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Abstract 

We show that a limited range of options for fermion families may be neatly encompassed 
in a spacetime augmented by five Grassmann internal coordinates if we require that the 
superfields are self-dual in an 5U(5) sense. Amongst the possibilities is a family of just three 
standard model generations. We consider the nature of Higgs fields in this formalism and 
the form of possible gauge symmetries. 

1. Introduction 

The idea that internal space is founded not on bosonic but on fermionic 
coordinates has many attractions. Perhaps the strongest is the fact that internal 
multiplet representations are strongly circumscribed by the terminating and 
antisymmetric character of series expansions in such coordinates. The concept 
has been advanced in earlier papers by Dondi and Jarvis (1980), Casalbuoni 
and Gatto (1979, 1980), Delbourgo, et al. (1988) and Krolikowski (1989) but 
elements of freedom in the construction mean that the various formulations 
have differed to a considerable extent. Nevertheless, each model is subject 
to strong constraints and has to confront the recently established fact that 
only three light generations of standard particle families occur in nature. (We 
refer to the LEP collider experiments counting neutrino species via the Z-decay 
width. For a review see Denegri et al. 1990.) 

A model based on five internal complex coordinates e (Delbourgo 1989) 
has been advocated as an economical way of ensuring the correct multiplet 
structure and at the same time being capable of containing at least three 
families. A scheme was offered there in which superfields were expanded in 
either even or odd powers of e, with the quarks and lepton fields appearing 
as coefficients in 5's and 10's, according to the standard SU(5) assignments 
once the quantum numbers of the coordinates are specified. In the most 
recent attempt at this unification (Delbourgo and White 1990), a predilection 
towards bosonic superfields was shown: particle multiplets were tied to odd 
powers in e, and generations were connected with contracted ee factors, 
since this does not affect the SU(5) character of the states. As a result three 
families of quarks and leptons arose; but in addition a neutral singlet plus two 
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additional 5's were entrained, the latter causing anomaly discomfiture. The 
alternative version in which superfields are fermionic was excluded because 
those expansions in even powers in e, augmented by ee, will not admit three 
generations whatever other attractions they may possess. 

In this paper we wish to explore a broader version of this Grassmann 
coordinate model, including the possibility of utilising both Bose and Fermi 
superfields to describe fermions, by returning to the basic idea of e expansion to 
all orders. The additional concept we shall incorporate (to keep the resulting 
proliferation of fermion fields under control) is the notion of Grassmann 
self-duality. At present some detailed features of the dual operation remain 
to be refined, so that we restrict ourselves to a catalogue of the small number 
of possibilities that we see with our present understanding of duality. It 
is hoped that the few scenarios we outline may be of interest, and may 
even strike a chord of familiarity with experienced model-builders. In the 
near future we hope to narrow the options further, at least with regard to a 
more refined duality rule. For the present, the consequence is a classification 
scheme in which we find that it appears possible to construct models with two, 
three or four standard model generations (with the occasional right-handed 
neutrino), and the possibility of including either of a pair of nonstandard 
but anomaly-free fermion families, which contain both normal and exotic 
5U(3)x5U(2)xU(l) fermion representations. We shall describe in some detail 
how the Grassmannian 5U(5) duality idea can serve to restore the balance 
between 5's and 10's in the previous models, and how when combined with 
anomaly considerations it leads us to the other models indicated. We then 
discuss briefly some aspects of the possible gauging of symmetries in the 
Grassmann picture, and make some remarks about Higgs fields and interaction 
Lagrangians. 

