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Abstract 

A general multi-configuration self-consistent field (MCSCF) model is presented. The model 
permits the determination of wavefunctions for a collection of different physical states, 
achieves all possible group-theoretical reductions, and exhibits quadratic convergence. 

A general algebraic formalism which implements the MCSCF model for a 
wide variety of electronic systems was published some years ago by Roothaan 
and Detrich (1983). Rather than presenting here a review of that algebra, 
we confine ourselves in this paper to a discussion of the special merits of 
that approach, which can be considered the culmination of a development in 
MCSCF theory over a fifteen-year period (Hinze and Roothaan 1967; Docken 
and Hinze 1972; Ruedenberg et al. 1979; Levy 1969, 1970, 1973; Polezzo 
1975; Kuprievich and Schramko 1975; Kendrick and Hillier 1976; Dalgaard and 
Jfilrgensen 1978; Dalgaard 1979; Roothaan et aT. 1979; Yeager and Jfilrgensen 
1979; Lengsfield 1980; Werner and Meyer 1980). The present method uses a 
variational energy expression in terms of non-redundant variables. Starting 
with reference vectors of orbital and configuration expansions, the variational 
process is concerned with rotations in the orbital and configuration spaces so 
as to obtain a better energy. When properly defined, the angles of rotation 
constitute a non-redundant set of variational variables; they are collected in a 
single vector of rotations, which is not to be confused with either the orbital 
or the configuration expansion vectors. 

Using a Taylor expansion of the energy in terms of these angles, and 
dropping all terms of third and higher order, the variational optimum is 
obtained from a set of linear equations of the form 

or 

~HijXl= -gi, 
1 

Hx= -6, 

(1) 

(1') 
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where :It is the vector of rotations, while 9 and H are the gradient vector 
and the (symmetrical) Hessian matrix, respectively, of the first and second 
derivatives of the energy with respect to these rotations. 

Since the process just described is based on a second order truncation 
of the energy expression, the angles which solve equation (1) yield only an 
approximation to the solution of the variational problem. Consequently a 
rotation over the computed angles yields new reference vectors which yield a 
better approximation to the variational optimum. Successive iterations exhibit 
quadratic convergence; thus if the initial reference vectors are accurate within 
10**(-1), subsequent iterations will yield an accuracy of 10**(-2), 10**(-4), 
10**(-8), etc. 

This iterative procedure, which we call the new method, replaces the more 
traditional nested procedures of solving the pseudo-eigenvalue equations for 
the orbital vectors, the self-consistency of the latter, and the secular equation 
solution for the configuration vector(s). While the traditional method requires 
the computation and storage of the first derivatives only, the new method 
requires the second derivatives as well; hence the new method became feasible 
only in the mid-1970s when sufficiently large and cheap computer memories 
became available. The new method is also inherently much simpler, and it 
has much better convergence behaviour, than the traditional method. 

The variational energy expression we use is the weighted average of the 
energies of several physical states. Each state in turn may be represented by 
a superposition of several configurations; however, all configurations must be 
constructed from a common set of orbitals. The model permits a great variety 
of calculations: the participating states, the numerical values of the weights, 
and the configurations used for each state, can all be freely chosen. It is also 
possible to omit any orbital rotations without compromising the calculation. 
These choices can be tailored to the physical situation at hand, as well as to 
the level of approximation desired for the calculation. It is important to note 
that the wavefunctions for all the states which participate in the calculation 
always form an orthonormal set which is properly diagonal with respect to 
the Hamiltonian. 

For a closed shell ground state, a traditional SCF calculation uses of course 
one state with a weight of 1 ·0, and one configuration; a better wavefuction can 
of course be obtained by using an appropriate MCSCF configuration expansion 
for that one state, again with a weight of 1· O. 

To calculate a radiative process between a ground state and a first excited 
state, the recommended procedure is a calculation using two states with 
equal weights of 0·5, each state being constructed from an appropriate 
configuration expansion. Note that this calculation does not suffer from the 
often-encountered difficulties caused by a lack of orthogonality of the two 
states, or by an inconsistency between two sets of orbitals used for those two 
states. 

A more complicated physical situation is provided by an inelastic electron-atom 
or electron-molecule scattering process. Each target state which participates 
in the process should be present in the variational energy expression. The 
weights could be chosen equal, but more often one would choose the weights 
proportional to the expected cross sections for those states in the scattering 
process. 
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It should be clear by now that virtually all MCSCF models which have been 
proposed to date are special cases of the general model presented here; the 
complete active space self-consistent field (CASSCF) model is an important 
example (Ruedenberg and Sundberg 1976; Roos et al. 1980). If we permit no 
rotations at all for the orbital vectors, we obtain a conventional configuration 
interaction (Cn calculation as another special case; equation (1) thus provides 
an iterative method, which is quadratically convergent, to solve the secular 
equation for the required root(s). Omitting some, but not all, of the orbital 
rotations yields a partially frozen orbital model which may be useful under 
certain circumstances. 

