
role of a third body in a collision process which involves an atom, an electron 
and a photon. Initial experiments performed by Weingartshofer et al. (1977) 
were confined to elastic electron collisions in which the main interaction takes 
place between the free electron and the laser field. In effect, the electron gains 
or loses energy which corresponds to the absorption or emission of one or 
more laser photons in the presence of the atom. These are known as free-free 
or inverse Bremsstrahlung transitions with experiments being performed using 
both c.w. and pulsed C02 lasers and argon atoms. 

Recently, Mason and Newell (1987, 1989) and Wallbank et al. (1988) have 
performed experiments in which the simultaneous electron and photon excitation 
of metastable states of atoms has been observed. It should be emphasised in 
these experiments, neither the electron or the photon by itself have sufficient 
energy to excite the transition. The process may be described by 

e(Ei) + nhw +A =A* + e(Ei + nhw -Eex), (6) 

where Ei is the incident electron energy, Eex is the excitation energy for the 
atomic transition and hw is the laser photon energy. 

These experiments have so far been performed on the excitation of the 
metastable 23S state of helium with either a pulsed or c.w. C02 laser operating 
at hw = o· 117 eV and with detection of the metastable atoms. It would seem 
possible to detect the scattered electrons and thereby obtain the differential 
cross section for such processes. The possibility of using other atoms, such as 
hydrogen with a Nd: YAG laser operating at hw = 1 ·17 eV, has been discussed 
from a theoretical point of view by Francken and Attaourti (1988). 

(c) Photon Recoil Techniques 

Another application of lasers to atomic collision studies has been to use the 
photon recoil that results from the absorption of laser photons by the target 
atom, and the subsequent re-emission of spontaneously emitted photons, to 
physically deflect a highly collimated beam of atoms. In these experiments 
(see Jaduszliwer et al. 1984), the deflection produced by photon recoil and 
electron impact is used to determine ground and excited state cross sections. 
A variant of this type of experiment has been under development (Gallagher 
1987) in which the Doppler shift of the target atoms is measured. Experiments 
reported in the literature which make use of photon recoil techniques have 
so far been confined to sodium. 
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3. The Theory of Laser-Atom Interactions 

For the excitation of an atom with a weak optical field, it is assumed that 
only one photon is involved in the interaction and so the process can be 
treated as a weak perturbation. A typical weak excitation expression is (see 
e.g. MacGillivray and Standage 1988) for a stepwise type I excitation process: 

. 1 
P~'n':= r-r ~(m'l e.PI m)(ml e".PI n')p':nn. 

1 e mn 
(7) 

where ri and re are the decay constants for the upper and lower states 
respectively, p:n'n' and P':nn are the associated density matrix elements, e 
is the laser polarisation and P is the atomic dipole moment. The most 
important aspect of equation (7) is that it gives an analytical relationship 
between the density matrix elements of the states linked by the laser, which 
enables algebraic expressions for theoretical signals to be written. This greatly 
simplifies the theoretical analysis of the laser interaction with the atom and, as 
a consequence, weak excitation expressions should be used whenever possible. 

However, there are many circumstances where the weak excitation approach 
is not applicable, such as occurs, for example, with optical pumping by 
lasers in superelastic scattering experiments. In such cases, other theoretical 
techniques must be considered and in the remainder of this paper three 
techniques are reviewed for treating the strong interaction of light with matter. 
The simplest of these techniques is the use of rate equations which make use 
of the Einstein A and B coefficients to describe the optical interactions. The 
limitation with rate equations is that they deal only with populations or, in 
terms of density matrix theory, diagonal density matrix elements and do not 
treat coherences, which are the off-diagonal density matrix elements. 

Several techniques are available that do treat coherences and two methods 
are discussed below. These are the semiclassical density matrix technique, in 
which the radiative decay processes are included in an ad hoc manner in the 
density matrix equations, and the Heisenberg operator technique, which is a 
full quantum electrodynamical method in which the radiative decay processes 
form a natural part of the theory. 

(a) Rate Equations and Semiclassical Density Matrix Equations 

The interaction of a two-level quantum system with a monochromatic laser 
beam of optical frequency WL and energy density W provides a convenient 
case to compare rate equations and the semiclassical density matrix equations 
of motion. The two level system consists of a ground state I g) and an excited 
state I e) with an associated transition frequency Weg (Fig. 2a). The excited 
state is assumed to have a spontaneous emission decay rate of r and the 
absorption and stimulated emission decay rates are respectively Bge and Beg. 

