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In the last decade the role and nature of pseudo states applied to scattering problems 
has become better understood. The J-matrix technique has provided a direct physical 
interpretation for the pseudo states. Recent work in constructing and applying pseudo-state 
expansions based on analytic techniques is reviewed and convergence questions relating to 
the use of such expansions in the close-coupling equations are addressed. 

1. Introduction 

The close-coupling equations for electron-atom scattering constitute a 
formally complete description of the scattering process. They are derived by 
taking an expansion of the electron + atom wavefunction over the complete 
set of target states. Because there are an infinite number of discrete and 
continuum target states, approximations have to be made in order to render 
the equations numerically soluble. There are two main methods that have 
proved to be popular. The first is an optical-potential formulation. There one 
retains the channels of interest while projecting the remaining target states into 
a q-space. Then, carrying out a Fesbach projection one is left with equations 
which couple the channels of interest at the expense of introducing very 
complicated optical potentials. This approach has been employed extensively 
by I. E. McCarthy and coworkers with considerable success. The art in the 
method is to guess simple but accurate approximations to the three-body 
wavefunction embedded in the optical potentials. The reader is referred to 
McCarthy and Stelbovics (1983) and Bray et al. (1989) for further details. 

The second approach which is the subject of this review is the pseudo-state 
method of treating the target continuum. There one chooses a basis of L 2 

functions in which to diagonalise the target Hamiltonian. The functions are 
chosen so that the p-space channel wavefunctions are accurately determined. 
The remaining states represent an averaging over the true eigenfunctions, 
including the continuum. The assumption impliCit in this method is that if 
a large enough set is chosen the answers converge to the ones obtained by 
solving the equations with the complete set of exact target states. In this 
paper, we examine the evidence for this assumption. We concentrate on the 
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electron-hydrogen system for which the most extensive class of investigations 
of the pseudo-state method has been carried out. A review covering other 
systems has been given by Callaway (1980). 

It was realised in the early 1970s that close-coupling calculations give 
inaccurate cross sections above the ionisation threshold if only discrete excited 
states are coupled. Typically cross sections were overestimated if no allowance 
for loss of flux to ionisation channels was made, particularly at intermediate 
energies. Burke and Webb (1970) demonstrated that inclusion of one or 
two pseudo states reduced the scattering cross sections in electron-hydrogen 
scattering and brought them into closer agreement with experiment. When 
it was realised that coupling to the continuum was an important effect at 
intermediate energies, systematic studies were undertaken to look at the 
convergence rates of the close-coupling amplitudes with an increasing number 
of states. One of the earliest studies of the convergence of pseudo-state 
expansions was carried out by Burke and Mitchell (1973). They looked at 
the j = 0 partial wave of the close-coupling equations and added only s-wave 
target states. They noticed the pseudo states that were introduced gave 
unphysical pseudo resonances in the vicinity of the pseudo thresholds, for 
the singlet scattering amplitude. As the basis of pseudo states was increased, 
more pseudo resonances appeared. At energies away from the vicinity of a 
resonance the amplitudes appeared to converge. In the triplet channel pseudo 
resonances were not observed. This model has since been the subject of 
further investigation. The pseUdo-resonance structure in calculations which 
include additional angular momentum target states appears similar, so the 
feeling is that if one understands the mechanism of their generation in this 
model one probably understands it in the general case. 

A significant advance was made by Poet (1978). He noted that the model 
problem gave rise to a separable form of Schrodinger equation for the coordinate 
space wavefunction so the solutions of the differential equation could be 
written down analytically. The solutions do not have the required symmetry of 
the physical wavefunctions. But on imposing appropriate boundary conditions 
to a linear combination of the solutions he obtained a set of equations for the 
three-body wavefunction which could be solved to a high degree of accuracy. 
The model amplitudes he presented have since become the benchmark of 
later studies. Further investigations of the pseudo-resonance structure were 
carried out by Oza and Callaway (1983). They tested several pseudo-state 
bases including up to seven target states in their expansions. All the singlet 
amplitudes for elastic and inelastic scattering displayed pseUdo-resonance 
structure. The bases chosen have at most two positive-energy pseudo states, 
one near the threshold and the other above 1· 5 Ry. The resonance behaviour 
typically gave rise to a broad feature with width of about 0·5 Ry. This was in 
contrast with the previous study of Burke and Mitchell whose basis yielded 
narrower structure. Typical results for the above mentioned studies are shown 
in Fig. 1. Oza and Callaway then introduced an averaging technique which 
involved fitting the T-matrices to a low degree polynomial as a function of 
energy over a range of several Rydbergs from the ionisation threshold by means 
of a least squares fit. The averaged results gave almost perfect agreement with 
the exact results of Poet. The method is quite empirical although Burke et al. 
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(1981) tested the validity of such a procedure for averaging over the resonance 
structure in an R-matrix calculation. Whether this averaging can be given 
theoretical justification for the close-coupling approach remains to be seen. 
Subsequently Oza (1984) carried out a nine-state calculation which included 
five positive energy pseudo states. He found that the pseudo-resonance 
structure had reduced in width and the magnitude of the resonances had 
diminished, and concluded that his calculation demonstrated the convergence 
of the pseudo-state expansion. It should be noted that the biggest difference 
in the larger basis expansion compared to the previous calculation of Oza and 
Callaway is the inclusion of five positive-energy target states over the two 
used earlier. 
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Fig. 1. Singlet Is-2s cross sections are shown for the Poet (1978) model. The exact solution 
is labelled (P)_ Two pseudo-state calculations (three and four states) of Burke and Mitchell 
(1973) are shown and labelled (BM). A five-state calculation of Oza and Callaway (1983) is 
also shown (OC). The pseudo states in the various bases are denoted by the suffix B. 

