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Abstract 

Solutions of the Klein-Gordon equation are given in the Landau and cylindrical gauges and 
these are used to calculate explicit forms of the vertex function. From an S-matrix expansion 
analogous to the spin-i case we obtain the Feynman rules for magnetised spin-O particles: 
the major differences between the spin-i and spin-O cases are the explicit forms of the 
respective vertex functions and the addition of a two-photon vertex in the spin-O case. This 
additional vertex makes possible a whole new class of Feynman diagrams. 

1. Introduction 

The aim of this paper is to derive the Feynman rules pertaining to spin-O 
bosons in an ambient magnetic field. There are two motivations for the 
calculations. Feynman rules were written down for unmagnetised spin-O and 
spin-l bosons and spin-~ fermions (e.g. Scadron 1979, p.199) but only the 
spin-~ case has been extended to include an ambient magnetic field (Melrose 
and Parle 1983b, hereinafter MPIII). The present paper bridges the gap between 
the spin-~ and spin-O cases. It is also of some formal interest to compare the 
form of the rules for the magnetised spin-O and spin-~ cases and to consider 
the effects of spin and statistics (although this is not the purpose here). 
The second motivation comes from theoretical applications of magnetised 
spin-O bosons. For instance, superconductivity is modelled in terms of paired 
fermions forming pseudo-bosons (e.g. Frolich 1950), which exhibit the Meissner 
effect in a magnetic field (Schafroth 1955), and the laboratory production of 
pions in strong fields may be possible (Rafelski et al. 1978). There is also 
application to astrophysics-it is thought, for example, that a pion plasma 
may form a large part of the core of a neutron star (Shapiro and Teukolsky 
1983, p.251), which may also be magnetised, as in the case of pulsars. 
The Feynman rules developed here allow, in principle, the calculation of any 
process relevant to these applications, to any order in the boson's charge. We 
present a fully self-contained derivation starting with the exact solution of 
the Klein-Gordon equation in a magnetic field, including the derivation of the 
Hamiltonian density for photon/boson interactions and of the vertex function 
and finishing with the Feynman rules obtained from an S-matrix expansion. 

The solution to Dirac's equation in an ambient magnetic field is well 
known (e.g. Itzykson and Zuber 1980-hereinafter IZ, p.67; Melrose and Parle 
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1983a-hereinafter MPI), however the corresponding Klein-Gordon equation 
had not been considered until recently (Witte, Kowalenko and Hines 1988-
hereinafter WKH), who treated it thoroughly and in a number of ways. Here, 
for completeness and as an introduction to our notation, we present a succinct 
solution of the equation following that of the Dirac equation (MPI) (the same 
differential equation describes both bosons and fermions, the only difference 
being in the form of the energy eigenvalues). We choose to normalise our 
wavefunctions according to the quantum field theory prescription, equivalent 
to allowing a single particle ~n a normalisation volume, V. This normalisation 
is different from that of WKH and thus so is our expression for operator 
expectation values. 

A calculation of the interaction Hamiltonian density for an unmagnetised 
boson/photon system, within the framework of quantum field theory, appears 
in IZ (p.282). Here we perform the equivalent calculation including an ambient 
magnetic field. The result is used in deriving appropriate Feynman rules for the 
magnetised spin-O plasma but in doing so, Fourier transforms in the usual sense 
cannot be performed; instead we define a modified Feynman propagator and a 
vertex function analogous to the magnetised spin-~ case (MPI). The vertex function 
is an important quantity in the theory, since it appears as the contribution to the 
Feynman amplitude from every vertex in a Feynman diagram. We derive explicit 
forms for it in both the Landau and cylindrical gauges and compare them with 
the spin-~ case, then we consider its gauge dependence, which is contained 
in a factor premultiplying a four-vector, [Pq~/(k)]P, the definition of which is 
different to that of its analogue in the spin-~ case. In deriving the Feynman 
rules, the S-matrix expansion is analogous to that of the spin-~ case (MPIII) 
except for an additional vertex and the explicit form of the vertex function. 

The organisation of the paper is as follows. In Section 2 we solve the 
Klein-Gordon equation in the Landau and cylindrical gauges and in Section 3 
we derive the interaction Hamiltonian. In Section 4 we define the vertex 
function and give explicit forms for it in the Landau and cylindrical gauges, 
from which we can obtain its gauge dependence. Section 5 deals with the 
particle and photon propagators and in Section 6 we obtain the S-matrix 
expansion. Finally, Section 7 details the Feynman rules. 

In this paper we use the metric tensor gllv = diag (+- --) and natural units, 
n=c=l. 

2. Solution of the Klein-Gordon Equation 

The Klein-Gordon equation for the complex scalar wavefunction, 'P, is 

(0 110 11 + m2)'P = 0, (1) 

where m is the particle mass. To include an ambient magnetic field described 
by the four-potential, All (x) , we make the minimal coupling replacement 

0 11 -+ DIl = all + iqAIl(X), (2) 

where q is the charge on the particle, and obtain 

(0 11 011 +2iqAlloll +iqoIlAIl -q2A2 +m2)'P = O. (3) 
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An important point concerning the use of equation (2) is that in general 
(as is the case for spin-1 particles) one must make the replacement in the 
Lagrangian for the particle and not in the wave-equation itself (Berestetskii et 
al. 1971-hereinafter BLP, p. 100). 

