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Abstract 

Various effective charge approximations are explored for the high energy electron impact 
ionisation of H(ls) in coplanar asymmetric geometry, using a first order perturbative model. 
Our results are compared with other more sophisticated calculations and with experiment. 
It is found that effective charge prescriptions satisfying the requirement that, in the limit of 
zero ejection energy, the escaping electron sees the full nuclear charge while the scattered 
electron is totally screened, are unsuccessful. In contrast it is found that the Coulomb 
projected Born exchange approximation, where both electrons see the full nuclear charge, 
gives much better results. In general it reproduces the position and magnitude of the binary 
peak fairly well, although it is not so successful in the description of the recoil. 

1. Introduction 

This paper presents an investigation into the use of first order effective 
charge approximations in the theory of electron impact ionisation and as such 
is a sequel to the work of Rudge and Schwartz (1966) and Schulz (1973). 
Early investigations using this method were limited by the small amount of 
purely relative measurements with which one could compare the theoretical 
predictions. Very recently, accurate new experimental data both relative and 
absolute have become available for an energy regime not previously considered 
(Ehrhardt et al. 1986, 1989; Klar et al. 1987; Lohmann et al. 1984), where 
the kinematics are highly asymmetric and thus particularly favourable for 
a perturbative approach. The existence of these results together with the 
good agreement obtained by other more sophisticated approximations (Byron 
et al. 1983, 1985; Curran and Walters 1987) encourage us to believe that 
there is now a firm standard against which to judge the value of such simple 
effective charge approximations. We compare our calculations with both the 
new experimental data and the results of other more sophisticated theoretical 
approaches (Byron et al. 1983, 1985; Curran 1986; Curran and Walters 1987). 

The purpose of the effective charge description is to represent in a simple 
way the essential physics of the interactions and correlations of the electrons 
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in the final ionised state; these complicated effects are viewed as giving rise to 
screening of the nuclear charge. Thus, an outgoing electron does not see the 
nucleus and the other electron but merely sees a nuclear Coulomb potential 
whose effective charge is different from the true nuclear charge. Such a 
view might be criticised because the effective Coulomb potential is spherically 
symmetric and so, it would seem, cannot represent angular correlation effects. 
However, these effects will be to some degree taken into account in that the 
effective charges will, in general, depend on the momenta of the outgoing 
electrons in the final state (see Coleman 1969; Geltman and Hidalgo 1974; 
Schulz 1971). 

The use of effective charges should lead to simpler approximations; for 
example, in order to adequately describe the experimental data in asymmetric 
geometry it is necessary to go beyond the first Born approximation to the 
second. By using effective charges we hope to succeed with a first order 
approach. There is no unique way of selecting the effective charges and 
in this paper we experiment with some reasonable prescriptions. We look 
at several approximations which use momentum dependent effective charges 
chosen so that the Peterkop (1960, 1962) relation is satisfied. We also examine 
the case where the ejected electron totally screens the nucleus while seeing 
the full charge, i.e. the conventional first Born approximation (Bl), and where 
no screening takes place, i.e. both electrons see a nuclear charge of unity, 
the Coulomb projected Born (CPB) approximation (Geltman and Hidalgo 1974). 
With the exception of the CPB, all approximations satisfy the usual constraint 
that in the limit of zero velocity for one of the outgoing electrons this electron 
sees the full nuclear charge, while the other is totally screened. As will be 
seen from our calculations this constraint seems to lead to poor results. In 
stark contrast the CPB performs relatively well in the binary direction. 

We start in Section 2 with an outline of our approximation. Section 3 
discusses the selection of effective charges. Section 4 gives calculational 
details. Our results are presented in Section 5 and conclusions in Section 6. In 
addition, we have thought it worth while to include, mainly in the appendices, 
a novel derivation of the scattering amplitude and triple differential cross 
section (TDCS). Some of the results presented here have already appeared in 
a preliminary communication (Whelan et al. 1989). Atomic units in which 
h/21T = me = e = 1 are used throughout. 