Although the pseudo states were readily appreciated as taking into account 
the effects of the continuum, as illustrated by the above discussion, no attempt 
was made to study the relationship of pseudo states with true continuum 
functions by the close-coupling theorists. Interestingly Poet's calculations 
relied on overlaps between exact continuum Coulomb waves, although his 
final equations were quite different to the close-coupling equations. In the 
following sections we show more formally the sense in which the pseudo 
states converge to exact continuum functions for positive energies and how 
the completeness relation for the target is approximated in the sense of a 
finite Gaussian quadrature over the pseudo states. That such a connection 
existed was becoming evident through the work of Reinhardt and coworkers. 
They were investigating L 2 expansions of Green's functions and developing 
an equivalent quadrature approximation. Their work lead naturally to the 
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development of Fourier series expansions for continuum functions in an L 2 

basis. In early work (Heller et al. 1973) examples of L 2 expansions for the kinetic 
energy operator eigenfunctions were considered. Their ideas were developed 
in a series of papers leading to the method known as the J-matrix method. 
Their most important contribution of relevance to us was the derivation by 
Yamani and Reinhardt (1975) of a Fourier expansion of the continuum Coulomb 
functions using a Laguerre-function basis. They were able to show that the 
Fourier coefficients primarily comprised Pollazeck polynomials which are a 
non-classical set of orthogonal polynomials. A study of their formal properties 
related to the Coulomb potential h.as been given by Bank and Ismail (1985). 
Heller and Yamani (1974) then also applied their basis to carry out some 
model J-matrix calculations using the s-target states and arrived at similar 
conclusions to Burke and Mitchell. 

The close-coupling equations are summarised in Section 2. Analytic forms 
for the L 2 expansions of the target states are discussed in Section 3, as is 
their relationship to Gaussian quadrature. The pseudo-state close-coupling 
equations are shown to be an approximation to the exact set within the 
quadrature. Certain convergence questions of the implied L 2 expansions are 
studied in Section 4. Outstanding questions for further investigation and 
summary are given in Section 5. 

2. Close-coupling Equations 

The close-coupling equations are derived by making an expansion of the 
N + 1 electron wavefunction in a complete set of target-atom wavefunctions. 
The simplest example of such a system is one with a hydrogen target. It is 
with this system in mind that we write our equations. 

The e-H wavefunction may be expanded as 

tjJ±(1, 2) = L <Pi(1) ff(2) , (1) 
i 

where 
tjJ±(1, 2) = ± (2, 1) (2) 

is the symmetry requirement on the coordinate-space wavefunction. Here the 
+ (-) superscripts denote singlet (triplet) scattering. The summation implied 
in (1) is a summation over the discrete excited states and an integration over 
the continuum. We can use (2) to make our initial expansion explicitly have 
the required symmetry: 

tjJ±( 1,2) = t L {<Pi(l) ff(2) ± <Pi(2) ff( I)} . (3) 

However, while this form of the expansion has been almost universally used 
as the starting point for a derivation of the equations, it should be noted that 
the fi one obtains from (3) need not be the same as those in (1). To illustrate 
this point we note for example that in the triplet channel, if we make the 
substitution 

Ii - Ii + a<pi' (4) 
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the three-body wavefunction defined by (3) is unchanged. The reason this 
non-uniqueness is present is that we started with the two equations (1) and 
(2) and have formed (3) from them. There is therefore a second condition 
that can be obtained from the system (1) + (2): 

{cf>i I tj> = ± {cf>j Iff>· (5) 

The system (3) + (5) is equivalent to that of (1) + (2). If we return to our 
example (4). imposing condition (5) one finds that oc = O. 

