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Abstract 

The approximation of Coulomb continuum functions by an L 2 basis is studied using a Laguerre· 
function basis which can be extended to completeness. Also studied is the convergence rate 
of L2 approximations to Born matrix elements for electron impact ionisation as a function of 
basis·set size. This important class of matrix elements occurs in pseudo·state close-coupling 
calculations, accounting for scattering to the three·body continuum. Convergence rates in 
both cases are derived analytically and confirmed numerically. We find that the rate of 
pointwise convergence of L2 expansions to the continuum function is slow, and of conditional 
type; however, it is proven that the corresponding ionisation matrix elements converge 
geometrically, Our result agrees with the behaviour observed in pseudo·state calculations. 

1. Introduction 

The most sophisticated models of electron-atom scattering employ the 
close-coupling equations (see for example Burke and Seaton 1971 for a review). 
A feature of these equations is that they use target-state expansions which 
when extended over the continuum are complete. It is known that coupling 
to the continuum channels is important at intermediate energies and must be 
included. At present there are two approaches to including the continuum, the 
optical potential method of McCarthy and coworkers (McCarthy and Stelbovics 
1983) and the pseudo-state expansion method popularised by Burke and 
coworkers (see e.g. Burke and Mitchell 1973 and also Burke and Seaton 1971). 
The present work will concentrate on the pseudo-state method. 

In the pseudo-state method the target Hamiltonian is diagonalised in a basis 
of square integrable (L2) functions. The positive-energy solutions are called 
pseudo-states because they are not true eigenfunctions of the target and their 
energy varies with type of basis function and basis-set size. However, it 
has been established that these functions after a renormalisation can indeed 
provide a good approximation to a true continuum function, at least for small 
r. A recent review of the techniques for different basis sets, properties of 
the pseudo-states and their relation to exact continuum functions is given by 
Macias et al. (1988). In the calculation of effective-potential matrix elements, 
the pseudo-states contribute through overlap integrals involving the folding 
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of the wavefunctions between electron-electron and core-electron Coulomb 
potentials. In the momentum-space formulation (McCarthy and Stelbovics 1983) 
the effective potentials are the Born matrix elements with exchange included 
and the momenta taken on and off the energy shell. It is important to note 
that, while the convergence rates of the L2 approximations to the continuum 
wavefunction are of intrinsic interest, it is of more importance to determine 
the convergence rates of the corresponding Born matrix elements. 

Similar reasoning prompted Bransden and Dewangen (1979) to suggest that 
pseudo-states for a close-coupling calculation may be selected by requiring 
that they reproduce accurate second-order amplitudes. The approximation is 
equivalent to a single iteration of the momentum-space close-coupling equations 
and setting the external momenta on shell. In recent years their suggestion has 
been used by van Wyngaarden and Walters (1986) and by Callaway and Madison 
(1987) to optimise pseudo-state basis sets for very large-scale calculations. 
The optimisation is important because each extra pseudo-state generates a 
new row and column in the channel indices of the effective potentials. The 
closure and numerical discretisation of the integral equations over the off-shell 
momenta extends the row and column size of the final matrix equations by 
about 25 for each added state. At the present time inclusion of 10 additional 
states would be regarded as a major increase in the complexity of a typical 
calculation. Callaway and Madison point out that that 'even if a particular 
pseudo-state basis set can accurately reproduce a second-order perturbation 
theory amplitude, there is no guarantee that this same basis set will accurately 
represent a complete set in a different calculation such as a close-coupling 
equation'. Nevertheless, because the pseudo-states do converge to the exact 
continuum functions, one can infer that when enough states are included so 
convergent Born amplitudes are obtained, such a set will guarantee that the 
continuum is adequately allowed for in the close-coupling equations. 

In this paper we examine the convergence of the Fourier series generated 
by extending a pseudo-state basis to completion for the ionisation amplitude 
from the ground state of a hydrogen atom. In the Born approximation the 
ejected electron is described by a regular Coulomb continuum function. We 
employ a Laguerre basis used by Yamani and Reinhardt (1975) to construct 
pseudo-state approximations to the continuum wave for any order of basis. 
The great advantage of their basis is that the Fourier expansion coefficients 
have an analytic form. This enables analytic estimates of convergence rates 
to be made and at the same time permits large-basis pseudo-states to be 
computed with a high degree of accuracy. 