2. Theory 

Preliminaries 

Suppose we have an electron with momentum ko, energy Eo, which collides 
with a hydrogen atom in the ground state and that after the collision two 
electrons, one fast with momentum kf, energy Ef, and one slow ks,Es, are 
detected. The total energy and momentum are conserved: 

k6 = k~ + k~ - 2Eo + 2Erecoil , (1) 

ko = kf + ks + krecoil , (2) 
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where €o is the energy of the ground state (-0·5 a.u. for Is) and krecoil,Erecoil 

are the momentum, energy of the recoiling ion. We define the momentum 
transfer as 

K=ko-kr. (3) 

Because of the large mass difference between the proton and the electron, we 
may neglect Erecoil in (1). From (2) we have 

krecoil = K - ks . (4) 

Therefore we see that for fixed K, II ks II we have maximal recoil of the 
nucleus when ks lies in the -K direction and minimal when ks is parallel to 
K. The proton has on average a momentum of one atomic unit prior to the 
collision (Bethe and Salpeter 1957), and therefore if the magnitude of krecoil 

is significantly greater than unity then it must follow that the nucleus has 
experienced a force during the collision. As we will see below, the TDCS 
becomes very small in the recoil direction in those cases where 

II krecoil II > 1 . 

Because we include exchange in our formalism we have found it convenient 
to adopt the operationally sound definitions of 'slow' and 'fast' detected 
electrons. We use this notation throughout this paper, i.e. anything with the 
subscript s applies to the slow electron, anything with f applies to the fast. 
It should be noted, however, that all our theoretical results are quite general 
and can be equally well applied to symmetric and asymmetric geometries. 
We assume that before the collision the system is in a state i and after in a 
state j. 

General Formalism 

The Hamiltonian for the system may be written as 

H= Tr+Ts + Vr+ Vs + Vsf, (5) 

where Tr=-~V'f' Ts=-iV'~, Vs,f=-l/rs,r is the interaction between the s,(th 
electron and the nucleus, Vsr is the electron-electron interaction II II rs - rr II. 
Let r be the desired solution of the SchrMinger equation, i.e. Hr = Er, 
with outgoing wave boundary conditions, appropriate to the initial state: 

cf>i = tfJo(rs ) exp(i ko. rr), (6) 

where tfJo(r s) is the hydrogen atom ground state wavefunction. 
Ionisation may be considered as being a rearrangement collision and from 

the general theory for such a process (Goldberger and Watson 1964) it follows 
that the direct amplitude may be written as 

(kr,ks)=- 1 <:'/7 (cf>jl Vjl 'J'+), 
(2rr) 

(7) 
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where 

4>j = expO k s • rs) expO kr. rr). (8a) 

Vj = Vs + Vr + Vsr . (8b) 

Here 4>j is the final state which is an eigenvector of the reduced Hamiltonian 

Hj = Ts +Tr. 

i.e. we assume Vj to be negligible in the final state. The corresponding exchange 
amplitude g(ks• kr) is obtained from (7) on interchanging the coordinates rr 
and rs in tp+. From (7) and (8) it is clear that 

g(ks• kr) = (kr. k s). (9) 

In the formulation of (7) it has been tacitly assumed that the interactions 
between the particles tend to zero sufficiently rapidly at large separation. 
However, in reality Vr, Vs and Vsr are long range pure Coulomb potentials. Our 
attitude is that we regard the Coulomb potentials as being cutoff to zero at 
some very large but finite distance. It would indeed be a serious matter if this 
viewpoint were invalid, i.e. if the physical results of interest were dependent 
on the environment outside the experimental apparatus. 

It is useful to write the basic matrix element (7) in a form in which some 
interaction Wj is absorbed into the left-hand side state. It is shown in Appendix 
A that 

(kr.ks) = - 1 5/2 (xi I (Vj - Wj)! r} - 1512 (xi I (Vi - Vj + Wj)! 4>i}. (10) 
(2rr) (2rr) 

where 

Vi = Vr+ Vsr, (11) 

and xi is the scattering state, with ingoing scattered waves, reSUlting from 4>j 
in the presence of the interaction Wj. 