(a) Standard Form 

Applying the expansion (3) to the full three-body Hamiltonian one obtains 
the usual close-coupling equations (atomic units are assumed): 

(-Ho+E-Ej)tj= L VJk/1· 
k 

It is convenient to partition the channel potentials into the form 

with 

VJk = uJk + wJk 

Ujk = f dr l f dr2 I rl> cf>j(r2) { ( - ;1 + I rl ~ r21) cf>k(r2) {rll 

±. 1 . cf>k(rl){r21 }. 

WJk = ± I cf>k }(Ej + Ek - E){ cf>j I . 

(6) 

(7) 

(8) 

(9) 

Until recently. the application of the symmetry (5) to the set (6H9) was 
accomplished by means of Lagrange multipliers. If the non-uniqueness is not 
removed numerical instabilities appear. as discussed by Norcross (1969). 

(b) New Forms 

The introduction of the extra orthogonalisation constraints through Lagrangian 
multipliers seemed to be a necessary part of the formalism of electron-atom 
scattering theory. Recently Stelbovics and Bransden (1989) showed that it was 
possible to invoke the condition (5) in a more natural way. The result is a 
modified form of the original equations which require no additional effort to 
solve. They are derived very simply by considering the portion Wjk of the 
channel potentials and utilising their separable form to write 

Wlkl /1> = ± I cf>k}(Ej+Ek-E){cf>jl /1> 

= I cf>k }(Ej + Ek - E){ cf>k I f/> (10) 
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upon using (5). With this change a new form for the close-coupling equations 
is derived by replacing the channel potentials V by 

with 

with 

vt=lF+~B' 

[~B]ij = Oij L. I cf>k} Yf(fj + €k - E) (cf>k I, 
k 

;yt = 1, ik = 1 - Ojk • 

(11) 

(12) 

(13) 

The form of yl; follows from the observation (cf>t I fj) = 0 as a consequence of 
(5). The proof that the new form of the close-coupling equations are free from 
uniqueness problems is difficult and we will not give it here. It is discussed 
by Stelbovics (1990). There it is also shown that there are an infinite number 
of different formulations of the close-coupling equations possessing the same 
(unique) solution. 

(c) Allowance for Pseudo States 

The forms discussed thus far all rely on an expansion over the complete 
set of target states. A direct solution of the equations in this form has not 
been attempted yet. It is probable that attempts will be made in this direction 
in the near future with the rapid advance in speed of our computers. In 
practice one replaces the target states by a set of pseudo states which are 
generated in the following manner. One takes a set of L 2 functions which 
can in principle be extended to completeness. There are prescriptions which 
ensure that linear dependence is avoided for large sets. For example, Klahn 
and Bingel (1977) discuss completeness criteria for several types of function 
sets. Similar theorems are given by Higgins (1977). Provided we have a 
suitable set, we diagonalise the target Hamiltonian h in the space spanned by 
the functions cJ>i,i = 1, ... N. The resulting vectors which are linear combinations 
of the basis functions are our pseudo states cf>~ and the corresponding pseudo 
energies ~ are given by 

(cf>~ I hi cf>J) = Oij~. (14) 

When hydrogen is the target one commonly chooses Slater functions for the 
basis. The physical channels we are modelling can then employ exact Is, 2s 
and 2p wavefunctions. There is however a modification one must make in the 
close-coupling equations when pseudo states are induded. This is because 
the exchange term in the form (9) is valid only for exact target states. The 
form appropriate to pseudo states is derived by considering the general matrix 
element 

Wjk = ± (cf>J<I) I {h(1) + h(2) - E} I cf>~(2)} , (15) 
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where 1,2 refer to the coordinate the states are operating on. Only a limited 
simplification is possible for pseudo states: 

WJk = ± \ <P~(2)}(<PJ(1)\ h(1)±h(2)\ <p~(2» 

x (<p~ (2) \ ± \ <p~ (2) )(-E)( <pJ (1) \ . (16) 

The pseuso-state expansion also suffers from the problem of spurious solutions 
as can be seen by repeating the arguments leading from (1)-(5). Thus, extra 
orthogonality constraints must be imposed via Lagrange multipliers or by 
deriving a new form of equation along the line of (12). It is straightforward 
to show that one acceptable form is 

[~slu = \ <PJ) (<p~ \ h ± h \ <PJ) (<p~ \ 

N 

±oij L \ <p~)rl(-E)(<p~ \ . (17) 
k=l 

This form is again but one of a variety of choices. It is manifestly symmetric 
and can therefore be easily incorporated into existing computer-program codes. 
A more extensive study of the general forms available for pseudo states will 
be given elsewhere. 