The slow convergence of this type of expansion is emphasised in the second 
section. Convergence rates for pointwise convergence are derived analytically 
and are illustrated. In Section 3 the ionisation Born matrix elements to a 
pseudo-state calculation are discussed. It is shown that the pseudo-state 
approximations give a matrix element approximation which is essentially 
geometrically convergent. The optimum exponent for most rapid convergence 
is derived. The results are illustrated with some examples. Some differential 
ionisation cross sections are calculated to show that pseudo-states over a 
substantial range of orbital angular momentum need to be included in realistic 
calculations at intermediate energies. We compare the convergence rates of 
our basis set with similar size sets of van Wyngaarden and Walters (1986) and 
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conclude that the results we find for this basis set are typical of the others 
. used in numerical work. Finally we give some conclusions and suggestions 

for future work. 

2. LZ Wavefunctions 

Yamani and Reinhardt (1975) showed that the regular Coulomb partial-wave 
continuum functions for a hydrogenic target 

UI(q, r) = e 1rry I f~~~.I.-~~) I (2qr)l+l e- iqr IFI (I + 1 + il', 21 + 2, 2iqr) (1) 

could be expanded in a Laguerre basis as 

_ ~ f(n + 1) 1+1 1 
UI(q, r) - BJ{q) {;;o f(n + 21 + 2) P n (x) IPn(r) , (2) 

where 

BJ{q) = 21+1 I f(1 + l-il') I (l-x 2) t(l+1) e(9-1 TT)Y, (3) 

IPn(r) = (i\d+1 e+\r L~I+1(i\r). (4) 

The UI(q, r) are normalised to a 8 function in qj21T. The variable x is related 
to the energy by 

2 i\2(I+X). 
Eq == ~q ="8 I-x ' (5) 

also 

1 
l'= -, q 

and x = cosO, 0 ~ 0 ~ 1T. (6) 

The Fourier coefficients appear complicated but in fact the p~+1(x) are polynomials 
in the variable x (Yamani and Reinhardt 1975) defined by a three-term recurrence 
relation and are easy to calculate. We note that for future reference that they 
may be expressed in the form 

1+1 f(n + 21 + 2) in9 . . 1 .. -2i9 
Pn (x)= _,r''''' . .." e 2Fl(-n, 1+1-1)" 2 +2,I-e ). (7) 

The properties of these polynomials have been investigated by Bank and Ismail 
(1985). The expansion above is formally exact and the spectrum is continuous. 
In practice we are restricted to a finite basis. If we choose for example the 
first N functions from the set (4) and diagonalise the target Hamiltonian in the 
basis then the positive-energy L2 states form a set of pseudo states. There are 
N solutions spanning both negative and positive energies. The lowest-lying 
negative energy solutions are excellent approximations to the exact bound 
state wavefunctions. The approximate L2 wavefunctions below the continuum 
represent in some average way the remaining discrete levels. 
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Fig. 1. The L2 wavefunctions for Eq = 50 eV, 1=0, i\ = 6·0, and N = 5 (squares), N = 10 
(diamonds), N = 40 (triangles), compared with the exact wavefunction (curve). 
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functions N for Eq = 50 eV, 1=0, i\ = 6· ° and r = 5 a.u. 
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In the case of the present basis Yamani and Reinhardt have shown that the 
eigen-energies in the truncated space may be found by imposing the boundary 
condition 

p~l(X) = o. (8) 

There are N solutions to this polynomial equation in the variable x = xl(N,l), 
i = 0,1, ... N-l and in turn in E through the mapping (5). The distribution of 
positive energies is therefore basis dependent and from a physical point of 
view is a result of the requirement of orthogonality for all the pseudo-states. 
For the calculations reported here we use the expansion (2) truncated to N 
terms. This truncation gives a state which coincides with the pseudo-states 
at the eigen-energies and thus has the effect of interpolating the L2 basis 
solutions to any positive energy. If we denote the nth term of the Fourier 
expansion for Ut by S~ then it is straightforward to prove (see Appendix A) 
that for large n 