We assume that Wj is separable, i.e. that 

Wj = Va(rr) + Vb (rs) • (12) 

where Va(rr), Vb(rs) are potentials which act upon the fast and slow electrons 
respectively. For the choice (12), xi has the form 

xi = s;(kr. rr) Si;(ks• rs) • (13) 

where 

(Tr + Va(rr) - kl) S;(kf. rr) = o. (14) 
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with l;;;- having ingoing scattered waves and originating from the state exp(i I<r • rt> 
of tPf, and similarly for l;b". With the choice (12) we show in Appendix B that 
the second term in (10) vanishes and so 

((l<f,l<s)=- 1 ~n(l;;;-(l<f,rr)l;b"(l<s,rs)1 Vs +Vf+Vsf-Va(rr)-Vb(rs) I r). (15) 
(2rr) 

Again g(l<r,l<s) is obtained from (15) on interchanging the coordinates rr, rs in 
r. Formula (15) is the starting point for the approximations considered in 
this paper. 

Suppose now that we take Va and Vb to be Coulomb potentials with effective 
charges Zr,Zs respectively, i.e. 

Then (16) becomes 

Zf 
Va(rf) = - Yr ' 

Zs 
Vb(rs) = - Ys . 

{(I<r, I<s) = - (2 1)5/2 f IJr*(zs, I<s, rs) IJr*(Zf, I<f, rt>(Vsf - (1- Zs) _ (1 - Zf») 
rr ~ ~ 

x 1f+(rr, rs) drr drs, 

(16) 

(17) 

where IJr(z, k, y) defines a continuum Coulomb function with ingoing waves, 
and where 

(tfJ±(Z, 1<, r) I tfJ±(z, Ii, r» = 8(1< -1i)(2rr)3 . (18) 

We note that in (17) we have made no approximation other than the 
assumption that Vj may be treated as short range. In other words, even if 
IJr(zs, I<s, rs) IJr(zr, I<f, rf) is a poor approximation to the final state and we use 
the exact wavefunction r, we will arive at the correct scattering amplitude. 

The simple model that we study here consists of taking r to be the 
unperturbed initial state tPj. Given this perturbative approach it is then 
reasonable to identify tfJ-(zs, I<s, rs) tfJ-(Zf, I<f, rf) with the final ionised state 
which is now described through the potentials (16). These potentials represent 
an average screening of the nucleus by the other electron in the final state; 
zs,f being the effective nuclear charge visible to each electron. The charges 
zs,f will in general be functions of I<f and I<s. Therefore, the direct amplitude 
is given by 

{( I< 1<)- 1 f"'-*( r. ) -*( r.)( (1-zs) (I- Z t» r, s - - ( 5/2 't' Zs,Ks,rs tfJ Zr,Kf,rr Vsr- -- - --
2rr) Ys ~ 

x exp(i 1<0' rr) tfJo(Ys) drr drs (19a) 
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and the exchange amplitude by 

g(kr.1(s) = - (2 \5/2 f 1/'-* (Zs, ks, rr) 1/'-* (Zr, kr, rs)(vsr - (1 - Zr) _ (1 - zs») 
IT ~ " 

x exp(i ko • rr) !/Jo(rs) drr drs. (19b) 

Note that when we exchange the particles we also exchange the effective 
charges; the same zs,zr being used in the direct and exchange amplitudes. 
Given the amplitudes (19) the spin averaged triple differential cross section 
is given by 

d3u = kskr (I f +g12 +31 f -g 12 ). 
,~,~ 4ko (20) 