3. Pseudo-state Bases 

In order to study rates of convergence of pseudo-state expansions formally, 
one desires a basis set whose functions have a simple form so that the 
channel potentials can be evaluated analytically, or where this is not possible, 
computed rapidly and accurately. Hydrogen is the only target atom for which 
we known the continuum functions analytically and are thus able to test 
L 2 methods and pseudo-state expansions completely. An important Fourier 
expansion which provides us with the essential tools to study the pseudo-state 
method will now be given. 

(a) Yamani-Reinhardt Expansion 

Yamani and Reinhardt (1975) found a useful Fourier expansion for the 
continuum Coulomb waves upon choosing the basis 

CP~(r) = (Ad+1 exp(-.p .. r) L~l+l (Ar) . 

The functions are not orthogonal. Their inner product is 

r(m + 21 + 2) A-1{-(n + l)On+l,m (CP~ \ CP!n) = r(m + 1) 

+ (2n + 21 + 2)on.m - (n + 21 + l)on,m+l}. 

(18) 

(19) 

They constitute a basis (see for example Higgins 1977) which has the additional 
property that, together with the functions 

(j)~(r) = r-lCP~(r), (20) 
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a biorthogonal system is formed, i.e. 

-I I 
<cf>n I 4>m} = 8nm . (21) 

The biorthogonal nature of the basis enables one to construct Fourier expansions 
in much the same way as for an orthonormal basis, as discussed in Higgins. 
We now turn to the Fourier expansions for the target states. The states for 
positive energy are regular Coulomb functions. For partial-wave number I and 
normalised to a delta function in energy, they are 

1 

k _ ( 2 )2" 1 I r(1 + 1 - iy) I 1 1+1 
UI( ,r) - rrk exp('zrry) r{'),--,-- ')\ 1(2kr) 

x exp(-ikr) IFI (I + 1 + iy, 21 + 2, 2ikr) , (22) 

while the bound states are 

Unl(r) = 1 (r(n+I+l))t 
nl+2 r(21 + 2) r(n -1) (2r)l+l 

x exp(-rlnhFI (I + I-n,2/+2,2rln), (23) 

where 
1 

y= 11k, k=(2E)2" . (24) 

Using the biorthonormality of our basis set one can show that the Fourier 
expansion of the target wavefunctions is expressible in the form 

00 

UI(k,r) = L B~(E)pl:l(x)4>~(r). (25) 
n=O 

For the continuum functions, the coefficients denoted by Bare 

B~(E) = 2n+a-1 r(n + oc + a) (2) t 
r(oc + a)r(n + 2oc) rrk I r(oc - iy) I 

x (l - x2)a/2 exp{(6 - ~rr)YL (26) 

while for the bound states E = E; = -~(i + oc), i = 0,1 ... , 

1 • 

BI E. =2n r(n+oc+a) (_a)a (T(i+2OC»)2"(i+oc+a)' 
n( ,) r/_ •• _\r/_ • ... _.\ (i+oc)a+l r(i+l) i+oc-Q· (27) 
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Here we have set oc = 1+1 and a = -2/A, while 

E= ~k2 = A: g ~~), (28) 

x=cos6, O!'> 6 !'>TT. (29) 

The P!t1 (x) are orthogonal polynomials and are a generalisation of Pollaczek 
polynomials. We omit the I-superscript label in the sequel for simplicity. In 
the monic form their recurrence relation is 

with 

P-l(X) = 0, Po (x) = 1, 

Pn(X) = (x - dn)Pn-l (x) - An Pn-2(X), 

Al = 21- 2cx TT f(2oc) 
oc+a' 

A _ n(n + 20c - 1) 
n+l - 4(n + oc + a)(n + oc - 1 +(2) , 

a 
dn+l = n +oc +a 

Their orthogonality relation is 

n = 1,2 ... , 

n= 1,2, ... , 

f+OO 
(Pn,Pm) = -00 dJl(x) Pn(x) Pm (x) = Al A2 ••• An+l Onm. 

Note that the polynomials are positive definite if and only if 

1+ 1> 2/A. 

(30) 

(31) 

(32) 

(33) 

Positive-definiteness is a property that is almost always assumed when 
constructing Gaussian quadrature approximations to the integral (32) with 
measure Jl(x). It is only under this assumption that estimates of the convergence 
rates of the quadrature approximations are readily determined. An application 
of the L 2 method to a related model scattering problem where the polynomials 
are not positive definite has been given by Stelbovics and Slim (1987). There 
the properties of the Gaussian quadrature and weights are discussed. The 
polynomials and their relation to scattering problems have been further studied 
by Slim (1988). 