Table 1. Full set of SU(S) multiplets contained in the coordinate expansion of a 
superfield y> 

The column and row numbers sand r correspond to the term (lW(et in the Taylor series 
for 'P 

r\s 0 2 3 4 5 

0 1 5 10 TO 5 
5 1+24 5+45 10+40 10+15 5 

2 TO 5+45 1+24+75 5+45+50 10+40 TO 
3 10 TO+40 5+45+50 1+24+75 5+45 10 
4 5 10+15 TO+40 5+45 1+24 5 
5 1 5 10 TO 5 

2. Superfteld Structure. Fermions and Duality 

Our internal space is based on five complex fermionic e coordinates and their 
conjugates e. 5uperfields are functions of these variables and their components 
emerge through the anti symmetric e products of the Taylor expansion. In 
order to clarify the significance of the duality and hermiticity constraints that 
we have in mind, let us begin by listing the full set of 5U(5) multiplets, 
standard and exotic, contained in such a superfield, before any conditions are 
imposed. The set is summarised in Table I, where the column s refers to the 
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power of e and the row r refers to the power of e: a totality of 1024 states. We 
first discuss the question of available (and desirable) fermion representations 
which has been the major focus of our research to date, postponing to later 
sections the matter of Higgs fields and gauge symmetries. 

We hope to extract our fermion degrees of freedom from this array. It 
should be noted that an alternative (more simplistic?) way to partially combat 
the problem of proliferating representations is to disregard mixed tensor 
representations of SU(5) in the set of monomials, i.e. to discard all the 
multiplets that are not 1 's, 5's and 10's. This is the essential content of 
the models mentioned in the Introduction where two possibilities of three 
generations with unwelcome additional 5's, or of two generations plus two 
additional 10's, could be produced from considering bosonic or fermionic 
superfields (odd or even numbers of Grassmann powers) respectively. Those 
representations can be easily seen running diagonally down the table, the 
additional powers of e and e for each diagonal step down the table being 
contracted so as to leave the SU(5) nature unchanged. 

One example of the possibilities of Grassmann duality will be to suggest that 
we can use it to combine these two unsatisfactory models into one-not with 
seven generations of 5's and TO's as might be feared, but with preCisely three. 

For our first set of models we shall demand that all 5's and 10's have a 
fixed chirality (right-handed with our assignments of the e). Further, we shall 
insist that the 5's and 10's have the opposite chirality in order to identify 
them as the conjugates of the previous multiplets; in other words we shall 
require that the superfield 'P has some kind of hermiticity property. This 
essentially produces a halving of the states, with an alternation of chiralities 
throughout the upper right triangle (Jarvis and White 1990), and the lower 
left triangle which represents its conjugate. This consideration is impliCit in 
the previous models since we do not wish at present to generate SU(5) mirror 
representation fermion models. Because the monomials residing on the main 
diagonal are self-conjugate, the question of their behaviour under hermiticity 
will be a point of some subtlety. One may regard these terms as representing 
fields which would have insufficient degrees of freedom to represent fermions. 
It would be possible to assume that the superfield is anti symmetric in a block 
diagonal sense such that components of type (e)YIfJ(r, r)(8)Y vanish. Thus all 
r = s components, like e1cp1ej , along the main diagonal, i.e. those l's, 24's and 
75's, would be eliminated. 

Clearly, even with some type of hermiticity condition there are too many 
multiplets for comfort and we need to find some method of reducing them. 
The previous models carried out this reduction by restricting to fermionic 
or bosonic superfields, but suffered from the fact that this produced sets of 
representations which were unacceptable from an anomaly standpoint. If we 
were to simply take all the 5's and TO's in Table 1 we would have an excessive 
seven generation (but anomaly-free) model. Within the scheme of taking all 
the unmixed tensor products of e's there would also be a single right-handed 
neutrino from the e5 monomial. 

An appropriate cutting tool here, and in models based on the full set of 
monomials, is Grassmann duality, a concept which was introduced previously 
(Delbourgo and White 1990) in an effort to construct invariant Lagrangians as 
Berezinian integrals; here we want to make more extensive use of the idea. 
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The key point is that taking the dual of a superfield (denoted by a breve 
sign) does not disturb the 5U(5) properties of the superfield components. It 
is implemented by the following rule: if a superfield is expanded in the form 

5 
CP(8) = L aW(8t c:p(r,s) , 

r,s=O 

the dual superfield employs the self-same component fields, but assigned to 
duals of the 8 monomials: 

5 
cP = L (8)5-r(8)5-Sc:p(r,s) , 

r,s=O 

where, to be concrete, for the present work we interpret the dual of the 
typical multicoordinate term 81 8p8Q 8R to be EpQRST8s 8T El]KLM 8j 8K8L 8M/2!4!, as 
an example of the general rule 

(8)S(8t -+ (8)5-r(8)5-s . 