(a) Landau Gauge 

We choose first to solve equation (3) in the Landau gauge 

AIl(t,X) = (0, O,Bx, 0), (4) 

which describes a magnetic field, B, in the positive z direction. Since only the 
variable x is involved (if the Hamiltonian were written down, it would depend 
only on x), we anticipate plane wave solutions in the other variables and try 
a solution of the form 

~(t,X) = f(x) exp {-i€(:Et- pyy- pzz)}, (5) 

where the quantum numbers :E, Py and pz are the energy and y and z components 
of momentum respectively. We have chosen to take € = + 1 for particles and 
€ = -1 for antiparticles so that the quantum numbers represent the physical 
energy and momentum of either a particle or antiparticle. On substituting 
this wavefunction into the Klein-Gordon equation, changing variable to 

and writing 

we obtain 

~ = (I q I B) ~ (x - €py) 
qB ' 

:E2 = (2n + 1) I q I B + m 2 + p~ , 

(:;2 + 2n+ 1_~2 )f(~) = O. 

(6) 

(7) 

(8) 

This is the equation for a simple harmonic oscillator with normalisable 
solutions given by the Hermite polynomials, Hn, and it is the same equation as 
occurs in the fermion case. The change of variable from x to ~, cf. (6), involves 
a shift of origin to the centre of gyration, as shown below in Section 2d when 
we consider the position expectation value of the wavefunctions. The energy 
eigenvalues (7) introduce the positive integral quantum number n which fixes 
the value of momentum perpendicular to the magnetic field. Here, in the 
boson case, there is a non-zero ground state energy (n = 0), so bosons are, 
classically speaking, always spiralling along the magnetic field lines «p J.}';" 0), 
and all levels are non-degenerate. By contrast, in the fermion case, the ground 
state has zero perpendicular momentum so, classically speaking, fermions can 
move along field lines without gyrating motion, and all but the ground state 
are doubly degenerate. The difference in energy level degeneracy between 
the boson case and the fermion case is simply because of the difference in 
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the number of spin states. This difference and its effect on the behaviour of 
boson and fermion gases should be most obvious in super strong magnetic 
fields, such as exist in pulsars (up to lOB T, e.g. Smith 1977, p.4S). In such 
fields spin-~ fermions quickly fall into the ground state due to synchrotron 

1 
losses, whereas the spin-O bosons retain their gyrating motion (with p J.. - B"2). 
However, we do not discuss any implications of this here. 

The form of the energy eigenvalues suggests that we define a critical 
magnetic field Be = m2/ 1 q 1 and if the magnetic field exceeds this value then 
all particles have relativistic energies and relativistic quantum effects cannot 
be ignored. If we take pions (rr±) as our test bosons then Be = 3·3 X 1014 T, 
which is far in excess of proposed pulsar fields (one of the sources of the 
highest possible fields) so in most cases we need only consider the classical 
or non-relativistic limits of our quantities. 

The solution to (8) is 

fnC~) = CHnC~) exp (_~~2) 
.!. 1 

(rr2 2n n!)"2 
(9) 

where C is a normalisation constant to be discussed later. 

(b) Cylindrical Gauge 

It is constructive to have solutions to the wave equation in more than one 
gauge so that the gauge independence of the theory can be considered when 
we look at the vertex function in Section 4. One other choice of gauge made 
in the treatment of the Dirac equation (MP!), and one which has an explicit 
symmetry with respect to x and y coordinates is the cylindrical gauge 

AIl(X,y) = i(O,-By,Bx, 0). (10) 

Here we anticipate plane-wave like solutions for the t and z coordinates and 
try 

1J'~(t,x) = g(r, 4» exp {-i€(::Et - Pzz)}. (11) 

where x = r cos 4> and y = r sin 4> define the polar coordinates rand 4> with 'E 
and pyas before. In addition the periodicity in the polar angle 4> requires 
that the angular dependence of g(r,4» be limited to a phase factor so that 

g(r, 4» = g(r)eilc/> , (12) 

where .e is an additional quantum number which must be integral for g(r,4» to 
be single valued. Substituting equations (10), (11) and (12) into equation (3) 
and writing the result in cylindrical polar coordinates, (r,4>,z), yields 

-+----+1 ql B Zn+l +-- --- g(r)=O, { dZ 1 d.e2 ( 1 ql.e) q2B2r2} 
~ r~ ? q 4 

(13) 

where we have made use of the energy eigenvalues given earlier. This equation 
is the same as the resulting equation in the fermion case, apart from changes 
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in notation, and the normalisable solutions involve the generalised Laguerre 
polynomials. We define the functions (Svetozarova and Tsytovich 1962; MPI) 

1 

J~(x) = {(n :!y)! r exp (-~X)x~VL~(X), (14) 

with nand y integral and where L~(x) are the generalised Laguerre polynomials 
(e.g. Abramowitz and Stegun 1965, p.775). Some useful properties of these 
functions are detailed in the Appendix. The solution of equation (13) can now 
be written in the form 

g~(r,c/»=C'J~-s(~ I ql Br2) exp{i(s-n)c/>I ql/q}, (15) 

with 

s=n+.el ql/q, (16) 

and a normalisation constant C'. 
The energy eigenvalues (7) depend only on the parallel component of 

momentum and not explicitly on either of the other components. In this 
second solution we did not define a Py quantum number as we did in the 
first solution and this highlights the fact that py is not to be regarded as a 
physical momentum quantum number. Rather we see in Section 2d that it 
defines the centre of gyration. 

