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Abstract 

Periodic perturbations are applied to the homoc\inic orbits corresponding to solitons of the 
modified Korteweg-de Vries (mKdV) equation, which is significant in plasma physics and 
lattice models. It is observed that for certain distinct frequencies the homoclinic orbits do 
not split into stable and unstable manifolds, which means absence of horseshoes and chaos. 
The analysis is performed on a travelling wave reduced form of the mKdV equation both 
by standard application of the Melnikov method as well as numerical generation of POincare 
maps. In particular, the geometry of the homoclinic orbits and their structural changes 
under perturbations is investigated. 

1. Introduction 

As we noted in a previous paper (Roessler 1991), the association between 
soliton solutions of nonlinear evolution partial differential equations (PDEs) 
and homo clinic orbits has been exposed in one form or another by various 
authors Ueffrey and Kakutani 1972; Holmes and Marsden 1981; Birnir 1988). 
The present paper is a sequel to this previous work, which discussed the 
application of the Melnikov method to perturbed travelling wave solutions of 
the KdV equation. In particular, numerical methods and computer programs 
used in this previous paper are reemployed. Here we apply Melnikov's method 
to perturbed travelling wave solitons of the mKdV equation 

Ut - au2 ux - buxxx = o. (1) 

Like in the case of the KdV equation, most publications on the mKdV equation 
in the last two decades have concentrated on properties of the equation itself, 
such as conservation laws, inverse scattering theory, group structures and 
transformations between solutions. In the present context it is necessary to 
briefly review the physical significance of the mKdV equation in connection 
with plasma physics and solid state lattice models so as to provide some 
framework for the type of perturbations that are introduced which then permit 
analysis via Melnikov's theory. 
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(a) Alfven Waves in Plasma 

Alfven waves have been studied by Kawahara (1970). In a review of his 
analysis the following equation is derived: 

of/at + f 2of/ox = Vo l103f/ox3. (2) 

This is of course the mKdV equation and the dependent variable f is proportional 
either to the density or velocity fluctuations due to dispersion of the plasma. 
The wave solutions of (2) are the Alfven waves, 11 is a constant and Vo is the 
phase velocity of an idealised (Le. nondispersive) Alfven wave. An external 
forcing term fp periodic in space and time, 

fp(x, t) = ex cos(wx - wp t) , (3) 

provides a periodic perturbation to equation (2). Such a perturbation can be 
induced by an external electromagnetic field. A term fd of the form 

fd = -vfxx (4) 

accounts for dissipation or damping of the Alfven waves. Adding these two 
terms to the right side of the equation will, after further reduction, allow the 
application of Melnikov's theory. 

(b) Lattice Waves 

By lattice we mean here the atomic structure of solids and the vibrations of 
the atoms which are usually described by so-called lattice waves. We consider 
the one-dimensional model consisting of a number of particles each of mass 
m connected to its two neighbours by two springs. Instead of a spring force 
proportional to the equilibrium displacement y, say, of the individual particle, 
Zabusky (1967) considered the nonlinear dependence between spring force F 
and y: 

F = K(y ± exyP+l) , (5) 

with K, ex, p being positive constants. It was shown by Zabusky that the 
dynamics of a one-dimensional lattice with a spring force of type (5) can in 
the continuous limit be reduced to the equation 

au/at ±uPou/ox +l103U/oX3 = 0, 

with u = oy/ox and 11 a constant depending on ex and p. Perturbations in the 
form of mechanical vibrations and dissipation presented in the forms (3) and 
(4) can be considered for periodic forcing and damping. 

