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Abstract 

In dynamial processes atomic systems evolve from a condensation region at small distances 
where all particles are close together to an asymptotic region where some of the constituent 
particles are free and accessible to measurement. This dynamical evolution is characterised 
by the Jost matrix. Evaluation of the Jost matrix generally involves complex calculations, 
but considerable simplification is achieved when the evolution can be described in terms of 
adiabatic or diabatic potential curves. For low energy ion-atom and atom-atom collisions 
standard molecular potential curves have long been used. For low energy electron-atom 
scattering and photo-ionisation similar molecular-like potential curves have been proposed. 
There is no a priori justification for the adiabatic approach in these latter systems, thus 
confrontation with experiment is crucial for further development of this theory. Anisotropy 
parameters represent a particularly appropriate probe of the various adiabatic representations. 
This is illustrated by studies of photo-ionisation of helium at the n = 2 threshold. Potential 
curve crossings are important here and their relevance to the anisotropy parameters is 
illustrated. 

1. Introduction 

The scattering of electrons from atomic and molecular systems is conven
tionally characterised by the scattering matrix with elements Sij and associated 
wave functions which incorporate incoming and outgoing waves representing 
the motion of a single electron. The indices i and j here refer to channels 
defined when the incident electron is far from the atom or ion with which 
it interacts. Fano (1987) has emphasised that an alternative picture in terms 
of the Jost matrices j+ and j- with elements Fpj and Floc respectively offers 
conceputal advantages relative to the S-matrix approach. Here the index i 
represents the asymptotic channels as before, but ex represents a new channel 
called a condensation channel since it relates to the behaviour of the system 
when the incident electron is close to the atomic core. The superscripts 
- and + refer to outgoing and incoming waves so that Floc describes the 
connection between an incoming wave in a superposition of asymptotic 
channels i,j, ... evolving into a superposition of condensation channels ex,p, ... 
at small distances. This is illustrated in the top part of Fig. 1. Here the 
condensation region is confined within a radius a and the propagation from 

• Paper presented at the Workshop on Interfaces in Molecular, Electron and Surface Physics, 
held at Fremantle, Australia, 4-7 February 1990. 

0004-9506/90/040641 $03.00 



642 

{ i,j, ... } 

{i,j, ... } 

Fig. 1. Schematic illustration of a spherical wave evolving 
from the asymptotic region towards a condensation region 
represented by rip (upper figure). The lower figure illustrates 
the outward motion represented by J~i. 
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asymptotic to condensation region is described in terms of the coordinate r, 
which will be referred to here as the reaction coordinate. This coordinate can 
be any coordinate that measures the overall size of the system so that r == 0 
corresponds to the condensation region and r -+ 00 to fragmentation. In the 
lower portion of the figure the complimentary evolution from the condensation 
region outwards as parametrised by the matrix J~i is illustrated. The S-matrix 
is the product of the J+ and the inverse of J-; 

Sij == U+[l/;-nij == I Jic.Jl/;-lcd. (1) 
IX 

Because the condensation channel indices ()( in equation (1) are summed over, 
the only formal requirement that the set of condensation channels must satisfy 
is completeness. This is a very general requirement and allows considerable 
freedom in choosing them. With a judicious choice of condensation channels 
the sum in equation (1) could be truncated after a few terms. If the propagation 
from condensation region to asymptotic region is adiabatic and the reaction 
coordinate r is an adiabatic variable, then only one term suffices and the 
system evolves from a single such condensation channel to a particular linear 
combination of energy-degenerate asymptotic channels. Because the energy is 
minimised at each value of r in an adiabatic picture, the system must evolve 
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into a superposition of asymptotic channels i,j, ... which are degenerate in 
energy. Such degenerate channels generally describe the geometric properties 
of the asymptotic channels and thus they are best probed by observations 
of anisotropy parameters which examine the shape and circulation properties 
of atomic charge clouds. In the special case of hydro genic ions and atoms 
there is an additional degeneracy which can be probed by measurements of 
the extended set of anisotropy parameters of Burgdorfer (1983). A special 
case of one of these parameters, namely, the 2p/2s excitation ratio will be 
employed later. 

2. Application to the Photo-ionisation of He 

To apply these ideas, it is necessary to select the condensation channels, 
the reaction coordinate, and the asymptotic channels. This is most reliably 
carried out in a speCific physical context. As a speCific physical system, 
consider a two-electron ion or an electron colliding with a single electron ion 
or atom. In either event, we deal with the states of a two-electron system. 
For definiteness, consider also the photo-ionisation of the system so that an 
outgoing electron is produced. Thus we consider 

hv+He -+ He++e- (2) 

or 

(3) 

where hv represent a photon and the He+ ion or H atom in the final state 
may be excited. Some choices of the condensation states that have been 
discussed in the literature are the doubly excited symmetry basis (DESB) of 
Herrick (1975) the molecular-like states of Feagin and Briggs (1986), and the 
hyperspherical adiabatic states of Macek (1968). 