In particular, we note that polynomials of degree 5 in the Grassmann coordinates 
(8, 8) are self-dual in the above sense up to possible phase factors. That 
is to say a superfield of the type cP = (8)5 N is invariant under the duality 
transformation, i.e. cP = CP; whereas the dual of 1 is (8)5(8)5 = (88)5 IS!, and so 
on. In particular, while phase factors associated with duality are likely to be 
harmless in terms of reducing numbers of degrees of freedom for most entries 
in the table, they are critical (when combined with the rule for identification 
with the dual component) for the fate of the self-dual monomials on the 
cross-diagonal. These phases also interact with the hermiticity conditions, 
especially on the leading diagonal. They can also be sufficently constraining 
to eliminate an entire class (e.g. even powers) of monomials. 

In the context of Table 1, hermitian conjugation corresponds to a 
reflection about the main diagonal whereas duality, with its substitution 
rule r, s -+ (5 - s), (5 - r) corresponds to reflection about the cross diagonal. It 
can be shown that for a set of monomials of given order, (8)s(8)r, the sign 
factor associated with taking the dual using the rule above alternates (±) with 
the number of (88) contractions in the monomial. 

To obtain the halving of states in the upper right triangle we shall impose 
a duality condition on the superfield 'P. We are still refining the exact form 
of the dual transformation, in search of a compelling group-theoretic or 
super-geometrical formulation that will prescribe phases. For the present work 
we will use the dual transformation rule above with its ordering choices etc., 
and characterise some possible detailed phase assignments by including them 
in the imposition of the duality condition. When these phases are constructed 
using operators, such as those counting numbers of 8's etc., in monomials, 
they can lead to complicated restrictions on degrees of freedom. 

This brings us to our first set of models. Taking only the unmixed tensor 
representations of 5U(5) we reconsider the set of fermions contained in the 
bosonic superfield, i.e. odd monomials mentioned previously (Delbourgo and 
White 1990), but we impose the duality condition 

'P = (-l)ip. 
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With the dual rule above this produces a theory with two generations of 
5's and TO's, since it identifies the representations about the cross diagonal 
and eliminates the 5 and the Singlet, but not the TO, on the cross diagonal. 
Of course by invoking self-duality instead of anti-self-duality we could have 
produced a model with three 5's and one TO and one right-handed weak singlet 
neutrino. 

As a third option we could excise all the representations on the cross-diagonal 
leaving two 5's and one 10. This would be a matter of selecting a slightly 
different dual identification, such as 

'P = -(-1)vp, 

where the operator v counts the number of ee contractions in each monomial 
of the 'P superfield expansion. 

The point of this last case is that when taken together with a fermionic 
superfield (again over just the completely antisymmetric representations) with 
some type of dual folding about the cross-diagonal, which will therefore contain 
one 5 and two TO's, we have three generations of fermion representations 
appropriate to the standard model. The exact nature of the dual relation 
used for the fermionic superfield should be less important as there are no 
self-dual monomials involved. The option of keeping all three cross-diagonal 
representations (5, TO, 1) would lead to a fourth generation distinguished by 
having a right-handed neutrino. It should be noted that the duality relation 
used above for the bosonic superfield is unsuitable for the fermionic one as 
the phases introduced by the operator (-1)v lead to the field components 
all being set to zero. Note that using the explicit basic dual rule above on 
all the monomials in Table 1 directly leads via (anti)-self-duality to various 
combinations of 5's and TO's, but none of them is suitable from the standpoint 
of anomaly cancellation. 