For an extensive introduction to the Melnikov method we refer to Greenspan 
and Holmes (1983), Guckenheimer and Holmes (1984) and Wiggins (1988). 
Although the present analysis is quite similar to that for the KdV equation, 
technical aspects in the study of the mKdV system are more involved, as 
there is considerably more variety in its structure. In Section 2 we reduce the 
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perturbed mKdV system via a travelling wave ansatz to a third-order ordinary 
differential equation (ODE) and then to a second-order ODE by quadrature 
which we then solve. Section 3 shows the solutions and their geometry in 
the corresponding three- and two-dimensional phase spaces. The main result 
appears in Section 4, where we present the Melnikov integrals for the perturbed 
soliton solutions and discuss some of the numerical analysis of Poincare maps 
of the invariant manifolds. We show the absence of a separation between 
stable and unstable manifolds for certain ranges of parameter values and 
for certain perturbation frequencies via computer-generated Poincare maps of 
non-splitting manifolds, as well as by disappearing Melnikov distances. Our 
results are summarised in Section 5. Since the application of the Melnikov 
method is routine and the evaluation of the Melnikov integrals rather technical 
and straightforward, they are relegated to the Appendix. 

2. Reduction of the mKdV Equation 

We begin with the equation 

-ur + au2 Ux + buxxx + 8uxx + ()( cos(wx - wp t) = O. (6) 

This is a mKdV-Burgers equation extended by an external periodic forcing 
term. A travelling wave ansatz 

y=x-ct, c=Wp/W (7) 

reduces equation (6) to 

CUy + au 2uy + buyyy + 8uyy + ()( cos(wy) = O. (8) 

Redefining units of x and t, the wavespeed c can be normalised to unity without 
loss of generality. Adopting this convention from now on and integrating (8) 
gives 

u + au3 /3 + buyy + 8uy + ()( sin(wy)/ w = kl , (9) 

with kl as integration constant. The solutions of (9) for vanishing dissipative 
and periodic forcing terms «)( = 8 = 0) are of course the travelling wave solutions 
of the mKdV equation, which include the solitons. After reintroducing small 
dissipative and periodic forcing terms (1 > ()(, 8> 0) as perturbations, we have 
the conditions necessary for the application of Melnikov's method. 

3. Wave Solutions of the mKdV Equation and Their Geometry 

The similarity of the reduced mKdV equation to the Duffing oscillator with 
weak feedback control, as studied by Wiggins and Holmes (1987), is worth 
mentioning, as the unperturbed system of their oscillator can be considered a 
special case of the following analysis. To be complete, we give the solutions 
corresponding to saddle connections as well as the ones corresponding to 
periodic orbits. 
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Fig. 1. (a) Figure-eight phase portrait in U-Uy-kl space. The 
cubic Uyy is given by (9) and yields the set of fixed points. The 
figure-eight is symmetric for kl = 0 and degenerates into one loop 
for kl = ±(l + 1/3a)/a. (b) Analogous illustration to (a). but for the 
two saddles phase portrait. 

(a) Saddle Connections 

J. Roessler 

Following the approach outlined above, we set ex = 8 = 0 in (9) and obtain 
the equation: 

u + au3/3 + buyy = kl . 

Multiplying it by uy , integrating and regrouping terms, leads to 

Uy = [_u4 - 6u2/a + 12kl u/a + 12k2/a]~(a/6b)~ 
1 1 

= [(u - rl )(r2 - u)(r3 - u)(r4 - u)];; (a/6b);; , 

(0) 

(11) 
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with the convention on the polynomial roots of Yl < Y2 < Y3 < Y4. We obtain 
real solutions u such that 

Yl ::; u ::; Y2 < Y3 ::; U ::; Y 4 for a, b < 0 (a, b > 0) . (12) 

By adjusting the integration constant k2 we can obtain Y2 = Y3 which will 
show up in the space spanned by Uy and u as a figure-eight phase portrait, 
i.e. two homoclinic loops connected to one saddle. This is equivalent to the 
unperturbed case in the Duffing system analysed by Wiggins and Holmes (1988) 
and Fig. 1 a illustrates this case for various values of k 1 . We will abbreviate 
this figure-eight case as (f8). 