3. Choices of Effective Charges 

In the formalism given above the potentials Vs, Vf, Vsr have been treated as 
finite range. potentials, albeit of very long extension. A theory of ionisation in 
which the Coulomb potentials are treated exactly to infinity has been developed 
(Peterkop 1960, 1962; Rudge and Seaton 1965). Apart from an overall phase 
factor, which disappears on forming the cross section (20), the results so 
obtained are in agreement with (15) and (19). However, this analysis (Peterkop 
1962) requires that Zs,Zr be chosen to satisfy 

Zs Zr 1 1 1 
ks + kr = ks + kr - "lI-;-ks--....,k~r"1I ' (21) 

in order to avoid an indeterminate phase factor in (15). The Peterkop relation 
(21) is an inevitable consequence of the long range treatment and it does have 
the physical interpretation that, asymptotically as the two electrons move 
away from the nucleus along straight lines defined by k s, kf' their potential 
energy in the effective fields (16) should equal their true potential energy in 
the field Vj (Rudge 1968). However, in (19) when we approximated 1p+"(rr, rs) by 

tPi = !/Jo(rs) exp(i ko. rf), 

we lost the correct asymptotic form for an ionisation problem: 

lim tPi = o. 
rs -co,n-co 

Here tPi is zero almost everywhere on the hypersphere p = (r~ + rf)1/2 (see 
Rudge and Seaton 1965) and we no longer need the Peterkop relation (21) to 
avoid indeterminate phase factors. 

In these circumstances it is not clear a priori whether (21) is an important 
condition to impose on the effective charges, especially as we have seen that 
it plays no role in an entirely consistent formulation in terms of short range 
potentials. We will discuss the significance of imposing the Peterkop condition 
within the limits of first order perturbation theory in a latter communication 
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(Whelan et al. 1990). However, (21) does present a criterion for the selection 
of Zs,Zf. In the calculations below we consider the following choices for the 
effective charges: Zs = I,Zf = 0, i.e. the first Born approximation; Zs = I,Zf = 1, 
the Coulomb projected Born approximation (CPB); and also 

(i) 

Zs = 1, 

ks 
Zf = 1 - lfIis-'::kr II ' 

i.e. the slow electron sees the full nuclear charge at all times. 
(ii) 

Zs = 1 _ ks kg. (I<s - kf) 
II ks - kfil~ , 

Zf = 1 _ kf kf • (kf - ks) 
Ilks -kff ' 

see Schulz (1973, approximation A6). 
(iii) 

kn+l 

Zs = 1 - (k~ + knsll ks .:: kf II ' 

Zf = 1- kn+1 
.,. 11 f 

I )1, It • • II' 

see also Schweitzer and Klapish (1987). We only consider n = 1 here. 

All five approximations satisfy the physically reasonable requirement that 
as 

ks -+ 0, 

then 

Zs -+ 1. 

The approximations (i), (ii) and (iii) satisfy the Peterkop relation (21), while B 1 
and CPB do not. Of course if ks -+ 0 or kf -+ 00 then (21) reduces to Zs = 1 which 
is obeyed by all the approximations. However, the Rudge-Seaton-Peterkop 
scattering amplitude contains an indeterminate phase factor for all finite values 
of ks and kf if either the Bl or CPB choices of Zs and Zf are employed. It 
is frequently assumed that in the limit of zero ejection energy that the slow 
electron should totally screen the fast electron from the nucleus, i.e. when 
ks -+ 0 we should have 

Zs -+ 1, Zf -+ O. (22) 
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It should be noted that the CPB differs from the other choices of effective 
charges in respect that (22) is not valid; it assumes that both escaping electrons 
always see the full nuclear charge. Both (ii) and (iii) have the advantage that 
they are symmetric in les and lef, i.e. 

Zs(les, lef) = Zf(lef, les). 

We include exchange as in (19b) for the Coulomb projected Born approximation, 
hereafter denoted CPBX, and in (i), (ii) and (iii). 