(c) Covariant Normalisation 

The formal procedure we use in normalising the wavefunctions involves 
calculating the (0,0) component of the energy-momentum tensor (e.g. BLP, 
p.32) 

TIlV _ 0.£ -::ovw* ~-::ovw_ Ilv.£ 
- O(OlllJl*)v T + o (oplJl)V T 9 , (17) 

from the Lagrangian, .£, for the field. This gives us the energy density of the 
field and the normalisation condition we use is 

J V d3" rOo = 'E , (18) 

where the integral is to be performed over a suitable normalisation volume, V. 
This choice of normalisation is manifestly covariant and corresponds to having 
a single particle or antiparticle, of unsigned energy 'E, in the normalisation 
volume. The normalisation chosen by WKH is effectively normalisation to plus 
or minus unity. 

The Lagrangian for the Klein-Gordon field with an ambient electromagnetic 
field is (e.g. IZ, p.282) 

.£ = (oP + iqAP)lJI(op- iqAp)'J'* - m2 'J''J'* • (19) 
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For the wavefunctions (5) with (6), (7) and (9) one finds 

L = 1 q 1 B{(2n + 1 - ?;;2)fn(?;;)2 - fn(?;;)2} , (20) 

yOo = {2:E2 - (2n + 1) 1 q 1 B+ 1 q 1 m;2}fn(~)2+ 1 q I Bfn(~)2 . (21) 

Applying condition (18) and making use of the recursion and integration 
relations for the Hermite polynomials given in the Appendix gives 

{

II 

C = (I q 1 B)"2}"2 
2'ELyLz ' 

(22) 

where Ly and Lz are normalisation lengths in the y and z directions respectively. 
The corresponding normalisation constant for plane-wave solutions to the 
spin-O Klein-Gordon equation in the unmagnetised case is (BLP, p.32) 

1 
- - -f I 

Cunmag - (2'EV)"2 (23) 

and this suggests that the natural unit of length in the x-direction in our case 
1 

is (I q 1 8)-"2. 

(d) Expectation Values 

Due to our choice of normalisation the wavefunctions have dimensions of 
1 

(:EV)-"2 and thus 1 'P 12 is not a probability density. We define the expectation 
value of an operator b to be 

('Pal 01 'Ph) = 2 f d3x :E,1 'P;(X)O:EJ 'Ph(X). (24) 

The WKH normalisation takes the factor of two into account and gives a 
probability density interpretation to 1 'P 12 but it requires an alteration to the 
usual density of states which appears in summing over quantum numbers. 
As an illustration of (24) we calculate the expectation value of the position 
vector r, the centre of gyration, by substituting the wavefunctions (5) with (9) 
and (22) into equation (24) to obtain 

(r) = (€Py/ qB, 0, 0). (25) 

This gives the physical interpretation of pyas the scaled centre of gyration 
of a particle and a change in this quantum number represents a drift across 
magnetic field lines. 

3. Interaction Hamiltonian 

The Lagrangian density for magnetised spin-O particles is (19), viz. 

LM = oJ.l'P*oJ.l'P + iqAJ.I'Po J.I 'P* - iqAJ.I'P'0J.l 'P + q2A2'P*'P - m2'P*'P. 
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We add in the effect of a photon field, described by the operator All, via the 
replacement 

AIl->AIl + All , (26) 

thus obtaining the total interaction Lagrangian density, L tot , 

L tot = LM + Lint, (27) 

with 
Lint = iqAIl 'P all 'P* + q2 A 2 'P* 'P + 2q2 AA 'P* 'P , (28) 

being the interaction Lagrangian density. The canonical momenta for the 
particle field are 

rr - o L tot ° - 0(00'P) =0 'P*-iq(Ao+Ao)'P*, (29) 

rr* 
~o 

o L tot =o0'P+iq(Ao+A )'P, ..... ,-.. ~~ ....... (30) 

and in analogy with classical mechanics, the Hamiltonian density is defined by 

.J-4.ot('P, 'P*, rr, rr*) = rrP + rr*P* - L tot , (31) 

where .J-4.ot must be written out in terms of 'P, 'P*, rr and rr* only, giving 

k 0 ~o k ~k -.J-4.ot = rrrr*-ok'P*O 'P-iq(A +A )('Prr-'P*rr*)+iq(A +A )'P*Ok'P 

_q2(Ak +Ak)(Ak +Ak)'P'P* + m 2'P'P* . (32) 

Omitting from this the parts which are independent of the photon fields yields 
the interaction Hamiltonian 

~o ~k - 2 k~ 2~k~ J-4nt = iqA ('P* rr* - 'Prr) + iqA 'P* 0 k 'P - 2q A Ak 'P'P* - q A Ak 'P'P* , (33) 

which can be rewritten, in noncanonical form 

~Il - 2~2 2~2 
J-4nt = qA 'P* (i 0 Il - 2qAIl ) 'P - q A 'P'P* - q Ao 'P'P* . (34) 

The term coupling the photon field to the ambient field is the only difference 
between the magnetised and unmagnetised cases and an equivalent term does 
not arise in the fermion case, where the explicit form of the interaction 
Hamiltonian density is unchanged on inclusion of an ambient magnetic field. 