Alternatively, we can change the signs in the roots of (6) such that 

1 1 

Uy = [u4 + 6u2 /a - 12kl u/a - 12kdaJ2 (-a/6b)z 

1 1 

= [(u - Yl)(U - Y2)(Y3 - U)(Y4 - u)]2(-a/6b)"i . (13) 

Now, real solutions are obtained for 

Yl < Y2 ::; U ::; Y3 < Y 4 with a < 0 < b (b < 0 < a) . (14) 

Again by adjusting k2 so that Yl = Y2 (or Y3 = Y4 respectively) we obtain in 
uy-u space two saddles and one homoclinic orbit. This geometry, which we 
abbreviate as (2s), is shown in Fig. 1 b for various values of kl. The two cases 
described above are the only ones exhibiting saddle connections. Applying 
the method of quadratures to (ll) and (13) gives an implicit representation of 
the solution u(y) for (f8) and (2s) respectively. Setting Y2 = Y3 for the (f8) case 
and Yl = Y2 for the (2s) case specialises to the solutions corresponding to the 
four homo clinic orbits possible in these cases. Further algebra and integration 
extracts the combined solutions expressed in terms of hyperbolic functions, 

u(y) = C/{Acosh[E(y - Yo)] + 2Ys} + Ys , (15) 

1 

A =A± = ± [-2(Y~ + 3/a)]2 , C = -6(Y~ + l/a), 
I 

E = E± = ± [-a/b(Y~ + l/a)j2 , 

Ys = position of saddle on u axis. 

(f8) : a,b<O, 0::; Y~::; -l/a, 

A-: left loop, A+: Yight loop. 

(2s) : a<O<b, -l/a < Y~ < -3/a, 

A_: loop on left saddle, A+: loop on Yight saddle, 

Ys negative Ys positive 
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The heteroclinic limit for (2s) appears when rs = ± [-3/a] 1/2 _ The two saddles 
at u = +[-3/a]1/2 and u = -[-3/a]1/2 are connected by two heteroclinic orbits 
(see Fig. 1 b). Symmetry about the u and Uy axes and e-Uiptic fixed point in 
the origin is evident; the heteroclinic solutions are given by 

1 1 

u(y) = ± [-3/aFtanh[ ± (y- Yo)/(2b)2"], (16) 

with 

1 1 

-[-3/aF = r1 = r2 < u(y) < r3 = r4 = +[-3/aF , k1 = O. 

We note that (16) is not the limit of (15) case (2s) above, as rs -> ±[-3/a]l/2. 

(b) Periodic Solutions 

The derivation of the periodic solution is similar to the saddle connections, 
except that the integrals are elliptic. The solutions inside the homoclinic loops 
are in combined form: 

u(y) = (r d - rd/[£x~ sn2{Qs(y - Yo), k} - 1] + r d, (17) 

1 

Qs = [(r4 - r2)(r3 - r1)a/24bF , 

£x~ = (rb - rd/(rb - rd), 

k2 = (rb - rd(ra - rd/(r4 - r2)(r3 - rr> 

= £x~(ra - rd)/(ra - rd, 

where the roots r a, rb, rc,Y d are assigned as follows: 

(f8) inside right loop: 

ra=r1, rb=r4, rc=r3, rd=r2· (18) 

(f8) inside left loop: 

ra=r3, rb=r2, rc=r1, rd=r4· (19) 

(2s) inside loop on right saddle: 

~=n, ~=~, ~=~, ~=~. (20) 

(2s) inside loop on left saddle: 

~=~, ~=~, ~=~, ~=n· (21) 
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Uyy 

U 

Fig. 2. (a) Periodic orbits in u-uy-Uyy phase space enclosed by a pair of homoclinic orbits 
for (f8) mode. (b) Set of homoclinic orbits for (f8) mode in U-Uy-Uyy phase space. 