S~(q, r) = n-~ 2 e(28-rr)Y(A r) ~ rr-~ cos[2(nAr) L(l + ~ )rr] 

x cos[(n + I + 1)8 + yln(2n sin8)-~rr(l + 1) 

5 
-argf(l+ l-iy)] +O(n-'4). (9) 

The feature to note is that the convergence rate will be slow because of the 
3 

n-' behaviour. In fact the convergence relies on the alternation in sign of 
the trigonometric factors; i.e. it is only conditionally convergent. The rate of 
convergence also depends on q, r, I and A. 

In Fig. 1 we plot the L2 approximation to the s-wave continuum function 
for E = 50 eV, for various basis sizes, N = 5, 10 and 40. The value of A = 6 aDl 

is chosen by a simple optimisation process. We allowed A to vary over a 
coarse range from 1 aD l to 10 aD l and found the value which gave the least 
mean square error over the interval from 0 to 10 ao. The results are typical 
of those obtained by Kaufmann et al. (1987) and Macias et al. (1988). The 
behaviour of the expansions for arbitrary I is similar. The most obvious 
feature of the expansions shown is that there are still minor discrepancies 
for the largest basis of 40 functions. In Fig. 2 we show the nature of the 
error in the expansion for a fixed value of r. The rate of convergence and 
its oscillatory nature matches that of the above asymptotic form. It should 
be emphasised that the slow rate of convergence is not an artifact of this 
particular expansion but is germane to all L2 expansions of functions which 
are not of bounded variation (continuum functions having an infinite number 
of undamped oscillations are of unbounded variation). 

3. Approximation to Born Matrix Elements 

The Born ionisation amplitude from the ground state of hydrogen is given 
by 

f(q, K) = - :2 f 'f'H(q, r)* eiK.r <po(r) dr, (10) 
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where 
I 

cf>o(r) = rr-'2 e-r and K = k-k' . (11) 

The integral for (10) is well known and is derived. for example. by Landau 
and Lifshitz (1977). Our normalisation for the Coulomb function here is to a 
8 function in q/(2rr)3. A partial-wave analysis gives 

I 

f(q, K) = - 8~'2 f (2l + 1)e iO/ FI(q, K) PI( ~q) , 
K 1=0 q 

(12) 

with 

FI(q, K) = 2~ f 000 
r e-r jl(Kr) UI(q, r) dr. (13) 

[The PI in (12) is the Legendre polynomial and is not to be confused with 
the Coulomb polynomials; 81 is the Coulomb partial-wave phase shift.] The 
Born amplitudes which enter the final close-coupling equations are further 
partial-wave projected over the scattering angle contained in K. From the point 
of view of studying the convergence rates we shall assume that it is sufficient 
to consider the rate of convergence of the pseudo-state expansions to FI(q. K). 

This amplitude can be evaluated in closed form (see Jetzke and Broad 1985) 
in terms of Appell functions. Our interest centres on the series obtained by 
replacing UI(q. r) by its Fourier expansion 

where 

BM) ~ r(n + 1) p~+l (x)I~(K), 
FI(q, K) = 2q f=o r(n + 21 + 2) 

I~(K) = faoo re-r jl(Kr)4>~(r) dr. 

This integral is evaluated in Appendix B. The result is 

I~(K) =A-(n+I+l) i r(l+ l)(n +2/+ 1)(2/+ 1) i\~(Sinw)/+1 

( 2n + 21 + 2 -1 1+1 () 1+1 ( ») x n + 21 + 1 (cosw-A )Cn (cosw) + I-A Cn- 1 cosw , 

where 

K 
0::;00::; rr, tanw = 

1 +K2_(~i\)2 ' 

I 

A = ~ ((1 + 1 i\)2 + K2 r 
(1_~i\)2 +K2 . 