It might be thought unaesthetic to use both bosonic and fermionic superfields 
from the point of view of statistics, or it might be regarded as artificial to 
restrict consideration to the unmixed tensors of 5U(5). Accordingly we now 
turn to an examination of the possibilities that open up if we extend our 
analYSis to a more democratic acceptance of all the monomials of Table 1, 
rather than just the maximally contracted set. This gives us more options 
and as we are still developing our detailed idea of duality we choose, for the 
present, to be guided by searches for acceptable sets of representations. 

To see what may be appropriate, we examine the requirement of anomaly 
cancellation. In Table 2 we list the contribution to the anomaly (King 1981) 
for each of the representations in question. 

Table 2. Anomaly coefficients for SU(S) representations of fixed chirality 

5U(5) representation 

Anomaly coefficient 

1, 24, 75 

o 
5, 10 15 

9 

40 

16 

45 

6 

50 

15 

Let us count the left-handed multiplets in the upper triangle remembering 
that NR is the conjugate of NL and possesses precisely the same anomaly 
coefficient. There are 6 singlets, 4x24's and 2x75's along the main diagonal, 
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which do not contribute. This leaves 7x5's, 7xl0's, 3x45's, lxI5's, lx50's, 
2x40's and one singlet off the diagonal (s > r). We consider first the possibility of 
taking both odd and even monomials as we did above. The anomaly coefficients 
along the middle of the second row cancel out as they consist of a standard 
SU(5) family plus the exotic combination (King 1981), 10R+l5R+40R+45R. Hence 
if we are going to invoke some sort of duality condition to halve the upper 
triangle in this extended model, we must seek a mechanism whereby, along 
the cross diagonal, the (8)3(0)2 and the singlet (8)5 are eliminated, without 
also destroying the (8)4(8) term which provides the 10 and 15; otherwise the 
anomaly cancellation will be endangered. 

Once again the subtle aspects of duality are only really needed for the 
bosonic part of the superfield (odd monomials). Therefore in order to get an 
anomaly-free theory we take, for the odd monomials, 

'P = (_l)V+Oii-nl+1)/2p 

as the duality condition on P, where the operators n, n and v count the numbers 
of 8's, 8's and e8 contractions in the terms of the superfield expansion. 
This has the desired effect on the cross-diagonal (by construction). This dual 
relation cannot be extended to the even monomials because in combining it 
with either hermiticity or antihermiticity relations 

P=±"P 

the conflict of the two conditions eliminates them all. The situation for the even 
monomials is as before-they are simply identified across the cross-diagonal. 

Table 3. Set of SU(S) multiplets contained in the coordinate expansion of bosonic 
and fermionic superfields after imposition of the duality condition 

Asterisks Signify Taylor components related to those explicitly listed by conjugation and/or 
duality while zeros denote vanishing components. The Rand L subscripts signify right- and 

left-handed chiralities 

r\s 0 1 2 3 4 5 

0 0 5R 10L lOR 5L 0 
* 0 5R+45R 10L+40L 10R+15R 

2 * * 0 0 * 
3 * 0 0 * 
4 0 * 0 
5 0 0 

The only families that survive both these constraints are 3 standard 
generations of 5's and TO's, and one exotic family consisting of the SU(5) 
right-handed multiplets TO+l5+40+45, as shown in Table 3. 

The inclusion of this last set appears a small price to pay for an anomaly-free 
grand supermultiplet, considering how many states we started from! It could 
of course also be regarded as an extravagant way to use up a surplus TO! For 
all we know, SU(5) theory (see O'Raifeartaigh 1986 and Ross 1984 for reviews) 
may need these fields when the accelerators push on to higher energies and 
new physics opens up. They should do no harm provided one can arrange 
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that they become sufficiently heavy. It should be pointed out that the exotic 
family above itself Uust) leads to a failure of 5U(5) asymptotic freedom so that 
some of its members at least will need to be given masses at the GUT scale, 
or alternatively the GUT symmetry group to be gauged needs to be larger than 
5U(5). In this regard it is perhaps worth recalling (see King 1981 for details) 
that this combination is part of a 144 dimensional vector-spinor representation 
of SOO 0), so that if in some modification of the present scenario it were 
possible to retain three singlet fermions (e.g. from the leading diagonal) to 
complete the standard generations as 16's of 50(0), as might be possible 
with a more subtle dual rule, then there would be a possibility of embedding 
the present collection of fermions into an asymptotically free set of 50(0) 
representations as discussed by King (981). 