Uyy 
Uyy 

U 

(a) (b) 

Fig. 3. (a) Periodic orbits in U-Uy-Uyy phase space enclosed by a homo clinic orbit for (2s) 
mode. (b) Set of homoclinic orbits for (2s) mode in U-Uy-Uyy phase space. Note the pair of 
heteroclinic orbits representing the limit case. 
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The periodic solutions for (f8) outside the homoclinic orbits are 

u(y) = [r4B + rIA +C(ri A - r4B)]/[B +A +C(A -B)L 

A2 = [r4 - (r2 + r3)/2]2 - (r2 - r3)2 /4, 

B2 = [r1 - (r2 + r3)/2]2 - (r2 - r3)2 /4, 

C2 = cn{(y-yo)[aAB/6b]~,k}, 

k2 = [(r4 - r1)2 - (A -B)2114AB. 

j. Roessler 

(22) 

The periodic solutions for (2s) between heteroclinic saddle connections are 

I 

u(y) = r3 sn{(y- yo)r4[-a/6bj2 ,k} 

k=r3/r 4, r§+d=-l/a. (23) 

Here sn, en, dn are Jacobi's elliptic functions and k is their modulus. 

(c) Geometry in Phase Space 

As already noted, these expressions are solutions of the unperturbed and 
reduced mKdV equation 

uy+au2uy+bUyyy = 0, (24) 

and an analysis of the corresponding system of three first-order differential 
equations in U-Uy-Uyy phase space reveals the entire u axis as containing all 
possible fixed points of the system, which are thus degenerate. An analysis 
of the two-dimensional system obtained from the integrated version of (24), 

U +au3/3 +buyy=k1' (25) 

gives the stability type of these fixed points and so allows the construction 
of the trajectories of the discussed solutions in the U-Uy-Uyy phase space. 
Their geometry is illustrated in Figs 2 and 3 as well as in the earlier Fig. 1. 
Similar to the case of the KdV equation, the sets of trajectories consisting of 
concentric periodic orbits enclosed by a homoclinic orbit exist on invariant 
surfaces P, say, parametrised by k1 and independent of u y and whose sections 
in the U-Uyy plane are defined by the cubic (25). 

This geometry also helps to explain the role of the integration constant 
kl. Since the saddle position rs must be on the u axis, that is, it has the 
coordinates (u = rs, uy = 0, Uyy = 0), it can be seen from (25) to be a function 
only of a and, more important, of kI, 

rs +arU3 = k 1 • (26) 

Therefore k1 controls the shape of (f8) or (2s) in the phase portrait, whereas 
k2 determines the solution within it. 
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Under perturbations the surfaces P remain invariant, but they are now 
defined by (9) and, as in the KdV case, each surface P has a slope of value D 
in the Uy direction, induced by the dissipation term DUy • The periodic forcing 
term induces a y-periodic oscillation of the set of P with frequency cu and 
amplitude a/b along the Uyy axis. 

(d) Comparison with the Duffing Problem and the Forced Pendulum 

Setting rs = kl = 0 leads in the reduced and unperturbed u-uy phase diagram 
to symmetry with respect to both u and Uy axes. In (f8) mode this of course 
reduces the problem to the Duffing system studied extensively and in detail 
by Greenspan and Holmes (1983) and Guckenheimer and Holmes (1984). In 
(2s) mode the similarity to the forced pendulum (see e.g. Guckenheimer and 
Holmes 1984) is only superficial. With the pendulum the two saddles can be 
identified, which means an inherent periodicity in the phase diagram. In other 
words, there is a countably infinite number of saddles and pairs of heteroclinic 
orbits connecting them. On the other hand, the symmetric mKdV (2s) mode 
has only two saddles and the 'outer' halves of their invariant manifolds are 
unbounded. This difference also manifests itself in the heteroclinic orbit 
solutions of the type 

u(t) = ± 2 arctan(sinht), 

as given by Guckenheimer and Holmes (1984), clearly different from solution (16). 
Wiggins and Holmes (1987) studied the Duffing oscillator with weak feedback 

control, and without this weak feedback perturbation their system is equivalent 
to the (unperturbed) (f8) mode. Their perturbation, however, relates to 
fluctuations of the integration constant kl. Moreover, both the Duffing system 
and the pendulum are genuinely two-dimensional systems, whereas the reduced 
mKdV system is three-dimensional, and although its Melnikov analysis can 
be reduced to two dimensions, the results of this analysis were justified by 
reproducing them numerically in the full three-dimensional phase space. 