(14) 

(15) 

(16) 

(17) 

(18) 
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The C~+l are ultraspherical polynomials. The rate of convergence of the series 
is dominated by the term A-n. The maximum convergence rate will occur 
when A takes its maximum value: 

maxA = (1 +K2)11 + 1)1 
(1+K2)2'-1 ' 

when i\ = 2(1 + K2) L (19) 

If we combine the asymptotic forms for P~ and I~ (see Appendix B) we find 
that the nth term of the series (14) behaves as 

a~(q, K) =A-(n+i+l) i\~K(21 + 1)e(28-rr»' 

x cos[(n + 1+ 1)8 + y In(2n sine)-i rr(l + 1)-argfCl + l-iy)] 

x {2(cosw-A-1)cos[(n + I + l)w-~rr(l + 1)] 

+ (l-A)cos[(n + l)w-~rr(l + 1)] + O(n-1)}. (20) 

In order to illustrate the above theory we have calculated the series (14) 
in the case 1= 0 and for several sizes of basis set. The approximations are 
generated by terminating the expansion (14) after N terms. The results are 
shown in Fig. 3 in the form of a logarithm of the relative errors. The error 
should be of the order of the first neglected term, since apart from the 
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Fig. 3. Relative errors of the L2 radial integrals compared with the exact radial integrals 
for 1=0, A = 6., 0 and ejected electron energies Eq = 50 eV (squares), 100 eV (crosses), 200 eV 
(diamonds), The scattered electron energy is Ek' = 350 eV, the incident energy Ek = 413 ., 6 eV, 
and angle of scattering ekk' = 30°. 
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oscillatory terms, the series is geometric. The kinematic regions chosen are 
ones where the ionisation cross sections take their larger values and are thus 
of importance in close-coupling applications. The scale chosen shows clearly 
that the error is dominated by -NlogA behaviour, although the trigonometric 
terms have a noticeable effect in the oscillations they produce. For the 
kinematics shown in Fig. 3 the values of A are 1·424, 1·426 and 1·400 for 
Eq = 50, 100 and 200 eV respectively. In each case there is a linear trend 
which agrees with the slopes predicted from the above A. The optimum value 
of A for Eq = 50 eV from (19) is A = 5 ·9 ao l , leading to optimised A values 
which are virtually unchanged from those above. For the other values of Eq 
it is very similar. We think it is coincidental that our unrelated primitive 
optimisation of the continuum wave itself (A = 6 ao l ) gave a result so close to 
this one. The other main factor contributing to the rate of convergence is 
from the exponential term in (20) which is governed by the value of Eq . 

4. Discussion and Conclusions 

In order to further assess the L2 approximation technique in the context of the 
Born matrix elements input to a full close-coupling calculation, we investigated 
the convergence of the partial-wave expansion to the full amplitude. The 
differential cross sections are determined using 

d\)" = _1_ k'q 1 f( K) 12. 
(2rr)3 k q, (21) 

Some results are shown in Fig. 4, where it can be seen that including less 
than 10 partial waves leads to errors of ,the order of 100% in the cross section. 
If one therefore assumes that total cross sections from a full calculation will 
have an error related to that of the input Born terms one must conclude that 
pseudo-state bases need to be extended beyond the s, p and d waves typical of 
current calculations. In order to assess how far in basis size one must go we 
have also calculated the differential cross sections for I large enough to ensure 
convergence in the partial-wave sum. The results in Fig. 5 are typical. With a 
basis N = 5 in each partial wave we reproduce the correct values to the order 
of 10% which improves to 1-2% by the time N = 10. For the Laguerre basis 
studied, it would appear that if one is using the close-coupling formalism to 
compute inelastic and ionisation scattering at intermediate energies one should 
be careful to include pseudo-state functions up to I;::, 5-10, otherwise there is 
no additional gain in accuracy in extending the basis size N beyond 2-3. 