The measure for the attractive Coulomb Pollaczeck polynomials is 

dJl(x) = (P(X) + ~ Ri o(x - Xi») dx, (34) 
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where 

p(X) = (1 - X2)OC-t 1 nex - iy) 12 exp{(28 - rr)y} , X E [-1,1], 

= 0 otherwise, (35) 

R· = rr TU + 2ex) 22- oc (_a)2oc+l U + ex)-2oc (i + ex + a)2i-l U + ex - a)-2i-l (36) 
I ni + 1) , 

with 

a 2 + U + ex)2 ¢ [-1,1]. 
Xi = a2 _ U + ex)2 

(37) 

(b) Finite-basis Constructions 

The L 2 basis discussed provides a complete description of the target states 
if the expansion extends to infinity. Suppose we attempt to construct a set 
of pseudo states by limiting ourselves to the first N functions of the basis 
(18). Thus, we diagonalise the target Hamiltonian h in this truncated space 
and obtain N pseudo states: 

N-l 

1>~ = I CNim CPm . (38) 
m=O 

The pseudo states have the normalisation 

( 1>~ 1 1>J} = 8 ij . (39) 

The corresponding pseudo-state energies are obtained from (14). The Yamani­
Reinhardt expansion enables us to determine the coefficients (apart from an 
overall normalisation factor) in terms of the Pollaczeck polynomials. The 
reason for this remarkable fact is that the equations which the coefficients 
CNim satisfy are just the recurrences (30). (The matrix the coefficient vector 
acts on is tridiagonal, that is a Jacobi matrix, hence leading to the generic 
term J-matrix method.) The pseudo-state energies are determined by imposing 
the boundary condition 

PN(X) = o. (40) 

Since the polynomial PN is of degree N in X it follows through the mapping 
(28) that the N roots of this equation are 

XNi = x(t!;') . (41) 

The expansion coefficients are 

CNim = ANi Bm(t!;') P(t!;') , (42) 
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where for positive energies it may be shown (Yamani and Reinhardt 1975) that 

I 

A2 _ A AIA2 ... AN (2)2 
Ni - rr{l - XN/) PN{XN/) PN-l (XNi) rrkNi I noc - iYN/) I 

I 

X {l- X~/"-2 exp{{ON/- ~rr)YN/}. (43) 

If we now compare the Fourier series of (25) at x = XNi (where Ef' > 0), 
truncated to the first N terms, with that of the pseudostates (38) subject to 
the normalisation (39) we see that the two expansions are equivalent within an 
overall factor AN/. Examples of the pseudo states and their convergence rates 
are given by Stelbovics and Winata (l990). A characteristic of the expansions 
is that the first few oscillations are reproduced tolerably well but the pseudo 
states eventually decay to zero on account of the exponential damping. The 
pointwise convergence of the series is shown to be of conditional type only. 
The relation of pseudo states to continuum functions has been discussed 
extensively in the context of the J-matrix method. The renormalisation constant 
(43) can be determined to arbitrary accuracy. For general basis sets no such 
obvious connection exists, but attempts have been made to give approximate 
descriptions. The best known of these is the Heller derivative rule. It has 
been studied by Broad (l978) who was able to give a justification for it. We 
adopt the view that the basis (l8) is suitable for most numerical calculations 
and will therefore not consider the utility of these approximate procedures. 
A review of the subject is given by Macias et al. (l988). 

(c) An Orthonormal Basis 

The Yamani-Reinhardt expansion is special in the sense that it employs the 
only basis for which the Coulomb Hamiltonian pseudo states can be found 
analytically. If we drop the restriction that the pseudo states satisfy (l4), 
other expansions can be derived which are orthonormal and converge to true 
continuum functions as the basis is expanded to completeness. In the limit 
of large N therefore, this type of basis will also satisfy (l4) approximately. 
Consider the orthonormal basis functions 

I 

4>*{r) _ ( AnN + 1) )2 
n - nN + 20c + 1) (Ar)'" exp{-~Ar)L~"'{Ar), n =0,1 .... (44) 

The asterisk is used to indicate that these functions are different from the 
previous basis. We adopt the convention that all the notation developed so far 
for the expansion coefficients will be retained, except that all corresponding 
quantities for this new basis will be identified by the asterisk. The expansion 
coefficients are found to be 

I I 

B*{E-) = 2n+"'+~ (nn + 20c + 1»)2 nn + oc + a + 1) {-a)"'+t (n2oc + i»)2 
n I nn+1) noc+a)nn+2oc+1) noc+i} 

x {i + OC)"'+l {i + oc - a)-2",-i-l (i + oc + a)i-l (45) 
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for the bound states, and 

! 1 

B~(E)=2n+a nn+oc+a+1) ( n2oc) )2( 2 )2 . 
noc + a)nn + 1) Ann + 20c + 1) ITk 1 noc -1Y) 1 

= x (1 - x2)a-~ (1 - x) exp{(O - ~IT)Y} (46) 

for the continuum states. The p~ are orthogonal polynomials. They satisfy 
the recurrence (30) with 

A * _ Z-2a n20c + 1) 
1 - IT -(-oc-+-a""""')2' , 

A* = n(n+2oc) 
n+l 4(n + oc + a)2 ' 

n=1,2, ... , 

d* _ (n + 1)2a + (2a -l)(oc + a) 
n+l - 2(n + oc + a)(n + oc + a + 1) , 

(47) 

n = 0,1 .... 