4. Evaluation of Integrals 

The evaluation of (19) essentially reduces to the evaluation of integrals of 
the form 

with 

In = J exp(-i\ys) exp(-i les • rs) exp{i (leo - lef). rrlA(n) 

X IFI (as, 1, i (ks Ys + les • rs)hFI (af, 1, i (kf Yf + lef. rf» drs drf, (23) 

A(1) = -(I-zs)/Ys, A(2) = -(1 - Zf)/Yr, 

1 
A(3) = "rr - rs i, , 

. Zs 
as = I ks ' 

. zr 
af = I kr. 

Well known analytic expressions exist when n = 1,2 (Coleman 1969). The case 
n = 3 is much more difficult and there have been a number of alternative 
approaches to its computation proposed (Geltman and Hidalgo 1974; Schulz 
1971). We have chosen to follow the analyses of Sinha and Sil (1979) and Roy 
et al. (1980). * It can be shown that 13 may be written as a single integral 
over the real variable v: 

13 = constant J: dv N(v), (24) 

where 

. 02 {I . (U)a f
( y )as

} ( UW-Vy) N(v)=!~ oi\oO" V exP(l1ra f ) y y+w 2FI I-ar,as,l, U(Y+W) ,(25) 

* Unfortunately the Roy et al. paper, which is the most detailed account of the method, 
contains a confusing series of misprints: on p. 3446 they define the quantities {Xi, Y/,Zj}i=1.4 
which apparently depend on y, a variable which should have disappeared in an earlier 
integration. Throughout their 12 definitions, y should be replaced by A. 
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Fig. 1. Coplanar triple differential cross section as a function of the ejected electron angle 
Os for Eo = 250 eV and Es = 5 eV; (a) Of = 3°, (b) Of = 5° and (c) Of = 8° : 

Experiment: ¢ Erhardt et at. (1986, 1989) • Lohmann et al. (1984) 

Theory: - Bl ---- CPBX 

D., 0, ... Effective charge approximation (i), (ii), (iii) 

o Pseudo state approximation (Curran and Walters 1987) 
• EBS (Byron et al. 1983, 1985) 
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Fig. 2. As for Fig. 1 but with Eo = 250 eV, Es = 10 eV: (a) 8f = 5° and (b) 8f = SO. 

and where U, V, W, Yare polynomials of the form ocv2 +pv+y with oc,p,y complex 
depending on ko,kf,ks,(J",A. Therefore N(v) is simply a sum over algebraic 
terms multiplied by hypergeometric functions; recall that (d/dzhFl(a,b,c,z) = 
2Fl(a+l, b+l, c+l, z). The hypergeometric functions were evaluated by direct 
expansion using the linear transformations specified in Abramowitz and Stegun 
(1972) and the complex gamma functions using the method of Lanczos (1964). 
The one dimensional integral over v in (24) was evaluated numerically. 

5. Results 

In this section we compare our theoretical predictions with the experimental 
results of the Kaiserslautern group (Ehrhardt et al. 1986, 1989; Klar et al. 
1987). These experiments considered events where the incident, scattered and 
ejected electron lie in a single plane. It will be convenient to introduce polar 
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coordinates r = (r, 8), the slow and fast electron angles es, ef being measured 
with respect to the incident direction (Le. eo = 0). We follow the convention 
that 

-IT < e ~ IT. 

Negative angles correspond to clockwise, positive to anti-clockwise rotation 
of the e = 0 axis. Each experiment was a series of measurements of the TDCS, 
as es varied with all other parameters (Es,Eo, er) fixed. 

Ehrhardt and his collaborators (Ehrhardt et al. 1986, 1989) have made 
absolute measurements of the TDCS for Eo = 250 eV, Es = 5 eV, ef = 3",8° and for 
Eo=150eV, Es=3,5,10eV, ef=4°,10°,16°. Lohmann et al. (1984) have made 
relative measurements for Eo = 250 eV, Es = 5,10,14 eV, ef = 3°,5°,8°. In Table 1 
of their paper Lohmann et al. (1984) quoted absolute cross sections obtained 
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As for Fig. 1 but with Eo = 150 eV, Es = 3 eV: (a) Or = 4°, (b) Or = 10°, (e) Or = 16°. 
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by normalisation of their relative data to the second Born calculations of 
Byron et al. (1983) at Eo = 250eV, Es=10eV, Of=5° and 05 =-70°. We use 
the normalised data in our figures; for present purposes we did not consider 
it worth while to change the normalisation. 