In the case of a two-level system with no degeneracy, Bge:= Beg := B. 

As mentioned above, the rate equation method deals only with the populations 
of the energy levels and it can be readily shown that the appropriate rate 
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equations for a two-level system are 

Pee = - f Pee + BW(pgg - Pee) I 

Pgg = fPee - BW(Pee - pgg) I (8) 

where the diagonal density matrix elements Pee and pgg represent the excited 
and ground state populations respectively. 

In semiclassical density matrix theory (see e.g. Webb et al. 1984b for 
details), the time evolution of the quantum system is given by the equation 
of motion of the density matrix p, 

i hp = [H, p] + relaxation terms I (9) 

where H consists of the sum of the free atom Hamiltonian and the interaction 
Hamiltonian. The relaxation terms have to be deduced from a knowledge of 
the relaxation mechanisms of the quantum system and inserted into equation 
(9). In the rotating wave approximation, the density matrix equations are 
given by 

Pee = - fPee + ~W(Peg - Pge) I 

Pgg = fPee - ~W(Peg - Pge) I 

Peg = - (iLl + nPeg + ~ W(Pee - pgg) . 

(lOa) 

(lOb) 

(lOc) 

The de tuning of the laser from the Doppler shifted atomic transition 
frequency is given by 

Ll = CAh - Weg - kVz I (11) 

where Q is the Rabi frequency given by 

Q=-E.P/h. (12) 

The Rabi frequency is taken as real, where E is the optical electric field of 
the laser and P is atomic dipole operation. The appearance of the optical 
coherence terms Peg and Pge should be noted in equations (lO), 

The relationship between the rate equations (8) and the semiclassical density 
matrix equations (l0) may be seen by applying the approximation that the 
rate of change of the optical coherence between the upper and lower states 
is zero, i.e. Peg = O. This approximation applies either for the case that the 
interaction has occurred for a time sufficiently long that the state populations 
are nearly stationary, or the optical excitation is sufficiently weak that the 
populations do not ever change significantly. Equation (lOc) then yields 

Peg = W(Pee - pgg) [2(iLl + nr1 • (l3) 
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Insertion of equation (13) and its complex conjugate into equations (10a) and 
(10b) gives 

Pee = - ["Pee +.02 [[2(["2 + L'l 2n-1 (Pee - pgg) , 

Pgg = ["Pee _.02 [[2(["2 + L'l 2n-1 (Pee - pgg). (14) 

Comparison of equations (8) and (14) show that they are identical provided 
that 

BW = .02 [[2(["2 + L'l 2n-1 . (15) 

If allowance is made for integrating over the laser line profile, then it can be 
shown that (Trajmar et al. 1990) 

BW = 2 rr.Q 2 , (16) 

where W is the average laser power density per unit frequency of the laser 
beam. 

(b) The Heisenberg Operator Method 

When the laser excited atomic transition contains nearly degenerate energy 
levels due to spectroscopic effects such as fine or hyperfine structure, then 
for laser intensities at which power broadening becomes comparable with this 
spectroscopic structure, coherences can form between the sublevels that may 
play a significant role in the behaviour of the system and affect measured 
quantities such as the polarisation of the fluorescence emitted by the laser 
excited transition. To adequately describe this case requires the use of a 
full quantum electrodynamical theoretical treatment. Such a treatment was 
originally given by Ackerhalt et al. (1973) and Ackerhalt and Eberly (1974) for 
a two-state atom and extended to a three-state, stepwise excitation scheme 
by Whitley and Stroud (1976). Farrell et al. (1988), Murray et al. (1990) and 
Trajmar et al. (1990) have extended the treatment to an arbitrary number of 
states. This method makes use of the Heisenberg equations of motion for the 
atomic operator 0": 

i h& = [O",H], (17) 

where H is the system Hamiltonian. The matrix elements of the atomic operator 
are formed by 

O"ij = I i){j I, (18) 

where I i) and I j) are states of the atomic system. The system evolves under 
the total Hamiltonian H, which is given by 

H=HA +HF+HI, (19) 
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where HA is the free atom Hamiltonian, HF is the electromagnetic field 
Hamiltonian and HI is the interaction Hamiltonian between the electromagnetic 
field and the atom. 