4. Melnikov Functions and Bifurcations 

(a) Melnikov Functions 

As determined in the Appendix, dissipative perturbations on the reduced 
mKdV equation (9) contribute the following Melnikov functions for (2s) and 
(f8) mode respectively: 

MD2S±= -E±{2rsA2/[-Clhanh-l([-Cl~/2rs)+4r~ +2C/3}, (27) 

MDf8± = -E±{2rsA2/[Clt tan-l(-[Cl~/2rs) +4r~ + 2C/3}, (28) 

where A, C, E and r s are defined in the homoclinic orbit solution (15). The 
periodic perturbations contribute for (2s) 

MA2s±(YO) = ± 2[-Cl~ cos(cuyo) rr sin{cu/E cosh-1 (2rs/ A)}/{E sinh(rrcu/E)}, (29) 
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and for (f8) 

1 

MAf8±(YO) = ± 2[CF cos(wyo) rr sinh{w/E cos-1 (2rs/A+)}/{E sinh(rrw/E)}, (30) 

with 

MAf8-: left loop, MAf8+: right loop. 

For the heteroclinic solution (16), dissipation and periodic parts MhD and MbA 

become 
1 

MhD = [2/bF2/a, 

1 1 

MbA = [-6b/a]2 rrw cos(wYo)/sinh(rrw[b/2F). 

(b) Tangencies and Quadratic Zeros 

(31) 

(32) 

It is clear that the homoclinic Melnikov function M(yo) has quadratic zeros 
for cos(wyo) = 1. Therefore, the invariant manifolds WS and WU must have 
tangency points, and we define the tangency ratio R(w) for 0< = O<c and 8 = 8c: 

R(w) = o<cl8c • (33) 

This ratio determines the point of bifurcation or transition to chaotic solution 
for a given w: 

0</8> R(w) {:} WS 1\ WU ;f 0 (transverse intersection, chaos), 

0</8 =R(w) {:} WS 1\ WU ;f 0 (tangency, point of bifurcation), (34) 

0</8 <R(w) {:} WS 1\ wu = O. 

For (2s) and (f8) the ratio turns out to be 

R2s± = -{2rsA2/[-C]hanh-1([-C]~ /2rs) + 4r~ + 2C/3} 

x E2 sinh(rrw/E)/(2rr[-C]~ sin{w/Ecosh-1(2rs/A±)}), (35) 

1 1 

Rf8±= -{2rsA2/[C)2tan-1(-[CF/2rs) +4r~ +2C/3} 

1 

x E2 sinh(rrw/E)/(2rr[C)2 sinh{w/E cos-1 (2rs/A±)}). (36) 

Figs 4 and 5 show Rzs± and Rf8+ plotted against rs and w. The tangency ratio 
Rh for this heteroclinic solution is 

1 1 

Rh = 2/(rrb[-3aF)sinh(rrw[b/2F). (37) 
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Fig. 4. Bifurcation curves in (2s) mode defined by (35) and evaluated at a = b = -1: (a) ac/Dc 
versus saddle position for various perturbation frequencies w; (b) ac/Dc versus w for 
various saddle positions. 
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Fig. 5. Bifurcation curves in (f8) mode defined by (36) and evaluated at a = -I, b = 1: (a) ac/6c 
versus saddle position for various perturbation frequencies co; (b) ac/6c versus co for 
various saddle positions. 
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Fig. 6. Periodic perturbation contribution to the Melnikov function for the (2s) mode as 
given by (29) and evaluated for a = -1, b = 1: (a) Melnikov function versus perturbation 
frequency w for various saddle positions; (b) Magnification of (a) for small and negative 
values of the Melnikov function. Note the virtual disappearance of the function for values 
of w ~4. 
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Fig. 7. Zeros of the Melnikov function for Fig. 6 graphed in the saddle position-w plane. 
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Fig. 8. Invariant manifolds for the (2s) mode projected into the U-Uy plane for a = -0·25, 
b = 0·5, saddle at u = -3·2, ex = 0·3, 8 = 0 and w = 2·92, which is a critical perturbation 
frequency value with vanishing periodic part of the Melnikov function. Except for a small 
neighbourhood about the saddle the manifolds overlay exactly within accuracy of the diagram. 
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(c) Critical Perturbation Frequencies in (2s) Mode 