The normal hydrogenic independent particle orbitals for two electrons are 
labelled by nj/jmj where i = 1,2 in the approximation that the spin-orbit 
interaction is neglected, in the first approximation. Since total angular 
momentum is a good quantum number, states of fixed total orbital angular 
momentum labelled by n1n2LM are formed. If both n1 and n1 are greater 
than unity, these independent particle states are energy-degenerate and it 
is necessary to form linear combinations of such states to obtain a good 
first-order set of states. This combination is normally found by diagonalising 
the electron-electron interaction l/r12. Since this cannot be done generally, 
Herrick (1975) chose a set of basis states thatdiagonalised a different operator, 
namely 012 = ~(ri+d)-2r1 .1'2. Since this operator involves r1 .1'2 it represents 
the electron-electron correlation in some approximation. It is found that for 
the most important doubly excited states, this DESB representation is indeed an 
improvement over the single particle orbitals. These DESB states are labelled 
by the quantum numbers {n1n2LM,K, T}A, where K and T are new quantum 
numbers appropriate to the linear combination of states that diagonalises 
012. The quantum number A introduced by Lin (1984) takes on the values 
{+, -, O} and is convenient to further characterise the states. Channel labels 
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are obtained by omitting the principal quantum number of one electron, say 
n2 (corresponding to n2 -- 00). The remaining principal quantum number then 
refers to the final state of the ion in the reaction (2). Thus we consider 
channel DESB labels {nLM, K, T}A. 

The molecular-like (MO) condensation channels of Feagin and Briggs (1986) 
employ eigenstates of the system with the electron-electron vector r12 = rl - r2 
held fixed in first approximation. The quantum numbers appropriate in this 
case are the projection of the two-electron angular momentum on the r12 

axis, called m, the angular momentum L, the projection M of the total angular 
momentum on a space-fixed axis, and the projection T of the total angular 
momentum on r12. The channels are further identified by the state of the 
ion when one of the electrons moves to infinite distance. This introduces a 
principal quantum number n and a parabolic quantum number n~. This latter 
quantum number relates to the K quantum number of Herrick according to 
K = n - T - 1 - 2n~ and thus the DESB labels may be used for the MO channels 
also. One of the principal virtues of the MO description is that it allows 
one to interpret the DESB states in terms of adiabatic potential curves and 
eigenstates. This is needed in order to connect the condensation channels 
with the asymptotic channels. It also provides a link with the third set of 
states, namely, the adiabatic hyperspherical channels of Macek (1968). 

The hyperspherical adiabatic states are obtained by solving the two-electron 
Schr6dinger equation in an approximation where the hyper-radius R = (ri +r~)! 
is held fixed, in the first approximation. This gives a set of condensation 
channels (for a given spin S) which are labelled by LM and a new index J1 
which simply labels the order of the adiabatic potential curves. The index J1 
gives little information on the nature of the states so it is appropriate to adapt 
the DESB labels for the channels. This connection is made possible by Feagin 
and Briggs' MO potential curves which show a surprisingly close similarity 
with the hyperspherical adiabatic potential curves. Thus for all three of the 
condensation channels we employ the labels {nLM,K, T}A recognising that the 
basis states in the three representations differ. 

Our second step is to identify the appropriate reaction coordinate r. In the 
case of the MO and hyperspherical representations the choices are clear; r 
represents r12 in the MO picture and R in hyperspherical picture. A reaction 
coordinate in the DESB representation is not clearly identified, since the 
classification is not based on an adiabatic approximation. Here we will employ 
the MO connection between condensation and asymptotic channels for the 
DESB representation, since, as shown by Feagin and Briggs (1986), the DESB 
quantum numbers have a simple physical interpretation in the MO picture. 

The third step is to identify the asymptotic channels i,j,.... It is often 
best to regard these as set by the apparatus that observes the final state. 
Since one usually observes speCific energy eigenstates, the principal quantum 
number n is appropriate. By observing radiation emitted in the decay of a 
final state, one can also determine the orbital angular momentum quantum 
number l. In the simplest case we distinguish between 25 and 2p states by the 
Lyman-alpha emission of the 2p state and the electric field quenching of the 
25 state. Additional parameters are obtained by observations of alignment and 
orientation. Here we will identify asymptotic channels somewhat differently. 
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We still employ the n label but recognise that the field of the outgoing electron 
mixes degenerate Stark states of the excited ion. This mixing implies that 
the asymptotic states diagonalise the projection of the electric field of the 
outgoing electron ~r2/d onto the coordinate rl of the electron remaining 
with the ion. That is, one diagonalises rl . ~/r~. It turns out that the 
DESB channels and the MO states at large distances become identical to 
these particular configuration mixed states. The hyperspherical adiabatic 
states at large distances diagonalise the sum of the electric field term and 
a new term 1~/2r~, representing effects of the angular momentum of the 
outgoing electron. There is also an additional term j-lI which has no physical 
significance. Its effect is generally small, so it will be neglected in the 
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Fig. 2. Adiabatic potential curves of He computed in the molecular orbital (upper figure) 
and the hyperspherical representations (lower figure). 
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remainder of this discussion. The asymptotic channels in the hyperspherical 
approximation then diagonalise the 'dipole' operator 

(4) 

Herrick (1978) showed that within the degenerate set of basis states nlm the 
operator Y12 . L commutes with D12 and that the eigenvalues of this operator 
are identical to the quantum number K in the approximation that Ii in equation 
(3) is neglected. 
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Fig. 3. The 2p/2s ratio computed in the molecular orbital 
representation and the hyperspherical adiabatic approximation 
compared with the experimental data of Woodruff and Samson 
(1982). The solid curve assumes only the dominant '+' channel 
is populated. The dashed curves give the limits obtained with 
a 1·7% admixture of the '-' channel (see Starace and Macek 
1987). 