Equation (34) is derived in the Schrodinger picture. In order to derive 
the Feynman rules, we need to transform to the interaction picture, which 
involves changing the sign of the final term (IZ, p. 283). This is a result of 
the fact that in the interaction picture the canonical momenta do not include 
the terms involving the interacting field, AO. The subtraction of these terms 
from (33) changes (34) by a term 2q2A~'P'P*. The final term is obviously not 
gauge invariant, however, as is shown below when considering the S-matrix, 
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it cancels with other non-covariant terms arising from contractions involving 
the differential operator 011' 

4. Vertex Function 

In the magnetised case there are two difficulties in constructing Feynman 
rules in momentum space: (i) the particle propagator depends separately on 
the coordinates of the two space-time points associated with it and cannot 
be Fourier transformed in the usual way, and (ii) the operator which appears 
in .J£int involves the ambient magnetic field. Defining a vertex function (MPI) 
allows us to surmount these difficulties by grouping the wavefunctions and 
vertex operators together, outside the particle propagator (which we modify 
in Section 5). We define 

[Y~f~(kW = d~f~(k)[r~~q(k)]11 

= fd3X[~f*(X){PI1-2qAI1(X)}'Fq(x)lexp(-ik'X)' (35) 

where pl1 is the usual momentum operator and d~f~(k) is chosen to contain all 
gauge dependence. The wavefunctions in (35) have no time dependence (all 
time dependences are grouped separately and lead to conservation of energy 
at vertices) so we require the added definition 

~f*(X)p°'P~(X) = (E'Eq +E''Eqf)'P~f*(X)'P~(x). (36) 

In the magnetised spin-~ case the definition of the vertex function involves a 
Dirac matrix rather than our vertex operator in (35). 

The vertex function is an important quantity since it is associated with 
vertices in Feynman diagrams and because it contains most of the mathematics 
required in transforming to momentum space. Finally, we note that it has the 
useful property 

[Y~f~(k)]I1* = [Y~%f(_k)]11 . (37) 

(a) Landau Gauge 

In order to derive an explicit form for the vertex function in the Landau 
gauge we use the wavefunctions (5) with (9) and (22) in the definition (35). 
Calculation is reduced to the consideration of two explicitly occurring integrals. 
The first integral is the same as one used by MPI in their treatment of the 
spin-~ magnetised plasma, apart from changes in notation and the introduction 
of a signed charge. The integral is 

[n.nf = f~oo dxHnf(-g)HnC~) exp (_~~2 - ~e -ikxx) 

1 1 1 1 1 

= (7T'2 2nf n'!)'2 (7T'2 2nn!)'2 (I q 1 8)-'2 exp {-ikx(EPy + E'p'y)/2qB} 

x (_ieil/llql/q)nf-n J~f_n(k}./21 q I B). (38) 
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The variable, ~, is given by (6) and ~' by the same, with primed quantum 
numbers (€', q') replacing the unprimed quantum numbers. The x-component 
of the wavevector k is kx and the angle 1[1 is defined by 

k = (kJ. cos 1[1, kJ. sin 1[1, kz). (39) 

The functions J~'-n are defined by equation (14). A second integral which 
appears can be integrated by parts and the result expressed in terms of the 
first integral In,n': 

Kn,n' = S:oodX xHn,(~')Hn(~) exp (-H2 - ~e -ikxx) 

n n' €py + ep'y - ikx 
1 In-l,n' + 1 In,n'-l + 21 I D [n,n' . (40) 

(I q I B)"2 (I q I B)"2 q 

The y and z integrals in the vertex function simply yield delta functions, 
representing conservation of linear momentum in those directions. The 
resulting explicit expressions for d~,~(k) and [r~~(k)]11 are 

[~~(k)]11 = 1 1 {-i exp (iaW'-n 
2(2m:Eq:Eq')"2 

(€:E q +€':Eq,)J~'-n 

- HI q I /q){kyJ~'-n - (2n I q I B)~ exp (ia)J~2n+1 

x 

1 

- (2n' I q I B)2 exp (-ia)J~'_n_d 

HI q I /q){kx1~'-n +(2n I q I B)~ exp (ia)J~;::'~+1 
(41) 

1 

- (2n' I q I B)"2 exp (-ia)J~'-n-d 

(€pz + E'Pz')J~'-n 

where a = 1[1 I q I/q and 

d~,~(k) = (2rr)2 1 exp {-ikx(€~y; E'p'y) }8(€PY - ep'y - ky)8(€pz - ep'z - kz ) 
V(I ql B)"2 q 

(42) 

1 

with V = (I q I B)-"2 LyLz being the normalisation volume and where we omit the 
argument, kJj2 I q I B, of the] functions. The form of the vertex function in 
the spin-O case differs from that of the spin-~ case (MPI) only in the detailed 
form of the four vector quantity [Pq;~(k)]Il. 