A question which naturally arises is how our basis compares with some of 
the other modern calculations, for example that of van Wyngaarden and Walters 
(1986). In order to test that there is nothing peculiar to our choice of basis 
we carried out a comparison with the pseudo-state data of van Wyngaarden 
and Walters. We used their second Born testing criterion for initial and final 
1 s states and compared the second Born amplitudes for intermediate 1= 0 
pseudo-states. The results are shown in Table 1, where we also include the 
earlier data of Fon et al. (1981). We add Laguerre pseudo-states terminating 
at the same basis size as van Wyngaarden and Walters. Our second Born 
result for the same number of states is very similar. We conclude that an 
optimised Laguerre basis has convergence properties that are not dissimilar 
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to other optimised sets. it is also apparent that the second Born amplitudes 
have not yet converged to two significant figures. 

Table 1. Partial-wave second Born terms of L 2 expansions shown for intermediate 
1=0 pseudo-states at 100 eV for Is --+ Is scattering, compared with data from Fon et 

al. (F) and van Wyngaarden and Walters (vW) 
Powers of 10 are denoted by a superscript and a.u. are used. R labels the real part and 
I the imaginary part of the amplitudes. The exact wavefunctions for Is and 2s states 
are employed. The notation 3s-8s for example implies 6, 1=0 pseudo states are included. 
A value A = 6 . 0 was used to generate the Laguerre basis states under the heading L 2 

expansions 

F vW L2 expansions (Laguerre bases) 

3s-45 35-85 35-45 3s-5s 35-65 35-75 3s-8s 
R 1· 6-2 3.0-2 3.2-3 1.1-2 1.7-2 2.3-2 2.9-2 

7.8-2 8.6-2 5.1-2 7.0-2 7.9-2 8.4-2 8.6-2 

This analysis demonstrates that pseudo-states give ionisation matrix elements 
which are geometrically convergent and so can provide accurate inputs to 
close-coupling equations for a large enough basis. We have not attempted to 
calculate ionisation matrix elements for arbitrary initial states. However, by 
using parametric differentiation, a general calculation will yield combinations 
of the fundamental integrals already derived and therefore our results can 
be extended to the wider class of ionisation amplitudes. There are some 
qualifications that need to be made. First, while the convergence is geometric, 
the value of A is often in the neighbourhood of 1, even for the optimum 
value of A. The rate of convergence is thus slow; larger baSis sets, say of 
the order of 10 states for each partial wave are required to obtain convergent 
amplitudes. Second, in a momentum-space close-coupling calculation, off-shell 
matrix elements are required as well as the on-shell ones. This means that the 
momentum transfer K varies over a wide range and thus affects the choice of 
A. In practice we assume that a value of A which is optimum for the kinematic 
regions that have the larger ionisation amplitudes would need to be used. Also 
the value will depend on the exact specification of states included in P-space, 
so choosing the optimum A in a calculation needs careful consideration. 

A related question we have not attempted to consider here but which 
should receive attention at some future stage is how the exchange matrix 
elements are approximated by pseudo-states. The implicit assumption in 
previous work has been that once pseudo-states approximate the direct Born 
amplitudes to sufficient accuracy then the exchange amplitudes will be similarly 
approximated. It would be nice to have some evidence for this. 
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Appendix A 

We derive the asymptotic form for the nth term of the Fourier expansion of 
the radial Coulomb function UI(q, r). The nth term contains two n-dependent 
quantities p~+l (x) and cP~+l (r). We begin by considering the behaviour of p~+l (x). 

The large-n behaviour of this polynomial is analysed by using the hypergeometric 
function representation of equation (7). The asymptotic behaviour is most 
conveniently determined with the aid of the estimate (Luke 1969, Vol. I, p. 241) 

2F1 (a, b-n; c; z) = r' _!"~~~ _, {f(a)(nz)-a[l + O(n-1 )] 

+ f(c-a)(nze-irr)a-C (l_z)c-a-b+n [l + O(n-1 )]} • (AI) 

After simplification one finds that 

f(n + 1) 1+1 _ y[8-~rrl (2n sine)-(/+l) . 
f(n + 21 + 2/ n (x) - 2e I f(1 + l-iy) I {cos[(n + 1 + 1)e + y In(2n sme) 

-~TT(I + 1)-arg r(l + l-iy)] + O(n-1)}. (A2) 