The free atom Hamiltonian is written as 

HA = L Ern O"rnrn, 
rn 

(20) 

where Em is the energy of the substate ! m). The field Hamiltonian is expressed 
in terms of photon annihilation and creation operators, such that 

HF = h L w.\ata.\, 
A 

(21) 

where ,\ specifies both the polarisation and wave vector of the field modes. 
The interaction Hamiltonian is given by 

HI = h L L L (g~g O"eg a.\ + g~; at O"ge) , 
e 9 .\ 

(22) 

where g~g is the coupling coefficient between a particular mode of the optical 
field and the atomic transition I g)-! e). This Hamiltonian is said to be 
normally ordered, which Ackerhalt and Eberly (1974) have shown corresponds 
to a description of spontaneous emission in terms of the radiation reaction 
of the field upon the source. 

The coupling coefficients for the dipole transitions are given by 

.\ . -' 
geg = -Ie.\. Peg(2rrw.\/hV) 2, (23) 

where e.\ is the polarisation vector of the ,\ mode of the radiation field, Peg is 
the dipole operator matrix element (e! P! g) and V is the interaction volume 
supporting the field modes. 

The atomic operator elements relate to the density matrix elements by 

(O"eg)=('P! e)(g! 'P)=Pge, (24) 

where! 'P) is a linear combination of the atomic states! g) and! e). The 
equations for the atomic operators are expressed in terms of slowly varying 
operators in the rotating frame using the transformation 

Xeg = O"eg e-iwLt • (25) 

The resulting equations for the time evolution of the matrix elements of 
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the operators are given by (Farrell et al. 1988) 

(Xe'e") = - i(we" - We' )(Xee") - i L De"g (Xe'g) 
g 

+ i L De'g (Xge") 
g 

- LLL g~"gg~; rrc5(wJ,. -We +Wg)(Xe'e}, 
e g J,. 

- LLL g~'gg~g rrc5(wJ,. - We +Wg)(Xee"}' 
e g J,. 

(Xg'g"} = - i(wg" - Wg')(Xg'g"} - i L D eg" (Xg'e} 
e 

+ i L D eg, <Xeg"} 
e 

+ LLL g~'g" g~g' rrc5(wJ,. -We + Wg') (Xee' } 
e' e J,. 

411 

(26a) 

+ LLL g~'g' g~g" rrb(wJ,. - We + Wg")(Xe'e}, (26b) 
e' e J,. 

(Xe'g') = - We'g' (Xe'g'} + i L De'g (Xgg'} 
g 

-i LDeg'(Xe'e} 
e 

- LLL g~'gg~g rrb(wJ,. - We +Wg)(Xeg'}. 
e g J,. 

(26c) 

Here, it has been assumed that I g} is a ground state of the atom. A more 
general set of equations has been given in MacGillivray and Stand age (1988) 
for the case where the lower state is not a ground state. 

The triple summation terms in these equations represent the relaxation 
processes, with the generalised decay term being given by 

Te'e"g = L [g~'g g~"g rrb(wJ,. - We" + Wg) 
J,. 

+ g~"g g~'g rrb(wJ,. - We' + wg)]. (27) 
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The decay rate from state I e'} to I g} is given by 

Telg = Te,e, g , 

while the total decay rate from the excited state 1 e'} is 

Tel = 2 L L 1 g~'g 12 rrD(Wi\ - Wei + W g ). 
g i\ 

2 3 P3/2 -3/2 

""" 11 
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(28) 

(29) 

Fig. 2. (a) Two·level excitation scheme. (b) J representation of the Na-D transitions. (c) 
Six-level excitation scheme for the Na-D transitions under IT excitation. Rabi frequencies 
per unit square-root intensity [MHz/(mW/mm2)1I2] are shown. The overall decay constant 
is 6· 25x107 S-I. 

To illustrate the differences between the semiclassical and Heisenberg 
operator techniques with a realistic example, a three-state system is considered 
(Fig. 2) in which each state consists of two degenerate substates. This system 
is the J-representation energy level scheme for the Na-D transitions. All 
excited states are connected to the ground state by optical transitions and rr 
polarisation has been assumed for the single mode, laser excitation. The Rabi 
frequencies for the transitions are also shown in Fig. 2c. Whereas the excitation 
of both the 33P3/2 and 3 2PI/2 levels of sodium with a Single mode laser is 
unlikely, this configuration serves to illustrate the application of the QED 
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approach without resorting to the more complicated hyperfine representation. 
Application of equations (26) to this case results in the following equations: 

{X66}= -i.Q62({X62} - {X26})-f6{X66}, 

{Xss}= -i.QSl({XSI> - {Xls})-fs{Xss}, 

{X44}= -i.Q42({X42} - {X24})-f4{X44}, 

{X33}= -i.Q31({X3I> - {X13})-f3{X33}, 

{X22} = - i.Q42({X24} - (X42}) - i.Q62({X26} - (X62}) 