An all-important feature of the present MCSCF model is that a full symmetry 
reduction has been achieved. Thus matrix elements which vanish because of 
symmetry are absent altogether, and matrix elements which are equal because 
of symmetry occur only once. To achieve this for a large class of systems 
in a general formal algebra, we adopted the restriction that the symmetry 
group must be simply reducible. As defined by Wigner (1965), such a group 
is characterised by: (a) inverse elements are in the same class; (b) when 
decomposing the product of two irreducible representations into a sum of 
such representations, no representation in that sum occurs more than once. 
These two properties guarantee the existence of Clebsch-Gordan coefficients, 
which considerably simplifies the calculation of all required matrix elements. 
The assumption that the symmetry group is simply reducible covers atoms 
and the vast majority of molecules. 

The primitive many-electron wavefunctions we use are the so-called 
configuration state functions, or CSFs; they are of course the appropriate linear 
combinations of Slater determinants which belong to irreducible representations 
of the symmetry group. The basic operators we use in conjunction with the CSFs 
are various replacement operators; we distinguish one-electron, two-electron, 
and entire CSF replacement operators. With the help of these operators we can 
express the transformations of the wavefunctions in the variational process, 
and compute all required matrix elements, in completely reduced form. 

Most other MCSCF treatments use second quantisation as the basic description 
of many-electron systems. In that framework, Slater determinants rather than 
CSFs are the primitive wavefunctions, and creation and annihilation operators 
rather than replacement operators are used to express variational transformations 
and to calculate matrix elements. One drawback of this approach is that 
the close analogy between orbital and configuration rotations is not apparent. 
Another drawback is that a complete symmetry reduction is not natural in 
this framework, and has to date not been formulated. 

The second quantisation formulation of the MCSCF model is closely related 
to the graphical unitary group approach, or GUGA, in large CI calculations; 
essentially, the unitary group is the collection of all orbital transformations. The 
matrix elements which need to be calculated are between Slater determinants; 
this calculation is greatly Simplified by exploiting the properties of the unitary 
group. As mentioned before, these matrix elements are in general not in 
reduced form. 

Our MCSCF model uses a subgroup of the full unitary group, namely the 
subgroup of orbital transformations which preserve the symmetry of the 
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Hamiltonian. The matrix elements which need to be calculated are between 
CSFs; this leads to expressions in terms of 3n-j symbols and coefficients of 
fractional parentage, or CFPs, for the symmetry group of the system. Hence 
if the technology to calculate 3n-j symbols and CFPs is in place, our MCSCF 
model will rival GUGA in simplicity and straightforwardness, while permitting 
a full symmetry reduction. 

References 
Dalgaard, E. (1979). Chern. Phys. Lett. 65, 559. 
Dalgaard, E., and J0rgensen, P. (1978). J. Chern. Phys. 69, 3833. 
Docken, K. K., and Hinze, J. (1972). J. Chern. Phys. 57, 4928. 
Hinze, J., and Roothaan, C. C. j. (1967). Prag. Thear. Phys. Supp/. 40, 37. 
Kendrick, J., and Hillier, I. H. (1976). Chern. Phys. Lett. 41, 283. 
Kuprievich, V. A., and Schramko, O. V. (1975). Int. J. Quant. Chern. 9, 1009. 
Lengsfield, B. H. (1980). J. Chern. Phys. 73, 382. 
Levy, B. (1969). Chern. Phys. Lett. 4, 17. 
Levy, B. (1970). Int. J. Quant. Chern. 6, 297. 
Levy, B. (1973). Chern. Phys. Lett. 18, 59. 
Polezzo, S. (1975). Thear. Chirn. Acta 38, 211. 
Roos, B. 0., Taylor, P. R., and Siegbahn, P. E. M. (1980). Chern. Phys. 48, 157. 
Roothaan, C. C. J., and Detrich, J. H. (1983). Phys. Rev. A 27, 29. 
Roothaan, C. C. J., Detrich, J. H., and Hopper, D. G. (1979). Int. J. Quant. Chern. 513, 93. 
Ruedenberg, K., Cheung, L. M., and Elbert, T. S. (1979). Int. J. Quant. Chern. 16, 1069. 
Ruedenberg, K., and Sundberg, K. R. (1976). In 'Quantum Science-Methods and Structure' 

(Eds J. L. Calais et a/.), pp. 505-15 (Plenum: New York). 
Werner, H. J., and Meyer, W. (1980). J. Chern. Phys. 73, 2342. 
Wigner, E. P. (1965). 'Quantum Theory of Angular Momentum' (Academic: New York). 
Yeager, D. L., and J0rgensen, P. (1979). J. Chern. Phys. 71, 755. 

Manuscript received 19 February, accepted 3 April 1990 