It can be shown that the p~ are a form of kernel polynomial of the PoIlaczecks. 
In contrast to the PoIlaczecks they are positive definite for all values of the 
A and I. This follows from (47) and (32). Their distribution is of the form 
(34) with 

p*(x) = (1 - x2)a-~ (1 - x) 1 noc - iy) 12 exp{(28 - IT)y} , 

= 0 otherwise, 

* _ ni + 2oc) 22a+3(_afa+lU + oc)2a+2 
Ri - IT ni+ 1) 

x U + oc + a)2i-2 U + oc - a)--4a-2i-2 . 

xE[-l,l], 

(48) 

We now demonstrate the manner in which expansions over pseudo-state 
bases can be regarded as equivalent to a Gaussian quadrature. This can be 
done with the basis of Yamani and Reinhardt, but its non-orthogonality and 
non-positiveness in all cases make the connection more complicated to show 
than is really necessary. Thus, we take the orthonormal basis (44) instead. 
The completeness relation for the target states can be expressed in terms of 
the Fourier expansions as 

i 1 cJ>i) (cJ>;/ + J: dE 1 U/(q» (U/(q) 1 = J:oo dJl*(E) f 1 4>~) * ~~(X) * ! 
1=0 n,m=O (A1A2 ... An+1)2 

P~(x) (4)* 1 x 1 m 
(AiAz ... A~+1)2 

00 

L 1 4>~)(4)~ I. (49) 
n=O 
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Now let us construct a set of pseudo states by truncating the basis expansion 
to N functions. As before this can be achieved by the boundary condition 
(40) on the PN. The pseudo-state energies are of course different from those 
of the previous basis. Then the completeness relation for the states can be 
expressed as 

N-1 N-1 
2 I 4>iN) (4)iN 1= 2 I q,~) P~(XNi) I WNi P~(XNi) I (q,~ I 
i=O i,n,m=O (AiA2 ... A~+1)2 (AiA2···A~+1)2 

N-1 
= 2 I q,~) (q,~ I . 

n=O 

The WNi are Gaussian weights, 

* ~ * A * A11\2'" N _ 
* ) , WNi = PF/(XNi)PN- 1 (xNi 

(50) 

(51) 

whose sum is Ai. In deriving (50) we used the property of Gaussian integration 
that polynomials in x of degree less than 2N - 1 are integrated exactly by the 
quadrature. The derivation requires the use of the Schwarz Christoffel relation 
(see for example Chihara 1978). If we compare the approximate completeness 
relation with the exact one we note that, apart from the replacement of the 
distribution dJ1(x) by the quadrature, there is one further difference; the Fourier 
expansions of the target states have been truncated to the first N terms. 

The orthogonal basis function expansions differ in an essential way from 
those of the first basis. There we had the additional property that the pseudo 
states were orthogonal with respect to the target Hamiltonian (14). Thus, one 
should not use these states in the usual pseudo-state close-coupling equations 
without qualification. For large basis sets, where the expansions are good 
approximations to the target states and the orthogonality is approximately 
satisfied, reliable results might be obtainable. The basis has not been widely 
used in close-coupling calculations. Bray et al. (1991) have applied it in a 
model problem and emphasised the advantage of using the orthonormal basis 
for numerical calculations. This expansion has appeared in other guises in 
related fields. The Stieltjes-Tchebycheff imaging-method example presented by 
Hermann and Langhoff (1983) is a special case of the Fourier series given as 
pointed out by Stelbovics (1989). Similarly the Sturmian-function expansions 
as defined by Rotenberg (1970) have Fourier coefficients which he calls Drang 
functions and presents as power series expansions. These expansions can be 
identified with the Pollaczeck polynomials discussed here. 