Note that the vertex function is defined here to be dimensionless. It has 
the property that reversing the sign of the charge is equivalent to reversing 
the y direction and changing the sign on the angle 1[1. Alternatively (as can be 
seen from our choice of gauge 4) we can reverse the sense of the magnetic 
field rather than change the sign of the charge. 
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(b) Cylindrical Gauge and Gauge Invariance 

Here we use the gauge (10) and the wavefunctions (11) with (15). We expect, 
since our theory is manifestly gauge invariant, that the vertex function involves 
a gauge independent four-vector, all gauge dependence being contained in a 
premultiplying factor. In cylindrical coordinates the z integrals yield delta 
functions for conservation of momentum along the field and the J1 = 0 and 
J1 = 3 components of the vertex function involve a modified form of the integral 
found in MPI (equation 51) 

f 21T foo 
Ln.s = 0 dt:/> odrrexp{-ik1.rcos(t:/>+!fJ1 ql /q)lJ~'_s,j~_sexp{i(n-s-n'+s')t:/>} 

2rr . 
= - qB {-I exp O!fJ I q I/qw-n+n'-s' J~-s1~'-n' (43) 

where we omit the argument, kJ../2 I q I B, of the J functions. The J1 = 1 
and J1 = 2 components are more difficult to evaluate since the respective 
components of the vertex operator involve derivatives with respect to both r 
and t:/>. However, given that we expect the vertex function to have a gauge 
independent four-vector and a premultiplying factor, we can use the J1 = 0 and 
J1 = 3 results, compared with vertex function in the Lorentz gauge to anticipate 
that in the cylindrical gauge 

[y~,~(k)llJ = - 2(!;)2 c' C(1:q 1:q,) 1 {-i exp (i!fJ I q I / qW-s' 

X J~'-s8(EPz - €P'z - kz)[~~(k)llJ, (44) 

where again we omit the argument of the J functions. The constants C' and C 
are normalisation constants of the cylindrical gauge wavefunctions, which we 
do not need to evaluate here. One can verify the result for the J1 = 1 and J1 = 2 
components by inverse Fourier transforming (which is easier than working 
forwards since the integrals which appear in inverse Fourier transforming can 
easily be done by referring to the Lorentz gauge results). One finds after 
much tedious algebra and with the help of the recursion relations for the J 
functions (see the Appendix), that the result (44) is indeed correct. 

The above verifies, at least for our two choices of gauge, that the gauge 
invariance of the theory manifests itself in the form of the gauge invariant 
part of the vertex function. Moreover, since we expect this to be so, the 
calculations in the two gauges constitute a check on the explicit form of the 
vertex function. The vertex function contains most of the information about 
the particle/antiparticle, photon interactions, since it involves the particle 
wavefunctions as well as the ambient magnetic field, and so a detailed 
comparison with the corresponding fermion quantity (MPI) would be useful. 
One superficial difference is that the spin-O vertex function involves a single 
J function in its J1 = 0 and J1 = 3 components and three in its J1 = 1 and J1 = 2 
components. The corresponding fermion quantity contains two J functions in 
each component (it should be noted that in no way can the use of recursion 
relations reduce our three functions to two). 
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5. Propagators 

The particle and photon wavefunctions are second quantised as 

1f(x) = L a~ 1]1~(x) exp (-i€'E q t) , (45) 
q€ 

AIl(x) = f d4 k e-1kxA,'"'(k) 
(2rr)4 ' 

(46) 

with (Melrose 1983-hereinafter MIl) 

AIl(k) = L aM(k){e~(k)cM(k)(2rr)48(k - kM) + e~*(k)cM(k)(2rr)48(k+ kM)} , (47) 
M 

where 

{ RM(k) }t 
aM(k) = V€owM(k) (48) 

is the electric amplitude of the photon field in mode M. The polarisation 
vector is e~(k) and we are considering an elemental range Vd3k/(2rr)3 [our 
normalisation has been chosen to give a single photon in this range (e.g. 
MIl)]. The operators, a~ and its conjugate, are the annihilation and creation 
operators for a particle (€ = +1) with quantum numbers q, or the creation 
and annihilation operators for an antiparticle (€ = -1) with quantum numbers 
q, respectively. The operators CM and its conjugate are the annihilation and 
creation operators for a photon in mode M respectively. The wavefunctions 
1]1~(x) are (5) with (9) and (22), written without their time dependence (which 
has been included explicitly in 45). 