To determine the form of cP~+l (r) for large n we note (Magnus et al. 1966, p. 
245) that 

1 1 1 1 1 1 1 1 3 

L~(y) = TT-'2 e'2Yy-'2C<-4' n '2C<-4' cos[2(ny)'2 -~om-!TT] + O(n 2C<-4'). (A3) 

Hence, we get 

1 1 1 1 1 1 1 
cP~(r) = (.\r) 4' TT2 n +4' cos[2(n.\r) '2 -(I + ~ )TT] + O(n -4'). (A4) 

Combining (A2) and (A4) we have for the nth term of the expansion (2) the 
representation 

S~(q, r) = n-~ 2 e(28-rr)Y('\r) ± TT-t cos[2(n.\r) t -(I + t )TT] 

5 

x cos[(n + 1 + l)e + y In(2n sine)-i TT(l + 1 )-arg f(1 + l-iy)] + O(n-4'). (A5) 
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Appendix B 

Here we evaluate the integral 

I~(K) = fo 00 r e-r jl(Kr)cf>~(r) dr 

and determine its asymptotic form. We begin by noting the representations 

NKr) = .2St+1~)!!(2Kde-iKr1F1(l+1; 21+2; 2iKr), (B1) 

21+1 (n + 21 + 1) ! . . 
Ln (Ar)= n!(2I)! 1F1(-n.2I+2.Ar). (B2) 

The integral can then be evaluated in terms of the following basic integral: 

fooo e-zttC-11F1(a; c; t) 1F1(a'; c; At) dt 

= [(c)(z-1)-Q(z-A)-a'za+a'-c 2Fda, a'; c; s), (B3) 

where 
A 

s= . 
(z-1)(z -A) 

(B4) 

All our integrals have the following parameters: 

Z=~+}-i~, A=-2i~, c=2a'=2I+2, a=-m, m=O,1, .... (BS) 

We denote the integrals with these values as G(m, I, K, A). With the above it 
follows that 1-s = u2 where u is a complex number of unit modulus. We can 
thus write 

s = _ 2iKA = 1_e2iw 
(l-~A-iK)(l + ~A + iK) , 

where 0 ~ w ~ 1T • 

Further with the above values for s, z and A it may be shown that 

Then we have 

~ = eiwA 
z-1 ' 

where 

O~W~1T. 

[( 1)2 (K)2]-(/+1) . 
G(m, I, K, A) =A-m[(21 + 2) ~ + X + X e-1mW 2F1(-m, 1+ 1; 21 + 2; s). 

Suppressing all the constant indices in G one deduces 

1 [(I + 2) [(n + 21 + 2)21+1 KI 
In(K) = [(n + 1)[(21 + 1)[(21 + 3) AI+2 [-en + 21 + 2)G(n + 1) 

(B6) 

(B7) 

(BB) 

+ (2n + 21 + 2)G(n)-nG(n-1)] . (B9) 
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A simplification of this complex form is achieved by noting that the 
hypergeometric function in the G functions is related to the ultraspherical 
polynomials C~l: 

CI+1( ) r(n+2/+2) -inwF( 11"2/2"1 2iW) n COSOO = n !r(21 + 2) e 2 1 -n, +, +, -e . (BIO) 

After some rearrangement one finally finds 

(2Ki[( 1)2 (K)2]-(/+ll I~(K) =A-nr(1 + 1)(n + 21 + 1)(21 + 1) .~J+2 ~ + X + X ' 

( 2n + 21 + 2 -1 1+1 1+1) 
X n + 21 + 1 (cosoo-A )Cn (cosoo) + (1-A)Cn-1 (cosoo) . (Bll) 

To obtain the asymptotic form for large n we note (Magnus et al. 1966, p. 224) 

CI+l( ) 2 r(n+I+1) cos[(n+I+1)oo-~Tf(l+1)] O( 1-1) 
cosoo = + n . 

n r(n+ 1)r(1+ 1) (2sinoo)l+l 
(BI2) 

Thus we arrive at the estimate 

+ (l-A)cos[(n + I)oo-~Tf(l + 1)] + O(n-1)}. (B13) 
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