4. Convergence of Channel Potentials 

The purpose of having an analytically expressible form of the pseudo states 
is that it enables one to study the convergence of the channel potentials 
to those obtained by folding between exact target states. In general we 
may consider three classes of these potentials connecting (1) bound-bound 
channels, (2) bound-free channels and (3) free-free channels. 
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The potentials (7) have two parts, U the dominant portion which includes 
the direct nucleus potential and the direct and exchange electron-electron 
terms, and W the separable terms which have an explicit energy dependence. 
Class (1) presents little difficulty. The channels of interest normally comprise 
wavefunctions with few nodes, and so if a basis set is chosen with appropriate 
range in the exponential term, a Laguerre-type basis will represent the true 
eigenstate adequately. The potentials coupling p-space channels are accurately 
reproduced even for small basis sets. The second class of channel potentials has 
been studied recently (Stelbovics and Winata 1990) using the Yamani-Reinhardt 
basis. There it was shown that the direct part of U from the hydrogen-Is 
state, coupled to a continuum state with angular momentum I, has a Fourier 
expansion whose nth term for large n behaves like 

where 

a~(q,K) =A-(n+/+l) A~K (21 + 1) exp{(20 -7T)Y} 

x cos[(n + 1 + 1)0 + y In(2n sinO) - ~ 7T(l + 1) - argl(1 + 1 - iy)] 

x {2(cosw -A-1 )cos[(n + 1 + 1)00 - ~7T(l + 1)] 

+ (1-A)cos[(n + l)w - ~7T(l + 1)] + O(n-1)}, 

K 
tanw = 1 + K2 _ (~A)2 ' 

A = ((1 + ~A)2 +K2)1 
(1- ~A)2 +K2 

O:$W:$7T, 

(52) 

(53) 

(54) 

The series is essentially of geometric form. In the above equations K is the 
momentum transfer from initial to final states and q is the ejected electron 
wave vector. The convergence of the series may be relatively slow for some 
energies because the geometric term approaches 1 at high energies. This has 
the inevitable consequence that some continuum channels which we couple 
to will be represented more poorly than others in any finite basis. One 
could try omitting the pseudo states with large energies but this cannot be 
justified from the point of view of completeness of the approximate target 
space; one is then throwing away important information about the continuum. 
The separable exchange term W in momentum space is proportional to the 
momentum representation of the channel wavefunctions. In the case of the 
continuum channels this means that the finite-basis expansion must in the limit 
approach the partial-wave regular Coulomb function, which is a distribution 
in the momentum representation. For example, for the 1 = 0 partial wave the 
momentum-space form is just the distribution reSUlting from a Fourier sine 
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transform of the 1=0 regular Coulomb function (22): 

I 

Uo(k,p) = (~ )"2 J: dr sin(pr) Uo(k, r) 

= ±.Jk exp( ~1TY) I [(1 - iy) I 
1T 

x l.!.m Im[k2-(p+irJ}2r1 (P+ilJ+k)-iY 

T/ 0+ p+ ilJ - k 
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(55) 

If the potential is set to zero, (55) reduces to a delta function in momentum 
multiplied by a factor of pl/2. It would appear therefore that the pseudo-state 
effective potential structure becomes increasingly complicated as the magnitude 
of the calculations increases, since the positive-energy momentum-space pseudo 
states approach the structure implied by (55). Subtraction methods to treat 
kernels containing such distributions have been studied by Van Haeringen 
and Kok (1980). It is thus a little surprising to find that there has been no 
indication of difficulties arising from the solution of the equations with larger 
sets of pseudo states. Indeed, if we return to Oza's (1984) comparison with the 
Poet (1978) model, the conclusion he reaches is that the pseudo-state solutions 
are converging to Poet's results. Moreover, all the reported calculations 
confirm that the triplet-channel amplitudes for elastic and inelastic scattering 
are free from the resonance structure which plagues the singlet channel. 
Since both channels have similar exchange terms, the singular nature of the 
matrix elements has not propagated through to the T-matrix solutions of the 
pseudo-state calculations. 

The free-free potentials comprise direct and electron-electron exchange 
terms made up from Coulomb potentials folded between initial and final 
continuum states. There are also the energy dependent exchange terms, made 
up of products of continuum functions, whose momentum space form we 
have looked at above. The direct potentials may be evaluated in closed 
form as a sum over Appell functions Uetzke and Broad 1985). To give some 
indication of the form of the resultant potential in momentum space, we 
consider the simplest possible case comprising plane-wave incident and final 
state continuum wavefunctions. Such an approximation removes the Gamow 
and Coulomb phase factors, but their omission does not invalidate our main 
conclusion. A typical free-free direct potential element then is of the form 

V( K ') Joo sin(qr) sin(Kr) sin(q'r) d 0 f K 1 K 1 q, ,q oc r= or <q-q or >q+q 
o r 

=!!. if K = q - q' or K = q + q' 
8 

1T ="4 whenq-ql<K<q+q', (56) 

where q, q' represent the momentum of the continuum initial and final target 
states and K is as before the momentum transfer. It has been assumed that 
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q > q' > 0 in writing (56). Thus, the potentials are bounded (in fact in a 
numerical application one further performs a partial wave integration over 
the scattering angle contained in K resulting in a continuous function of the 
momenta) and hence pose no numerical problems. 