A third class of models emerges if we persevere in attempting to obtain 
the fermions only from a bosonic superfield by extending the approach of 
Delbourgo and White (1990) to the larger set of representations in Table 1. 
In this case we are only considering the odd monomials and there is another 
possible assignment of chiralities which involves opposite chirality for alternate 
rows. 

Table 4. Set of SU(5) multiplets contained in the coordinate expansion of fermionic 
superfields after imposition of the simple duality condition for the alternative 

chirality assignment 
Asterisks signify Taylor components related to those explicitly listed by conjugation and/or 
duality while zeros denote vanishing components. The Rand L subscripts signify right- and 

left- handed chiralities 

r\s 0 2 3 4 S 

0 0 SR 0 lOR 0 lR 

* 0 SL+4SL 0 lSL 0 
2 0 * 0 SR+SOR 0 * 
3 * 0 * 0 * 0 
4 0 0 * 0 * 
5 0 * 0 0 

Taking this set of representations and using the simple dual rule of this 
paper we find that the condition 

'P='P 

leads to the elimination of the cross-diagonal representations 45 and TO, 
leaving one standard 5R+10R generation, one Singlet, one 5L, one SR, and the 
anomaly-free combination l5L + 45L + 50R as shown in Table 4. The latter set 
of representations contains quarks and leptons with conventional quantum 
numbers as well as exotic particles. Again this set of representations is not 
asymptotically free in 5U(5) and so we will need to see that some of the 
fermions (preferably the colour octets and sextets) become massive at the 
unification scale. 

While the 5U(2) representations of the normal fields are not all simple 
replicas of the conventional standard model generations, it is interesting that 
the lepton sector of this model system contains exactly three sets of left
and right-handed neutrinos and charged partners, with the only surplus being 
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a doubly charged lepton and its antiparticle. In the colour sector there are 
three charge 2/3 and four charge -1/3 triplets, together with one set each of 
charge 4/3 and 5/3 triplets. In addition there are also sextets and octets. 

Amusingly, this model has just enough leptons for three generations of left
right symmetric type and just enough charge 2/3 quarks for three generations, 
while there is a surplus of 'down' quarks. As indicated above, the SU(2) 
assignments of the fermions are not all of the standard type and it may 
be necessary to invoke some mixing before the physical particles emerge. 
It should be remarked that the SL and SR are associated with different e 
monomials so that they cannot have bare Lagrangian mass terms. One can 
regard the order of the monomial (or the number v of ee contractions) as a 
distinguishing quantum number. 

If the third generation of leptons had not been experimentally observed it 
would have been possible to entertain the idea of a variant of the bosonic 
superfield model which retained only the self-dual monomials of the cross
diagonal. This would have involved a further change in the chirality assignment 
compared to that in Table 4, requiring that while the basic alternation should 
be retained, it would be supplemented by an alternation for successive 
contractions within each (s, r) set. The resulting model would have particle 
content similiar to the preceding system except for the absence of the SL and 
SR, and the fact that the SR, 4SL and TOR would be associated with different 
e monomials to the case above. In such a model two essentially conventional 
left-right symmetric generations could have been found (with the additional 
doubly charged lepton) together with a third generation of unaccompanied 
quarks, while the imbalance in numbers of 'up' and 'down' type quarks would 
also have been avoided. Exotic coloured particles and higher charge quarks 
and leptons would of course remain. 