As can be seen from (27), MA2s± vanishes independently of Yo if the 
perturbation frequency assumes multiples of a certain critical value We such 
that 

sin{we/E COSh-l (2rs/A)} = o. (38) 

This behaviour is illustrated in Figs 6 and 7 and is also verified numerically in 
Fig. 8. Moreover, Fig. 6 in particular exhibits a rapid decline of the amplitude of 
I MA2s± I with increasing perturbation frequency w. This virtual disappearance 
of the periodic part of the Melnikov function for higher perturbation frequencies 
holds of course for all coefficient values in the mKdV equation in (2s) mode. 
It is evident from the Melnikov theory that this periodic part of the Melnikov 
integral is responsible for the transversal intersections and quadratic zeros of 
the invariant manifolds. According to the Smale-Birkhoff homoclinic theorem, 
transversal intersections of invariant manifolds are crucial for the formation 
of Smale horseshoes and the generation of chaos. The homo clinic orbit will 
survive for certain discrete forcing frequencies and multiples thereof and for 
all practical intents and purposes for larger frequencies as well, as illustrated 
by Fig. 6. Transversal intersections will therefore not exist at these critical 
frequencies and the system cannot display chaos or unbounded growth in the 
absence of external dissipation. This is supported by numerics as illustrated in 
Fig. 8, which shows an intact homoclinic orbit under periodic perturbation at 
the critical forcing frequency We = 2 ·92, but without external damping (6 = 0). 

(d) Effect of Lower Perturbation Frequencies and Dissipation for (2s) 

As can be inferred from Fig. 6 and numerical Poincare maps, the invariant 
manifolds split for perturbations with small frequencies. This leads to the 
formation of horseshoes and transition to chaos as defined by (34) and familiar 
from the Duffing system. The effect of dissipation is also explained by (34); 
however, at the critical forcing frequencies the manifolds react to disSipation 
as if periodic forcing were absent. That is, they split without any intersections 
or tangencies. 

(e) Comparison with Numerics 

As with the KdV system (Roessler 1991), the tangency ratios for the mKdV 
system as given by (35)-(37) are in good agreement with numerically determined 
tangencies between stable and unstable manifolds of the three-dimensional 
systems. However, this good agreement breaks down for manifolds relating 
to relatively small unperturbed homoclinic orbits, that is, for saddles close 
to the saddle-centre merging points, and for manifolds in the (2s) mode 
close to the heteroclinic limit. These cases correspond to the regions close 
to the poles in Figs 4a and 5a. In these regions the applicability of the 
first-order Melnikov method becomes questionable, as is evidenced by the 
large perturbation amplitudes DC. The important phenomenon of a vanishing 
Melnikov distance relating to the periodic perturbation for the mKdV case in 
(2s) mode is corroborated in Fig. 8 for the critical perturbation frequency 
W = 2·92. Except for a small neighbourhood around the saddle, the invariant 
manifolds overlay exactly within the accuracy of the graph. 
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5. Summary 