+f32{X33} +f42{X44} +fS2{XSS} +f62{X66} 

+fS32({X3S} + {Xs3})+f642{X46} + (X64»), 

{Xll} = - i.Q31 ({X13) - (X31}) - i.QSl ({XIS} - (XSl}) 

+ f31 {X33} + f41 {X44} + f51 {X55} + f61 {X66} 

+fS31({X3S} + {Xs3})+f641({X46} + (X64}), 

{X62} = - (i4 + f6/2) <X62} - i.Q42 {X64} - i.Q62({X66} - (X22}), 

{XSI } = - (i4 + fs/2) <XSI } - i.Q31 {XS3} - i.QSl ({XSS) - (Xll }), 

{X42} = - (iLl' + f4/2) <X42} - i.Q62 {X46} - i.Q42({X44} - (X22}), 

{X31 } = - (iLl' + f3/2) <X31 } - i.QSl {X35} - i.Q31 ({X33) - (Xll}), 

{X64} = - i[4" + (f4 + (6)/2] <X64} - i.Q42 {X62} + i.Q62 {X24}, 

(30) 

{XS3} = - i[4" + (f3 + fs)/2] <XS3) - i.Q3dXsI> + i.QSI<XI3}. (31) 

Not shown are the six complex conjugate equations for the off-diagonal 
matrix elements. This set of eighteen equations forms a closed subset of 
the total system of thirty-six equations. The only elements contained in this 
set are those representing the populations, optical coherences and coherences 
formed by the excitation between excited state substates of different] but 
same mJ. These latter coherences are called vertical coherences. It was the 
discovery of these closed subsets of equations that made the computation of 
the time evolution of even more complicated atomic configurations feasible. 

An interesting feature of the diagonal density matrix equations is that 
only the equations for the ground states contain generalised relaxation terms. 
This is because all the generalised relaxation terms in the equations for the 
excited states are grouped in pairs of terms, such as f 641 +f 642, which cancel. 
Other relaxation terms of the type feg, which represent spontaneous decay 
rates between pairs of excited and ground states, also only appear in these 
equations. The spontaneous emission processes associated with the state 
populations proceed at the natural relaxation rate for each level, whereas 
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the optical coherences decay at half this rate. The oscillatory terms of the 
form i,1 for the optical coherences arise from the detuning of the laser from 
the atomic transition, whereas the corresponding terms for the vertical state 
coherences represent the fine state splitting and give rise to quantum beats. 
The Rabi frequency terms describe the stimulated emission and absorption 
processes caused by the optical interaction of the laser light with the atom. 

The difference between the Heisenberg operator equations and the equations 
which would be obtained using the semiclassical density operator theory 
is the presence of the generalised relaxation terms. As mentioned above, 
the semiclassical theory requires the insertion of all spontaneous emission 
terms in an ad hoc manner, whereas these terms, as well as the generalised 
relaxation terms appear naturally in the full QED method. This is obviously 
an important consideration in the treatment of complex transitions. Further 
details, together with a comparison of calculations for the Na-D2 transition 
using the Heisenberg operator theory and various semiclassical approximations 
used by other workers, can be found in Farrell et al. (1988). In their 
paper, methods are discussed for considerably reducing the magnitude of the 
computational task involved in performing such calculations. 
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Fig. 3. Fluorescence line polarisation for the Na-D 32 P3/2 (F=3 , 2,1)-
3251/2(F'=2) hyperfine transition as a function of Rabi frequency. Incident 
single-mode laser radiation is assumed to be linearly polarised perpendicular 
to the fluorescence observation direction. Curve (a), full Heisenberg operator 
calculation; curve (b), vertical coherences and generalised relaxation terms 
set to zero. 