Also shown in our figures are theoretical results calculated in the first Born 
(B 1) and the eikonal-Born series (EBS) approximation of Byron et al. (1983, 
1985), and in the coupled pseudo-state model of Curran and Walters (1987). 
We consider the latter two approximations to be amongst the best quantum 
calculations presently available, against which it is useful to judge the present 
work. Comparison with Bl is crucial, since it is improvement upon Bl which 
shows whether our approximations are good or bad. The defects in Bl for 
asymmetric geometry, which one hopes to correct with a better theory, are now 
documented (see e.g. Curran and Walters 1987): the binary peak is generally 
too large and needs to be moved to more negative Os; the recoil peak is too 
small and needs to be shifted to larger positive Os. This is made clear by 
comparison with the experimental data in Figs 1-6. 

Our effective charges approximations (i), (ii) and (iii) are exhibited in Fig. 1 
for Eo = 250 eV. It is clear that these choices do not work-the results differ 
little from B1. This is illustrative of our more general experience that effective 
charges chosen to satisfy (21) and (22), particularly (22), give poor results. 
A sharp contrast to this is provided by the CPBX approximation which in 
the binary region gives a substantial improvement over B1 (Figs 1-3, 5) and 
generally moderately good agreement with experiment (Figs 1-6). The failure 
of the effective charge approximations (i)-(iii) is consistent with the earlier 
results of Rudge and Schwartz (1966) and Schulz (1973). 

Table 1. Comparison of the momentum transfer direction OK and the angular position 
of the binary peak as given by experiment and theory for Eo = 250 eV 

Es ef eK ExptA DWIA-I DWIA-II DWIA-III BIB CPBX B2c 

5 3 52 63±5 63 53 84 52 63 63 
5 5 64 69±2 70 63 83 64 74 71 
5 8 71 78±2 73 71 82 71 79 77 

10 5 58 70±2 65 58 80 58 68 66 
10 8 67 81±2 70 69 78 67 75 
14 5 54 70±3 64 57 78 54 64 
14 8 63 84±2 68 64 79 63 72 

A Lohmann et al. (1984). 
B Byron et al. (1983). 
c Byron et al. (1985). 

A careful comparison of CPBX with the data of Ehrhardt et al. (1986, 
1989) suggests that there is a tendency for CPBX to slightly overestimate 
the binary peak height, although this is not always the case (see Fig. 6b); it 
should be remembered that Ehrhardt et al. did not give extensive experimental 
error estimates for their data and that we are comparing with the scatter of 
experimental points which they have kindly supplied. Also they estimated a 
normalisation error of 15% in the generation of their absolute data. However, 
the comparison between the pseudo-state calculation of Curran and Walters 
(1987) and CPBX would tend to support the view that CPBX may be slightly 
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too large in the binary region. The CPBX generally. yields a good estimate of 
the position of the binary peak (see Table 1). 

Of particular interest is the comparison with the new experimental data 
of Ehrhardt et al. (1989) at Eo=150eV, Es=3,10eV. At Es=3eV (Fig. 4) the 
CPBX exceeds the experimental maximum by approximately 28%, 8% and 23% 
(again it is important to remember that there is a 15% normalisation error and 
no error bars given for the experimental data) at the angles lh = 4°,10°,16° 
respectively. In comparison with the older data at Eo = 150 eV, Es = 5 eV 
(Fig. 5), the corresponding excesses are 20%, 10%, 44%. The difference of 44% 
at lh = 16° seems rather large. Here (Fig. 5c) even the coupled pseudo-state 
approximation of Curran and Walters (1987) is larger than the experimental 
data by a significant amount; CPBX is a mere 13% above the pseudo-state 
numbers at the maximum. 