To summarise this section-we find that within the Grassmann coordinate 
framework for describing how fermion representations and generations emerge, 
there are only a small number of models that are acceptable from an anomaly 
point of view, and that could confront experiment with any chance of success, 
once duality concepts are incorporated. The simplest choice would appear 
to be exactly three standard model generations. Except for the possible 
addition of a fourth generation containing a right-handed neutrino, the other 
alternatives involve a very non-standard presentation of the candidates for 
known particles, as well as an assortment of exotic ones. 

The issues of mass generation, the representations of Higgs fields and their 
Lagrangians, mixing of the fermions in the Grassmann model, as well as the 
question of the exact form of the gauge group for the symmetries of each 
model (which may well depend on the nature of the decimation of the set 
of monomials in Table 1) will clearly be of great importance in determining 
whether any of the present models can be promoted to a full unified scheme, 
rather than just a motivating tool for selecting representations. The natural 
SU(5) symmetry that is introduced by the use of the five complex Grassmann 
variables may be reduced by the identifications made by duality conditions, 
although it might be part of a larger symmetry group, as we shall discuss 
in a later section. Another feature of this scheme is that the requirement to 
produce action terms from Berezin integrations over products of superfields 
provides a major restriction on the nature of possible interactions. 
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3. Superflelds for Higgs Scalars 

The question of how to incorporate the Higgs scalars is far from obvious, 
whichever approach is adopted for the fermions. It is not clear for example 
if both Bose and Fermi superfields should be utilised. In any case the fields 
must be a subset of the monomials in Table 1, but now with opposite statistics 
fields attached. It is still true that we are faced once again with too many 5U(5) 
multiplets and that we need to pare them down by some means or another, 
even if we tried to limit ourselves to just the unmixed tensor products of 
8's. However, it should be noted that to break 5U(5) gauge symmetry, we 
are obliged to include a Higgs 24, so that terms from the main diagonal 
of Table 1 are also needed, suggesting that we should consider a hermitian 
Higgs bosonic superfield <P at the very least; beyond that it may be self-dual 
or anti-self-dual-we have no means of telling, since there is as yet no direct 
evidence for any Higgs bosons! The question of also including a fermionic 
Higgs superfield (odd monomials) could be regarded as depending on whether 
the fermions were obtained from both odd and even power monomials or not. 

The restriction to a hermitian bosonic superfield leads, under simple duality 
or anti-duality conditions, to three 5U(5) singlets, two 24's, two 10's, one 40, 
one 5" and one 75. The 24's are welcome while the presence of only a single 
5" seems a strong constraint, but most of the remainder appear to be of little 
immediate utility. If we also include a fermionic superfield once again the 
details of the duality conditions become important and in the absence of 
anomaly cancellation constraints the options are quite open. 

The most reductive step in a duality condition approach would be to 
eliminate the entire cross-diagonal; this would provide then two more 5's, 
one TO, and one 45. As we shall see below the self-dual monomials are in 
any case inadequate as standard Higgs fields. The 45 should be a bonus for 
splitting the leptons from the down quarks if the interaction terms resemble 
usual GUT models, and the extra 5's may be welcome (or not), but from both 
superfields the rest are a distinct embarrassment of riches. At present we can 
see no natural way to exorcise them. 

One appealing idea, from the point of view of economy (although somewhat 
outside our main use of duality), would be to require that the fermionic 
Higgs superfield consists only of the self-dual monomials of 8, an impressive 
collection of 1 + 10 + 15 + 5 + 45 + 50, but unfortunately this leads to a dead 
end in terms of conventional Higgs fields, since only the quadratic power of 
such a superfield (five powers of Grassmann coordinates) can survive Berezin 
integration-with no possibility of a quartic self-coupling and no classical 
vacuum expectation values for the scalar fields! However we should point 
out that such a superfield can couple in Yukawa fashion to the fermions. If 
some fermions condense out, or if masses are to be produced radiatively for 
some generations, then this formulation might possess some virtues. It might 
also have some uses in conjunction with the 5U(5) scalar associated with the 
zeroth power monomial of the bosonic superfield. 