Two applications of the Heisenberg operator theory are now considered. 
The first of these is the calculation of the line polarisation of the Na 
32P3/2(F=3, 2, 1)-32Sl/2(F'=2) transition as a function of laser intensity. Fig. 3 
shows the results of this calculation in which it is assumed that the Doppler 
width of the atoms is essentially zero and the atoms are excited in a laser 
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beam of uniform intensity. Other calculations in which such experimental 
factors as the Doppler width, the laser beam intensity profile and the laser 
detuning are included are presented in MacGillivray and Stand age (1990) and 
Meng et al. (1990). Two curves are shown in the figure; curve (a) is the 
result of a calculation in which the full Heisenberg operator theory has been 
used. Curve (b) is the result obtained when the vertical coherences and their 
associated generalised relaxation terms have been removed. Although the 
curves are similar at lower Rabi frequencies, as the Rabi frequency approaches 
the magnitude of the excited state hyperfine splittings (~lOO MHz) of the 
transition, the curves differ markedly and asymptote to significantly different 
limits at high intensity. If the generalised relaxation terms are removed, but 
the vertical coherence terms are retained, the results obtained are very similar 
to the full calculation, which indicates the sensitivity of the calculation to the 
vertical coherences. 
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Fig. 4. Heisenberg operator calculation of stepwise coincidence 
signals for the 61S0-61Pl-6102-63Pl excitation/de-excitation scheme 
in Hg, Curve (a), strong intensity case (130 MHz Rabi frequency); 
curve (b), weak intensity case (4 MHz Rabi frequency). 

The second example is that of the calculation of the stepwise coincidence 
Signal for an experiment (see Murray et al. 1989) with a type I scheme. 
The measurement of coincidences between the inelastically scattered electron 
and the photon emitted from the stepwise excited atom results in a time 
resolved coincidence signal. A calculation of the coincidence signal for the 
61 So-61 PI-6 1 D2-63Pl stepwise excitation scheme in mercury has been performed 
by Murray et al. (1990a), using the Heisenberg operator theory. Fig. 4 shows 
the theoretical coincidence signals obtained from this calculation. Curve (a) 
shows the signal predicted under strong laser excitation, in which the decay 
time of the signal is markedly shorter than that for the weak laser excitation 
case, shown in curve (b). For curve (b), the decay time is very close to the 
natural lifetime for the transition of 11 ns. The small secondary peak of curve 
(a) is the result of Rabi nutational cycling. The enhanced decay rate of the 
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strong excitation signal is due to the laser coupling the 11 ns lifetime upper 
excited state (6102) to the much shorter lived (1·3 ns), lower excited state 
(6 1 PI). Experimental confirmation of this effect has been found by Murray et 
al. (1 990b). 

4. Conclusions 

In conclusion, we draw attention to the range of experimental methods 
now available in which lasers are applied to the investigation of collision 
processes. Superelastic scattering techniques have great potential for rapid data 
acquisition, but are presently limited in application because of the relatively 
limited spectral range, combined with suitable optical power, of tunable dye 
lasers commonly available to researchers. New developments in Ti: sapphire 
tunable lasers have recently extended this range into the near infra-red. It 
may also be possible to extend the spectral range through the development 
of superelastic scattering methods which are based on the use of pulsed dye 
lasers, that offer a greater spectral range than c.w. lasers. 

The use of stepwise laser excitation combined with superelastic scattering 
techniques offers a means of investigating the detailed dynamics of collision 
processes which involve higher lying excited states and Rydberg atoms. 

Stepwise electron/laser excitation offers an alternative to existing techniques 
for investigating collision processes that involve VUV transitions in atomic 
targets. In addition, these techniques provide a means of studying collision 
processes that involve the excitation of metastable states. It can be anticipated 
that stepwise coincidence experiments will be performed to obtain atomic 
scattering parameters for metastable states. Stepwise excitation techniques 
also provide a method of investigating excited state-excited state transitions. 
Another aspect of stepwise excitation methods is that quite a few atoms have 
type I excitation schemes that lie within the spectral range of dye lasers, so 
that the technique has fairly wide applicability. 

Laser-assisted collision processes which involve inelastic electron scattering 
are an interesting area of recent research activity and it can be anticipated 
that more investigations will be carried out to compare theoretical predictions 
with experiment, perhaps using hydrogen rather than helium, as the atomic 
target. 

Laser cooling techniques have not as yet been applied in collision experiments, 
but such techniques have been used to reduce the Doppler width of atomic 
beams and it is possible that laser cooling could be combined with the 
experimental methods discussed in this paper. The development of laser light 
traps to capture single atoms is presently the basis of intensive research 
interest. It is interesting to speculate on the application of such techniques 
to scattering experiments. 

Considerable progress has been made in recent years in the theoretical 
treatment of atom-laser interactions, with methods now available which range 
from weak perturbative treatments, through to full quantum electrodynamical 
calculations that closely model complicated atomic transitions over a wide range 
of experimental conditions. Even the most sophisticated of these calculations 
is now within the capacity of computing facilities that are now widely available 
and we would urge colleagues to consider using such 'complete' treatments. 
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