The particle propagator in vacuo is defined by 

G(x, x') = i (0 I t{1f(x) 1f* (x')} I O}, (49) 

where t is the boson time-ordering operator 

t{1f(x)1f* (x')} = O(t - t')1f(x)1f* (x') + O(t' - t)1f* (x')1f(x) , (50) 

and O(t- t') is the Heaviside step function. The step function may be written 
in terms of its Fourier transform 

O(t) = f dw -,-' -. e-ic.ot 
2rrw+,O ' 

(51) 

and then the propagator can be written in the form, as in the spin-~ case 
(MPIII) , 

with 

G(x x') = '" 1]1€ (x) ~* (x')f dE e-iE(t-t')g-€ (E) , L. q q 2rr q' 
€q 

g~(E) = _ 1 1 

(52) 

(53) 
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defining a modified propagator. This modified propagator is different from 
the spin-~ propagator. The form (52) involves particle and antiparticle 
wavefunctions which we include in our definition of the vertex function (35); 
the appropriate form for the development of the Feynman rules in momentum 
space is (53). 

Similarly, the photon propagator is defined to be 

DPV (x - xi) = ;(0 I TrAP (x)A \~/)} I O}. (54) 

There is no difficulty in transforming this to momentum space to get (MIl) 

D~:S(k) = L i1T~?~~~k) e~(k)eXt(k)o{w - wM(k)} , (55) 
M 

for the resonant part of the propagator. 

6. oS-Matrix Expansion 

The interaction Hamiltonian (34) can be divided into a linear and a quadratic 
part in the photon field }...JJ and, after normal ordering (denoted:), 

_ (1) _ _ * - _ 
:Hint = q : Ap(x)'P (x){ pP - 2qAP(x)}'P(x) :, (56) 

_ (2) 2 _ * _ 2 _ 2 _ 
:Hint = q : 'P (x){Ao(x) - A (x)}'P(x) : (57) 

[here we are in the interaction picture with the change of sign of the A5(x) 

term in (34) implied]. The S-matrix expansion is then 

_ 00 n (_i)n f 4 4 _ _ (1) _ (1) A (2) _ (2) 

S = L L I( _ )1 dXl ... dxn T{:Hint(Xl) ···:Hint(Xr):Hint(Xr+l) ···:Hint(xn)} , (58) 
n=Or=O r. n r. 

where t is the boson time ordering operator (50). 
In order to determine the Feynman rules we need to consider low order 

diagrams which isolate a vertex, a propagator or a closed loop. Consider first 
a vertex with a single photon line, corresponding to gyromagnetic emission 
(or the crossed processes: gyromagnetic absorption, pair creation and pair 
annihilation). The S-matrix term is 

S = -i dx :Hint(X) , 
-(1) f 4 _ (1) 

(59) 

which, upon using the definition of j{:~~ and our second quantised wavefunctions, 
can be expressed in the form (as in the spin-~ case, MPIII) , 

5(1) . '" f d4 k -e€ _ 
= -lq L (2 )4: [Gq'q(-k)]JJAp(k) :, 

€'q',€q 1T 
(60) 
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with 

[G~,~(k)Jll = a~,* a~D~,~(k)[~~(k)]~ , (61) 

where 

D~,~(k) = d~,~(k)21TC5(E:Eq - €:E q, - 00). (62) 

The fact that the result takes the same form as in the spin-~ case is not 
surprising, since the result comes from the first order Hamiltonian (56) which 
differs from the spin-i case only by the form of the operator between the 
wavefunctions. In both cases the operator is absorbed into a vertex function. 

In the spin-O case there is an additional vertex, with two photon lines. This 
has been noted in the unmagnetised case (e.g. Scadron 1979, p.200; Williams 
and Melrose 1989) and has no counterpart in the spin-~ theory.The associated 
S-matrix term involves a single second order interaction Hamiltonian 

5 = -I dx :J{int(X). .(2) 'f 4' (2) (63) 

.2 • (2) • 
The non-covariant Ao(x) term in :J{int cancels out of the 5-matrix expansion 
(as verified below) and with our ambient field in the temporal gauge [Ao(x) = 0] 
we can write 5(2) in a similar form to that of 5(1) 

with 

_ Iq ·e€ 5·(2) - . 2 f d4 k f d4 k' €,~q (2rr)4 (2rr)4: Hq,q(-k - k')A~(k)A~(k') :, 

.€'€ [rT!€ 
Hq'q(k) = 2a~,* a~Dt,~(k) J q'q(k)]O 

€:E q +€:E q, . 

(64) 

(65) 

For a general choice of gauge for our ambient field, specifically if we wanted 
to include an electric field by taking AO to be a function of space, we could 
not write this last expression. It comes from the integral in (63) which reduces 
to a factor of the form 

f d 3x'P*(x)'P(x)e-ikx , 

and this is only simply related to the vertex function defined by (35) for 
AO=O. 