The important result is clearly the stability of the homoclinic orbit under 
periodic perturbations with certain frequencies and multiples thereof in (2s) 
mode. Since this phenomenon is manifested both by Melnikov analysis and 
the numerical generation of Poincare maps for the invariant manifolds, it 
cannot be simply attributed to first-order approximations or numerical errors. 
Although the (2s) system is only a minor variation on the Duffing or (f8) 
system, this phenomenon does not exist for these or any other known 
systems exhibiting saddle connections and seems therefore rather unique 
to the reduced mKdV system in (2s) mode. Moreover, Fig. 6 shows that 
MA2s becomes negligibly small for high enough frequencies, which can be 
confirmed by Poincare maps. This implies the absence of intersections and 
tangencies between stable and unstable manifolds; the Smale-Birkhoff homoc1inic 
theorem becomes inapplicable at the critical perturbation frequencies We and 
for all practical purposes at higher perturbation frequencies as well. As a 
consequence, horseshoes and hyperbolic invariant sets with the related chaotic 
behaviour are nonexistent, which has been verified numerically. Another 
consequence of this vanishing Melnikov distance is that the mKdV system in 
(2s) displays an intact homo clinic orbit for zero dissipation and perturbation 
frequencies at the critical values. In other words, the absence of Smale 
horseshoes and manifold splitting means that the homoclinic orbit survives 
at these frequencies and merely oscillates with them. This implies structural 
stability for the homoclinic orbit at these frequency values but structural 
instability at other frequency values, i.e. almost everywhere in parameter 
space. 

The interpretation in the soliton picture would be that of a breather or bion, 
or an oscillating soliton. The unperturbed mKdV equation is known to have 
breathers; however, in the present case the oscillation frequency is induced by 
a perturbation. It is also worth noting that this is limited to an appropriately 
moving frame; according to the wave ansatz (7) and wave speed c normalised 
to unity, both wave number wand frequency wp of the perturbing wave must 
be (up to dimension) equal to each other as well as to the critical frequencies 
in order to create an oscillating soliton. More precisely, a normalised wave 
speed redefines time and length units such that a perturbation has the same 
number of periods per length unit as per time unit. If this number of periods 
is at a certain critical value or mUltiples thereof, the soliton will not become 
chaotic; in the presence of dissipation it will damp out and in the absence of 
dissipation it will oscillate with the perturbation frequency, but without energy 
absorption. This last conclusion follows from the fact that the homo clinic 
orbit stays intact and is therefore not subjected to the hyperbolic stretching 
(and ensuing unbounded growth) in the neighbourhood of the saddle, as would 
be the case for a split stable and unstable manifold. 

Finally, we note that the (2s) mode is possible for the case of lattice 
waves as discussed in the Introduction if the minus sign is chosen in the 
expression for the spring force (5), and for Alfven plasma waves (2) if the 
wave speed Vo and constant f.l are of different sign. Solitons which survive 
wave-type perturbations of certain frequencies can therefore be expected in 
these models. 
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Appendix 

We begin by expressing equation (9) as a two-dimensional first-order system 
of ODEs: 

Uy = U1, 

U1y = (a 3/3 + U + kr)/b - OU1 - oc sin(wy)/w, (AI) 

after rescaling 0 -> o/b, OC -> oc/b. As shown by Greenspan and Holmes (1983), 
for a two-dimensional system such as 

Ut = f1 (u, v) + £91 (u, v, t), 

Vt = f2(U, v) + £92(U, v, t) , (A2) 

U = u(t - to), v = V(t - to), 

9;(U,V,t)=9;(U,V,t+n, i= 1,2, 

with £ as the perturbation parameter, to a phase factor and T the period of 
the perturbation (91,92), the Melnikov integral M(to) applicable to the solutions 
representing the homo clinic orbits of (A2, £ = 0) is defined as 

M(to) = f~oo (f1 92 - f2 9r) dt. (A3) 
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Comparison between (AI) and (A2) shows 

fl = Ul, €gl = 0, 

f2 = (au3 /3 + U + kr)/b, €g2 = - 8Ul - oc sin(wy)/ w. (A4) 

Introducing one more rescaling, €g2 -+ g2, and observing that y plays the role 
of time t, the homoclinic Melnikov integral M(yo) becomes 

M(yo) = - 8 S:oo u; dy + oc S: U cos(wy) dy 

= -8Mo+ocMA. (AS) 