A duality choice for the fermionic superfield which might be appropriate to 
the first of our exotic representation models is to adopt a duality condition 
for the hermitian Higgs fields, 

<P = (-1) v+O n-nH )/2 cP 
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complementary to that used for the fermions. Compared with the model 
outlined above where the entire cross-diagonal was eliminated we would now 
have an extra 5, 45 and TO. 

Turning to the simple models where we discard all the representations 
beyond 1, 5 and 10 [which means abandoning the standard way of breaking 
SU(5) via 24's] we have the following possible Higgs superfield terms. 

A self-dual bosonic superfield choice 

t[>=fP 

yields three SU(5) scalars, 

[1 + (iun s /5!]x(1), [(08) + (08)4/4!]x(2), [(08)2/2 + (08)3/3!]x(3), 

one 5, 

[1 + (08)]843"(1), 

and two 10's, 

[1 + (08)3/3!]82Y(1), [(08) + (08)2 /2]82Y(2). 

If we also include a fermionic Higgs superfield then, taking once more the 
opposite duality relation to the fermion model, i.e. 

'::=(-l)V5, 

we obtain three additional 5's, two TO and a singlet. These consist of the 
superfield terms 

[1 + (08)4/4!]0..1(2), [(08) + (08)3/3!]0..1(3), [1 + (08)2/2!]03Y(3) 

and the surviving self-dual monomials which we group as 

OSX(4), (08)03Y(4), (08)20..1(4), 

and their conjugates. The free Lagrangian for these fields, taken together, 
arises painlessly through the superintegral, 

4 f dS 0 dS 8 at[>t • at[> = ~ [a'X(r) .ax(r) + a..1(r) .a..1(r) + a Y(r) .aY(r)]. 

It is now quite feasible to construct t[>4 self-interactions. We come across a fair 
number of terms although there are restrictions arising from the requirements 
of Berezin integration. Up to hermitian conjugation, we have listed below all 
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the c;t>4 terms which involve the 5's, ..1's and singlets, x's (neglecting the 10's, Y 
because they are all charged and thus have zero vacuum expectation values): 

x4(l), x2(l)x2(2), x2(l)x2(3), x2(l)x2(4), 

x(l)x(2)x2(3), x(l)x2(2)x(3), x3(2)x(3), 

Ll(2)..1(2)x2 (l), Ll(2)..1(2)x(1 )x(2), Ll(2)..1(2)x(2)x(3), Ll(2)..1(2)x2(3), 

Ll(2)..1(3)x(1 )x(2), Ll(2)..1(3)x(l )x(3), Ll(2)..1(3)x(2)x(3), 

Ll(3)..1(3)x2(l), Ll(3)..1(3)x2(2), Ll(3)..1(3)x(l)x(3), 

Ll(l)..1(l )x2(l), 

Ll (2)..1 (2)Ll (2)..1 (l ), 

Ll( 4)..1 ( 4)x2 (1), Ll(l)..1(l)x(l )x(2), 

Ll(3)..1(3)Ll(3)..1(2), Ll(l)..1(2)Ll(2)..1(1). 

The constraints on couplings of these sets of Higgs fields due to the 8 
structure of superfields shows that they are far from being trivial clones. It 
should also be pointed out that some of the terms above appear dangerous, as 
they involve cubic factors of some fields which are untamed by corresponding 
quartics. One should note that combining the various Higgs fields into 
superfields for each 5U(5) representation, or packing the representations into 
one or two superfields for the fermions (e.g. sorted by odd or even powers of 
8's) and similiarly"for all the Higgs fields, would enforce strict relationships 
between the coefficients of the above self-interactions and also between Yukawa 
terms. 

4. Gauge Symmetries 

We now turn to the gauge fields associated with these Grassmann models. 
The question of what to gauge involves consideration of the symmetries 
of the matter field sector. By virtue of the formulation with five complex 
anticommuting coordinates there is an obvious action of 5U(5) on the monomials 
that comprise the superfields, with generators 

F{ :; iJlo /0 (JI - 810 /0 8). 