The next diagrammatic element we consider is a particle/antiparticle line 

between two vertices. Taking the case of two factors of j[~~~ in the S-matrix 
expansion, we have 

• (l ,1) 1 f 4 4·' (l) • (l) 
5 = -2" dXl dX2 T{:J{int(xd:J{int(X2)}. (66) 

Here we have a time ordered product of normal ordered Hamiltonian densities, 
each with two particle/antiparticle operators and one photon operator. To put 
this in normal order we employ Wick's theorem (e.g. IZ, p.180), taking every 
possible combination of contractions between operators of the same kind (Le. 
particle/antiparticle or photon) and leaving the rest in normal order. 
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The contraction between particle/antiparticle operators gives the propagator 

(01 t{1P(XI)P*(X2)} 1 0}=-iG(XI,X2), (67) 

but we also have particle/antiparticle wavefunctions which are operated on 
by jII. For these we use the rules (IZ, p. 284) 

(01 t{p~IP(XI)P*(X2)}1 O} =-i~IG(XI,X2), (68) 

(0 I t{P~1 P(XdP~2 '1'* (X2)) 1 O} = -ip~IP~2G(XI,X2) - i9IJ09vo c>4 (Xl -X2), (69) 

where we specifically label the momentum operators with the variables on 
which they act in the propagators. The non-covariant term in (69) cancels 
out the non-covariant terms contributed by ~~i, throughout the S-matrix 
expansion. Thus we are justified in ignoring the non-covariant term in ~~l 
and naively commuting derivatives and contractions. Contracting over photon 
wavefunctions gives the photon propagator 

( 0 1 t{AIJ (xI)A v (X2)) 1 O} = _WIJV (Xl - X2) . (70) 

From the definition of the particle/antiparticle propagator (52) we see 
that a particle/antiparticle contraction introduces a sum over the quantum 
numbers (€,q) of the intermediate state and a Fourier transform of the energy 
denominators in the modified propagator. The integrals over four-coordinates 
at each vertex in (66) then give vertex functions as before. In terms which 
give photon propagators we need to Fourier transform the photon propagator 

DIJV(XI -X2) = f d 4k e-ik(XI-X2)DIJV(k) 
(2rr)4 ' 

(7I) 

and the integrals over four-coordinates also give vertex functions. Terms with 
one particle/antiparticle propagator are of the form 

--zq __ . ~ e€, ~ I 2 f d4 k' d4 k €I~q (2rr)4 (2rr)4 . [Gqlq(-k ,_k)]IJV AIJ(k')Av(k) :, 

with 

[G~,~(k', k)]IJV = a~,* a~D~,~(k', k) L {-i9~;,(€1:q - w)[~~;,(k')]IJ[~;~(kW}, (72) 
€"q" 

D~,~(k', k) = d~I~:I(k')d~;,~(k)21TC5(€1:q - €1:ql - W - w). (73) 

This result may also be obtained by a direct analogy with the spin-~ case, 
~ (1) 

and it can be generalised to the case of n factors of J{int and (n - I) 
particle/antiparticle contractions (MPIII) by writing 

(-i)nf 4 4 ~(l) ~(l) 
-,- dXn •.. dXI J{int(Xn) ···J{int(XI)-> n. 

(_iq)n " f d4kn d4kl. [G~e€(-kn .•. _kr)]lJn ... IJIA" (kn) ... AIJ1(k1):, -- L 4 .•. 4· q'q' ,..n 
n! €'q',€q (2rr) (2rr) 

(74) 
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with 
[CA€'€(k k )]lJn ... 1J1 - A€'*A€D€'€(k k ) q'q n, ... , 1 :- aq, aq q'q n, ... , 1 (75) 

x L (_i)n-1g~:::~(En_1) ... g~~(Ed[~~:ll(kn)]lln ... [~:~(kd]lJl, 
Q. ... Qn-1 

where we have energy conservation at each vertex so that 

and Q,. denotes (€r,qr). 

n 
Er=€'E q - L W;' 

;=1 
(76) 

The quantity D~,~(kn, ... ,kd is a generalisation of (73) including a factor d~,~(k) 
for each vertex and an energy conservation delta function. This quantity is 
actually independent of intermediate states and can be written (MPIII) 

D~,~(kn, ... ,kd = 

21T<5(€'E q -e'Eq,-~ W;)21T<5(€py-e py - ~k;y )2rr8( €pz - epz,- ~k;z) 

x 1 1. exp [ / B{ L(k; x kj)z - ± k;x(€py + e py)}]. (77) 
V(I q I B)2 q j<i ;=1 

The result (74) applies to Feynman diagrams involving only particle/antiparticle 
contractions and single photon vertices. The generalisation to diagrams with 
two photon vertices and photon propagators requires the replacement of 
some particle/antiparticle propagators with photon propagators and of single 
photon vertex factors with two photon vertex factors. The details are given 
in Section 7. 

The last elements we need to consider are closed loop diagrams in which 
we have n vertices and n contractions. Once again the result is analogous to 
the spin-~ case. One has (MPIII) 

with 

(_i)n f 4 4 A (1) A (1) 
-1- dXn ••• dX1 J{int(Xn) ... J{int(Xl) -n. 