Similarly the electron-electron exchange term in this model involves only 
an interchange of the electron momenta and needs no further comment. No 
study of convergence rates for pseudo-state expansions of the free-free matrix 
elements has been undertaken to date. However, it is likely that the resultant 
series will have poor convergence properties. Certainly, the geometric rates 
found for the bound-free potentials (52) will not apply because they relied on 
the bound-state wavefunction cutting off the r-space integrals for large r. 

Most pseudo-state applications to date have concentrated on determining 
scattering amplitudes coupling the lowest energy channels of the target. In 
these processes free-bound and free-free transitions are included as higher 
order processes. Thus even bad approximations to these potentials do not 
have a pronounced effect on the amplitudes. In new applications, such as 
the modelling of ionisation processes within this close-coupling framework, 
the bound-free potentials contribute at first-order level and their convergence 
properties will be important in assessing the accuracy of a calculation. 

s. Outlook and Conclusions 

In this review we have emphasised techniques for studying atomic scattering 
problems in the close-coupling formalism. Of particular importance is a 
proper understanding of the role the target continuum states play. In order 
to study the continuum effects by analytic methods we have concentrated 
on electron-hydrogen scattering where one has the advantage of knowing 
the target states exactly. We have seen precisely how the pseudo-state 
approximation to the target continuum can be formulated in a mathematical 
form; the completeness relation in the finite-basis approximation is equivalent 
to that over the full space in the sense of a generalised Gaussian quadrature 
in which the quadrature approximates the sum over all discrete, and integral 
over all continuum states; each pseudo state was seen to be, apart from an 
overall normalisation constant, equivalent to a Fourier expansion of the exact 
continuum wavefunction truncated to the finite basis. 

We also looked at the channel potentials coupling to all combinations 
of levels. We demonstrated how one can approach the general problem of 
determining the rate of convergence for the various types of potentials. This 
is a task that has yet to be completed because the class of free-free potentials 
has not been studied. In principle, their analysis should be amenable to the 
methods presented in this review. 

The convergence of the basis expansions to the exact target wavefunctions 
leads as a consequence to channel potentials which in the large-basis limit 
are just those obtained by using exact continuum functions. One therefore 
is prompted to ask whether it is not possible to solve the electron-hydrogen 
problem using exact target functions. The usual answer given is that this will be 
a time consuming problem because the analytic expressions are cumbersome. 
With the rapid progress in speed of computers, this objection is probably no 
longer valid. One would like some explicit demonstration, at least on the scale 
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of the Poet model, that the pseudo-state close-coupling equation amplitudes 
do converge to those obtained from the close-coupling equations employing 
exact target states. 

We indicated that this would be a difficult problem, at least in the momentum­
space formulation, because the exchange terms in the effective potentials 
contained distributions which in the zero-charge limit reduced to 8 functions. 
Appropriate subtraction methods would need to be developed for the kernels of 
the T-matrix equations to handle them. The very complex structure of some of 
the channel potentials and the demonstrated convergence of the pseudo-state 
calculations raises further interesting questions. The pseudo-state calculations 
in the Poet model demonstrate excellent convergence in triplet scattering, but 
do not do so well for singlet scattering where pseUdo-resonance structure is 
always present, although the largest study undertaken (Oza 1984) points to 
probable convergence. Clearly then, the fact that some parts of the potentials 
are 'converging' to distributions has not affected the calculations to date, 
since such terms occur in both singlet and triplet scattering. One is therefore 
led to enquire whether instabilities may yet arise in pseudo-state calculations 
with more extended bases. One may find that the meshes used routinely 
to discretise the T-matrix equations will fail when the singular parts of the 
potentials are more correctly described in the limit of large expansions. 

A further point we wish to address is that of the choice of basis expansions. 
We have adopted the Laguerre basis of Yamani and Reinhardt as our preferred 
choice. Can one do better by using Slater functions? We suggest that the 
answer is no, at least for large calculations. The Laguerre basis is 'nearly' 
orthogonal and problems of linear dependence that can affect large Slater 
function bases do not arise. A preliminary study of the convergence of the 
Laguerre basis, with an optimised Slater set within the confines of a second 
Born approximation, by Stelbovics and Winata (1990) suggests that there is little 
difference for large bases. It would be interesting to see more comprehensive 
investigations in this direction. 

Our concluding remark is to respond to the rhetorical question: 'Why be 
concerned with getting answers to such great preCision for hydrogen? Surely 
pseudo-state methods appear to work and in any case for all other atoms this 
type of analytic approach is not feasible?' We adopt the position that one 
is attempting to understand atomic scattering completely and the conditions 
of validity of certain scattering formalisms. Only when we can claim to 
understand the scattering theory for this system fully can we approach its 
implementation to more complicated systems with confidence. 
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