We have accordingly decomposed the monomials and fields into 5U(5) 
representations throughout our paper. We have also used the 5U(5) anomaly 
conditions, but that can be taken simply as a compact check that an anomaly
free 5U(3)x5U(2)xU(l) theory emerges at low energy. Standard 5U(5) GUT 
theories are increasingly under threat in the light of results from proton 
lifetime experiments, and perhaps one could gauge just the standard model 
symmetries, regarding the number of 8's as a key to the number of generations, 
rather than as an invocation of 5U(5). The presence of the exotic particle 
representations in some of our schemes suggests that a larger gauge group 
than 5U(5) might be desirable, or that some of the fields should become 
massive at the unification scale, or both. 

The full set of monomials represented by Table 1 does have further 
symmetries. There is a standard Clifford type representation of 50(l0) that 
involves the extra generators 

hL:; jjKlJL +02/08K08L 
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and their Hermitian conjugates together with the trace part 

lJla /0 lJl - ela /0 el. 

In addition, the full array of superfield monomials, being constructed from 
products of Grassmann variables, forms a Grassmann algebra and this has a 
set of continuous automorphisms, generated by even derivations of the form 

F) == (£J)p-i(8) ia /0 lJl, p = 1,3,5 

and their conjugates. These are candidate symmetries as they map the 
degrees of freedom into themselves. There are further transformations on the 
monomials which we may schematically represent as 

F~ == (£J)P-i(8)i aq/(a£J)q-j(aeY. 

We are presently carrying out a detailed study of the algebra of all these 
generators. Recently a related treatment of higher derivative operators which 
uses ordering in polynomials of powers and differentiations in such a way 
as to ensure that each operator generates interchanges of only one pair of 
monomials has been presented by Eyal (1990). The question of how many of 
these transformations should be regarded as symmetries awaits resolution. 

It remains at this stage to see whether any of these extra symmetries can be 
maintained in the face of the decimation of the set of Grassmann monomials. 
5U(5) naturally acts within each monomial and some other symmetries, e.g. some 
transformations between the eventually sorted out generations, may survive. 
With regard to 5U(5) gauge theories it should be remembered that the Grassmann 
models have greater constraints on possible Lagrangian terms than standard 
schemes. 5uch terms must not only be 5U(5) scalars but must also contain the 
correct number of e's to survive the Berezin integration. Complete phenomeno
logical models using the fermion and Higgs representations of the current paper 
have yet to be constructed. Once that is achieved the role of these restrictions, 
acting like extra quantum numbers, needs further examination before 5U(5) Grass
mann unified models can be declared untenable. One feature of standard GUT 
theories which may have links with the Grassmann schemes is the introduction 
of discrete symmetries into the theory; this may be connected with the identifi
cations made between monomials by the duality conditions. 5uch issues will be 
relevant to detailed discussions of asymptotic freedom, radiative effects, etc. 

S. For the Future 

In order to determine the mass matrices for the sources, one first needs 
to construct a semiclassical renormalisable potential for the various Higgs 
generations and the vacuum expectation values for each one of the uncharged 
fields. A superfield version of this is indicated but it may be necessary to 
distinguish between superfields with opposite statistics, before coupling them 
as i\.cJ>4. Next we must study all the Yukawa interactions between Higgs and 
fermions (exotica as well), and derive the mass terms and mixings, including 
the many terms encountered previously for l's, 5's and 10's, again from an 
appropriate superfield interaction. 
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The full nature of the symmetry algebra and possible corresponding gauge 
fields is being mapped out and the concept of generations has also to be 
elucidated. Clearly there is a great deal of work confronting us before we 
can come to any definite conclusions. Still, we feel that the method holds 
considerable promise, because of the elegant way in which the generations 
emerge and the drastic diminution of states enforced by Sues) Grassmann 
duality. 
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