The situation at Eo = 150 eV, Es = 10 eV (Fig. 6) presents a somewhat different 
picture to Figs 4 and 5. Here for Bf = 10° and 16° there is very good accord 
between CPBX and experiment, especially at Bf = 10° (Fig. 6b); for Bf = 4° 
(Fig. 6a) the experimental and CPBX peak heights are again in quite good 
agreement, but the experimental peak looks significantly sharper. However, a 
lack of experimental data around the peak and absence of error bars makes 
it difficult to come to any specific conclusions. 

Generally speaking, the CPBX is much less successful in the recoil direction; 
occaSionally, however, the pseudo-state TDCS exhibits some interesting structure 
in the recoil direction. In particular, when the cross section is small, it can 
have two maxima, with the position of the first of these in rough accord with 
the single maximum of CPBX (see e.g. Fig. 5c). However, the TDCS is very 
small in these cases and it would be unwise to draw any general conclusions. 
Finally, it is interesting to note that the large recoil peaks were observed in 
cases when the momentum transfer and hence the krecoil of (4) was small, and 
if II krecoil II becomes greater than 1 the recoil peak dies away. For example 
contrast Fig. 1 a where II K II = 0·27 a.u., i.e. II krecoilll max = 0·64 a.u. and Fig. 2b 
where II K II = 0·62 a.u., i.e. II krecoilll max = 1·4 a.u. 

6. Conclusions 

We have compared various effective charge approximations, within the context 
of a first order perturbative model, with the latest good quality experimental 
data and recent calculations for high energy asymmetric geometry. We have 
explored a number of prescriptions where in the limit of zero ejection energy 
the slow electron sees the full nuclear charge, while the scattered electron 
is totally screened from the nucleus. These have returned only poor results. 
We are of the opinion that these prescriptions have nothing to offer. We 
were able to achieve reasonable but not perfect agreement with experiment 
in the important binary peak region by assuming that the nucleus was totally 
unscreened for both the outgoing electrons, i.e. the CPBX approximation. These 
results are consistent with earlier more complex calculations which employ 
effective charges. For example, Smith et al. (1979) considered a different 
asymmetric geometry from ours in a number of distorted wave approximations, 
getting their best results with an approximation where the scattered and ejected 
electron move in pure Coulomb fields of unit charge, i.e. essentially the same 
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choice of Z values as in the CPBX. However, this approximation failed at large 
scattering angles paralleling the failure of the CPBX in the recoil direction. 
Weigold et al. (1979) employed various effective charge models within the 
framework of the distorted wave impulse approximation and found only poor 
results when they imposed the Peterkop condition. They found their best 
results for the forward peak when Zs = Zf = 1 (as did Lohmann et al. 1984). 

These results and ours suggest that there is a need to further investigate the 
role of the interaction between the fast electron and the nucleus. If nothing 
else the CPBX approximation presents a formula for generating a significantly 
better TDCS than the first Born approximation in the important binary peak 
region. Also once programmed, it is not so time consuming as the other 
high quality methods presently in use. These two observations recommend 
the CPBX as a suitable vehicle for calculating reasonable integrated ionisation 
cross sections, i.e. double, single differential and total. 

Finally, we remark that there has recently appeared an alternative approach 
to this problem (Brauner et al. 1989) where a correlated three body continuum 
wavefunction is used to describe the final state. We will present a more 
detailed discussion of this work elsewhere (Curran et al. 1990). 

Also we should mention the treatment of Popov and Benayoun (1981) (see 
also Avaldi et al. 1986; Klar and Franz 1986) who produced an interesting 
semiclassical approach to ionisation where the triple differential cross sections, 
calculated in for example the first Born or impulse approximation, are modified 
by taking into account claSSically, the changes in the asymptotic paths of the 
two electrons due to post collisional interactions. 
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Appendix A 

We derive the result (10) from the scattering amplitude (7). The wavefunctions 
tp+ and xj appearing in (l0) satisfy 

P+ = tPi + (E - H + i 11)-1 Vi tPi, (Al) 

xj = tPj + (E -Hj - Wj - i 11)-lWjtPj, (A2) 

where E is the total energy and the limit 11 --> 0+ is to be understood, and 

Hj = Ts +Tf, 

so that 

H=Hj+ Vj. 