Adiabatic potential curves connecting to the n = 2 states of He+ calculated 
in the hyperspherical approximation and in the MO representation are shown 
in Fig. 2. Note the qualitative similarity of the 1 pO curves which are relevant 
for photo-ionisation. According to the Franck-Condon principle one expects 
the curve which is lowest at small Rto be most strongly excited at low 
outgoing electron energy. This curve connects with the {K, TJA = {a, l}+ state 
(2prr u in the MO representation) at large distances. The 2p/2s cross section 
ratio predicted in the DESB and MO representations is infinite since the {O,l}+ 
channel has no 2s component in these approximations. Alternatively, the 
hyperspherical approximation requires diagonalisation of the operator D12 and 
the corresponding eigenstate does have a 2s component so that the ratio is 
predicted to be finite. Exact diagonalisation of D12 gives a {O,l}+ with a 2s 
component such that the 2p/2s cross section ratio is 1·5. Fig. 3 compares 
this ratio with the experimental data of Woodruff and Samson (1982). The 
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Fig. 4. Hyperspherical adiabatic potential curves connecting to the n = 3, 4 states of He+ 
showing the narrow avoided crossing between the lowest two curves. 

2.0 

1.5 
• 0'6 eV 01'1 eV He 

1.0 

""- 0.5 

0.0 

-0.5 

-1.0 
0 2 4 5 8 10 

n 

Fig. 5. Asymmetry parameter p(n) for the lowest energy 
electrons at successive thresholds. The solid curve is the 
theoretical result of Greene (1980) using the hyperspherical 
adiabatic representation. The molecular orbital and DESB 
representations gives a constant p = -1. The experimental 
points are from Heimann et al. (1986). 

agreement is moderate. We know that the channel {l,O}- (3pO"u in the MO 
representation) is populated in an amount of 1· 7%. When this admixture is 
introduced it can add or subtract from the dominant component depending 
upon the phase of the photo-ionisation matrix elements. This then gives the 
limits indicated by the dotted lines in Fig. 3. Since these limits encompass the 
data we see that a correct prediction of the ratio requires using eigenstates 
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which diagonalise the operator in equation (2) and a small admixture of 
channels other than the dominant one. 

The asymmetry parameter {3 which determines the angular distribution of 
the photoelectrons according to 

(5) 

is determined by the asymptotic admixture of m = 0 and m = 1 states in 
the final channel. In the MO and DESB representations only the 7T channel 
corresponding to m = 1 is populated in first approximation. This gives an 
asymmetry parameter of -1 (Greene 1980). The hyperspherical adiabatic value 
is found to be 0·5 and experiment obtains 0·0 at the threshold for exciting 
the n = 2 levels. Again, allowing for the known 1·7% admixture of the {I,OJ
brings the adiabatic value down to 0·0 in agreement with experiment (Starace 
and Macek 1987). 

The crossing at R = 7 between the {0,1}+ and the {I,O}- curves is critical 
for the anisotropy parameters. This crossing between '+' and ,_' curves also 
occurs for the higher n levels as seen in Fig. 4. The simple theory using 
only the dominant {O, l}+ channel has been used to compute the asymmetry 
parameter for states up to n = 10 by Greene (1980) and the results are shown 
in Fig. 5 together with the measurements of Heimann et al. (1986). Agreement 
for the higher levels with the hyperspherical adiabatic predictions is good, 
but there is a hint of disagreement at n = 6. The hyperspherical result slowly 
approaches the DESB and MO prediction of {3 = -1 as n increases, reflecting 
the increasing importance of the electric field term in equation (2) relative 
to the angular momentum term for high Rydberg states. The anisotropy of 
the excited states has been further probed experimentally for the n = 2 levels 
by Jimenez-Meir et al. (1986). The measured anisotropy is also in moderate 
agreement with the simple adiabatic theory (Greene 1988). 

3. Concluding Remarks 

The adiabatic picture, while quite good at low n, is expected to fail for high 
n, since the Rydberg levels crowd together and adiabatic evolution is unlikely. 
For sufficiently high n the double ionisation threshold is approached where two 
electrons emerge in the Wannier configuration (Fano 1983). Here the electrons 
always remain on opposite sides of the nucleus so that "1 = -r2. We expect that 
the channels at intermediate distances look something like this configuration. 
Such states can only be formed by dynamical linear combinations of a large 
number of adiabatic states. In this case the simple adiabatic evolution that we 
have described is inappropriate and an entirely new representation is needed. 
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