(_iq)n f d4 kn d4kl IJ IJ A A 

--1- --4 "'--4L n··· 1(-kn, ... ,-kl)AlJn(kn) ... AIJI(kd:, 
n. (2rr) (2rr) 

(78) 

LlJn ... IJ'(kn, ... ,kd = - ~! f ~! ?; exp {2~B ?:(k; x kj)z} (79) 
)<1 

x L (_i)ng~:(En) ... g~',(Ed[~~:(kn)]lln ... [~:~(kd]IJ', 
QI ... Q. 

where the integral is over the undetermined loop energy and parallel momentum. 
This calculation is valid for Feynman diagrams with only single photon vertices 
and particle/antiparticle propagators. Once again the generalisation to diagrams 
with two photon vertices and photon propagators is obvious. 
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7. Feynman Rules 

The Feynman rules in the magnetised spin-O case can be developed from 
the S-matrix expansion. The rules are the same as for the spin-~ case except 
for the addition of a two photon vertex, with its own unique vertex factor, 
the explicit form of the vertex function [~~(k)]J.I and the form of the particle 
propagator. The existence of a two photon vertex also adds new variety to 
the Feynman diagrams as diagrams with adjacent photon propagators and 
closed loops with only photon propagators are now possible. In conSidering 
a particular process, the inclusion of such diagrams introduces terms in the 
corresponding Feynman amplitude for which there is no counterpart in the 
spin-~ case. 

The rules are as follows: 

• Feynman diagrams are written with the initial state on the right and 
final state on the left. A given Feynman amplitude can be written in 
one of two forms, (74) or (78). 

• Incoming and outgoing particle/antiparticle lines give no contribution 
to a diagram, they merely serve to indicate the initial and final 
particle/antiparticle states. 

• An incoming photon line labelled with four-vector index Il and with 
wavevector k in mode M is associated with the factor aM(k)e~(k). 
An outgoing photon line labelled with four-vector index v and with 
wavevector k' in mode M' contributes aMI(k')eM~(k'). 

• A single photon vertex with photon line labelled with four-vector index 
Il and wavevector k directed out of the vertex, and with initial and final 
particle/antiparticle states (Ei,qi) and (Ej,qj), respectively, contributes 
a vertex function 

[~~;(k)]J.lj 

-eE to [Gq'q(kn, .•. ,kd]J.ln ... J.lI or LJ.ln ... J.ll(kn, ... ,kl). The vertex also contributes a 
factor -iq to the Feynman amplitude. 

• A two photon vertex with outgoing photon lines labelled with indices 
Ili and Ilj and wavevectors ki and kj respectively and with initial and 
final particle/antiparticle states (Ei,qi) and (Ej,qj) and corresponding 
particle/antiparticle energies Eq; and Eqj contributes 

E'E' 
2gJ.ljJ.l; [r ~ql(kj + ki)]o 

E/Eq . + E/·'£. • J q; 

A factor -iq is also contributed to the amplitude. 

• An internal particle/antiparticle line with intermediate state (Er,qr) and 
energy Er is associated with a modified propagator, 

-ilfir(Er ). 

• An internal photon line contributes a factor 

-iDJ.ljJ.l;(k) 
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instead of the particle/antiparticle propagator with k directed from 
vertex /1j to vertex /1i· 

8. Conclusions 

The aim of this paper has been to derive the Feynman rules for magnetised 
spin-O bosons. The major results of this paper are the explicit forms of the 
spin-O vertex function (41) with (42) and (44), the modified particle propagator 
(53) and the Feynman rules for the magnetised spin-O particles in Section 7. 
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Appendix: Properties of the Functions Hn and J{J 

Properties of the Hermite Polynomials, Hn 

(i) Recursion relation 

H' n(x) = 2nHn-l (x). 

(ii) Orthogonality 

foo 2 l 
_oodx H/(x)Hm(x)e-X = IT2 2/I!o/,m. 

(iii) Useful integrals 

1 

{

{(n + 1)/2}"2 
00 2 1 f _ xH.(x)H m(x)e~ dx ~ (rr2·+m n!m!), In l:) 1 

m=n+l 

m=n-l 

otherwise, 

(A 1) 

(A2) 

(A3) 
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fOO I 
-00 X2 H~(x)e-X2 dx = 1Tz (2n + 1)2n- 1 n!, (A4) 

fOO I 

-00 Hn(x)H' m(x)e-X2 dx = n21TZ 2n+l(n -1)!8n,m. (AS) 

Properties of ]~ 

(j) ]~ was defined in Section 2 and has the property 

]~(x) = (-)V]~tV(x). (A6) 

(ij) Recursion relations 
I I 

r+l(x) = (n+v+I)2r(x)_(_x_)Zr (x) 
v n + I v n + I v+l 

(A7) 

-x+v+l { .! ----.:.....:..-~I]~(X)+ x(n+v) }2 n 
{(n + l)(n + v + 1)}2 (n + l)(n + v + 1) ]v-l (x), 

(A8) 

I I 

]~-l (x) = (n ~ v r ]~(x) - (~r]~-l (x) (A9) 

-x+n { ( .! ---I]~(X)+ x n+v+ 1)}2 n 
{n(n + v)}z n(n + v) ]V+l (x), 

(AIO) 

I I 

(x + v)]~(x) = {x(n + v)} z ]~-l (x) + {x(n + v + 1)}2 ]~+l (x) . (All) 
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