Using (AI) the scattering amplitude (7) may be written as 

f(kf,ks)=- 1 ~I? (tPjl Vj+VJ<E-H+il1)-lVil tPi). 
(2rr) 

(A3) 

(A4) 

(A5) 
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Consider now the following transformation of the operator in (A5): 

Vj + Vj(E - H + i ry)-1 Vi = Vj + (Vj - Wj)(E - H + i 1])-1 Vi 

+ Wj{(E -H +i 1])-1 - (E -Hj - Wj + i1])-1}Vi 

+ Wj(E -Hj - Wj + i 1])-1 Vi 

= Vj+(Vj- Wj)(E -H+i1])-1Vi 

+ Wj(E - Hj - Wj + i 1])-1 (Vj - Wj)(E - H + i 1])-1 Vi 

+ Wj(E -Hj - Wj + i 1])-1 Vi 

= {l + Wj(E - Hj - Wj + i 1])-1} 
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X {Vi + (Vj - Wj)(E - H + i 1])-1 Vi} + (Vj - Vi). (A6) 

Inserting (A6) into (A5) and using (AI) and (A2) we obtain 

f(I<r,1(s) = - 1 ,n {(xj I Vj - Wj I r) 
(2rr) 

+(xjl Vi-Vj+Wjl tPi) + (tPjl Vj-Vil tPi)}. (A7) 

From (8), (6) and (11), the last term in (A7) has the form 

(tPj I (Vj - Vi) I tPi) = (exp{i (I<s • rs + I<r. rr>} I Vs I l/Jo(rs) exp(i 1<0 • rr» 

= (2rr)38(l<r - 1<0)( exp(i I<s. rs) I Vs I l/Jo(rs» 

=0, (A8) 

since I<r 01 1<0, where fo < O. With the last term zero, equation (A7) is the 
result (10). 

Appendix B 

When Wj has the form (12) the second term in (10) becomes, using (6), (11) 
and (12), 

(Xj I Vi - Vj + Wj I tPi) = (l,;;(l<r, rr) I exp(i 1<0. rr>)( l,;b"(l<s, rs) I -Vs(rs) + Vb(rs) I l/Jo(rs» 

+ (l,;;(l<r, rr) I Va(rr) I exp(i 1<0· rr»( l,;b"(l<s, rs) I l/Jo(rs». (A9) 

From (14) and (Ts + Vs)l/Jo(rs) = fo l/Jo(rs), it is easy to show that 

(l,;b"(l<s, rs) I -Vs(rs) + Vb(rs)l l/Jo(ro» = (kl -fO) (l,;b"(l<s, rs) I l/Jo(rs». (AIO) 
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Also writing (14) in the integral form 

( 2 )-1 S~(kf, rf) = exp(i kf. rf) + k; -Tf - i 1] Va(rs ) S~(kf, rf) 

= exp(i kf. rf) + _2 _ f dk exp(i k. rr) (exp(i k. rf) I Va(rr) S~(kf, rf» 
(27T)3 ki - k2 - i 1] , 

(All) 

and remembering that ko # k1, when EO < 0, it is again easy to demonstrate 
that 

(S~(kf, rf) I exp(i ko • rf)} = 2 (S~(kf, rr) I Va(rf) I exp(i ko • rf» 
ki -k6 

(AI2) 

Note that when considering the overlap of two continuum functions it is 
necessary to proceed cautiously as in (AI2) and (A9). Substituting (AIO) and 
(AI2) in (A9) and using the fact that 

k¥ + k~ = k6 + 2€0 , (AI3) 

we see that (A9) is zero. 
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