Substituting the solution (15) and its derivative into (AS), the dissipation part 
Mo reads 

Mo = S: u; dy= (AEC)2 S: sinh2E(y-Yo)/[AcoshE(y-yo)+ 2rs]4 dy. (A6) 

Using the substitution x = E(y - Yo) and noting the evenness of the integrand 
with respect to x, the integral reduces to the form tabulated in Gradshteyn 
and Ryzhik (1965; p. 346, #3.516.4): 

Mo = 2E(AC)2 S:oo sinh2x/(A coshx + 2rs)4 dx 

= 2E(AC)2 K4 S: sinh2x/(KA coshx + 2Krs)4 dx 

= -4E(AD)2K4n2)n3/2)~(2Krs)/[7T]~KAn4) 
1 1 

= -AE[-C]Q2(2rs/[-C]2). (A7) 

Here r is the gamma function and K is a technical constant determined by 
comparison of the integral above with Gradshteyn and Ryzhik (1965; p. 346, 
#3.516.4): 

1 {imaginary for (f8); r~ <-I/a 
K= [-C] 2 = 

real for (2s); -1/a < r~ < -3/a. 

In (A7) ~ is the associated Legendre function of the second kind: 

1 1 1 
~(z) = -3[z2 -1]2tanh- (1/z) - (3z2 - 2)/[z2 -1]2 . 

(A8) 

(A9) 
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For an imaginary argument this reduces to 

Q~ (ix) = i{3[x2 + 11 ~ tan-1(1/x) - (3x2 + 2)/[x2 + 11h. (AI0) 

Therefore Mo stays real for (f8) as well and can be expressed in terms of A, 
C, E and r s (see equation 15) for (2s) and (f8) as 

M02s± = - E±(2rsA2 /[-C1~tanh-l([-C1~ /2rs) + 4r~ + 2C/3) , (All) 

MOfS±= -E±(2rsA2/[Clhan-l(-[cl~/2rs)+4r~ +2C/3). (A12) 

Note that for the left loop (L) of MOfS±: 

lim tan-l(-[Cl~/2rs)=+Hrr/2. (A13) 
rs .... +(-)O 

To eliminate this discontinuity, a change of branches of tan-l (_[Cj1/2 /2rs) at 
rs = 0 is necessary. Equivalently for the right loop (E+): 

1 
lim tan-l (-[C]2/2rs) = -(+)rr/2. (AI4) 

rs .... +(-)O 

For the periodiC part MA note that we can substitute U = u - rs for u and shift 
Y --+ Y+Yo: 

MA(YO) = f~oo U(y) cos w(y + Yo) dy. (AI5) 

Using the solution (15), MA(YO) reduces to 

MA(YO) = -2C cos(wyo) f: cos(wy)/[A cosh(Ey) + 2rsl dy. (AI 6) 

This integral is shown in Gradshteyn and Ryzhik (1965; p.505, #3.983.1) to 
have two distinct evaluations: 

(1) 2rs>A>0 =} O<-l/a<r~ =} (2s): 

MA2s±(YO) = ± 2[-Cl~ cos(wyo) rr sin{w/E cosh-1 (2rs/A)}/E sinh(rrw/E); (AI?) 

(2) I A I > I 2rs I > 0 =} 0 < r~ < -l/a =} (f8): 
1 

MAfS±(YO) = ± 2[C]2 cos(wyo) rr sinh{w/E cos-1 (2rs/ A+)}/E sinh(rrw/E). (AI 8) 

Note that, due to symmetries of the hyperbolic and circular functions, the 
superscripts or signs on A and E can be omitted or pulled in front of the 
right sides in (AI?) and (A18). Only in the argument of cos-1 in (A18) do 
the different signs on A change the absolute value of MAfs, corresponding to 
the two different loops. According to the convention of (15) we therefore 
distinguish two cases: 

MAfS-: left loop, MAfS+: right loop. 
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