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Abstract 

Propagation of nonlinear ion-acoustic waves in generalised multicomponent plasmas bounded 
by cylindrical and spherical geometries is investigated. At the critical density of negative ions 
where the nonlinearity of the Korteweg-deVries (K-dV) equation vanishes, the ion-acoustic 
solitary wave is described by a modified K-dV (mK-dV) equation. It is also emphasised that 
near the critical density neither the K-dV nor mK-dV equation is sufficient to describe fully 
the ion-acoustic waves and thus there is a need to derive a further mK-dV (fmK-dV) equation 
in the vicinity of this critical density. Furthermore, the amplitude variations of the K-dV 
and mK-dV solitons depending on the limitations of geometrical effects are also discussed, 
emphasising that the results could be of interest for diagnosing the soliton properties of 
laboratory plasmas. 

1. Introduction 

The concept of soliton propagation and its interactions has become 
of increasing interest in plasma dynamiCS, from both the theoretical and 
experimental points of view. The characteristics of long wavelength ion­
acoustic waves have been explored thoroughly and it is well known that the 
reductive perturbation method is one of the most established approaches to 
study the K-dV solitons in relation to laboratory plasmas. Beginning with 
Washimi and Taniuti (1966), many authors such as Su and Gardner (1969), 
Jeffrey and Kakutani (1972), Ikezi (1973), Tran (1974), Das and Tagare (1975), 
Lonngren (1983), Raychaudhuri et al. (1985) pioneered the study of solitons 
in simple as well as multicomponent plasmas. Das (1975) and Das and Tagare 
(1975) have shown the existence of negative ion concentrations at which the 
nonlinear coefficient of the K-dV equation vanishes. Later, the existence of 
solitons at the critical density of negative ions in the form of compressive 
and rarefactive solitons was observed theoretically (Watanabe 1984; Hase et al. 
1985; Verheest 1988) and experimentally (Nakamura and Tsukabayashi 1985; 
Nakamura et al. 1985; Nakamura 1987). 

The present investigation is a sequel to earlier work (Singh and Das 1989; 
Das et al. 1989; Das and Singh 1990, 1991) dealing with the interaction 
of negative ions on solitary wave propagations. We consider a generalised 
multicomponent bounded plasma that includes multiple electron temperatures 
with ions of both kinds and ion beams. In a geometrically bounded plasma 
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the results from cylindrical and spherical geometries are compared with the 
planar K-dY solitons, raising possible implications for further verification in 
laboratory plasmas. 

2. Mathematical Derivation of the K-dV and mK-dV Equations 

To derive the K-dY equation from the basic equations governing the generalised 
multi component plasma we have the basic one-dimensional normalised equations 
(Das 1978) 

onoc .., r.;; -) ° ot + v • ,noc Voc = , 

oVoc - ..,- '<7,1.. ° ot +voc·vvoc+qocJ.loc Vop = , 

supplemented by the Poisson equation 

'\}2</> = nel + neh - L qoc noc, 
()( 

(1) 

(2) 

(3) 

where a = i,j, b stands for positive ions, negative ions and ion beams respectively, 
and where q; = qb = - qj = 1. The normalised plasma parameters are defined as 

noc noc/no, nel,h = nel,h/nO, J.loc = m;/moc , 

Voc = voc(KTer/moc)-1/2, Tef = Tel Teh/(J.lTeh + VTel) , 

r = r(KTer/4rre2no)l/2, t=t(4rre2no/moc)l/2, 

where noc is the density of the a-type charged particle moving with velocity 
Voc and nel, neh are the densities of the low and high temperature electrons 
normalised to the background total electron density no. Further, r is the radial 
distance for the cylindrical and spherical geometries (r becomes x along the x 
direction for planar geometry), t is the time and </> is the electrostatic potential. 
Furthermore, we assume the following boundary conditions at I rl-> 00 (omitting 
bars hereafter): 

(j) (0) 
noc -> noc , nel -> J.l, neh -+ v, 

(ij) voc->O, </>--0, (4) 

and (iii) the overall charge neutrality condition is maintained in the plasma 
and given by 

"" (0) Lqocnoc =J.l+v, (5) 
oc 

where J.l and v are the initial densities of the low and high electron temperatures. 
Moreover, the plasma is assumed to be isothermal and the isothermality is 

obtained through the Boltzmann relations (Das et al. 1986) as 

nel = J.l exp (J.l !Vf3 ), neh = vexp (-.!!5L) 
J.l+vf3 ' 

(6) 
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where f3 = TellTeh. 
Now, we first transform the (r, t) coordinates to the new variables in the 

form 

x = r-i\.t, l' = i\.t, (7) 

and then stretching coordinates ?; and T are expressed as 

~ = £1/2x. T= £3/21', (8) 

where .\ is the phase velocity of the wave propagation along the r direction 
and will be determined in a self-consistent manner. Furthermore, all the 
plasma parameters 'P == (noli Va, </» are expanded as a power series in £ about 
the equilibrium state as 

00 

'P = L tf'P(s) , (9) 
s=o 

with the conditions 

V~) = 4>(0) = o. (10) 

Now employing the expansions (9) and (10) together with (6H8) in the 
basic equations (1)-(3), and then equating the lowest order terms in £, we get 
the first order perturbed plasma parameters for the planar, cylindrical and 
spherical geometries: 

n~) = qa Ila n~) 4>(1) Ii\. 2 , 

V~) = qa Ila 4>(1) Ii\., 

L qa n~) = 4>(1), 

a 

from which the phase velocity i\. is expressed as 

i\.2 = Lila n~). 
a 

(11) 

(12) 

(13) 

(14) 

The next higher order terms in £ give a system of equations involving the 
second order perturbed quantities in the following form: 

(1) (2) (2) 
i\. ana ~ ana (0) OVa a ( (1) (1» 

aT-1\ ~ +na ~ + o~ na Va 

(1) (0) 
_ 2Li\.~ onex + 2Lnex ~(~V~» = 0 

T o~ T o~ , (15) 

OV~) OV~) (1) OV~) oqP) 
i\.--a:r-i\.~ + Vex --ar + Qa/1ex ---ar =0, (16) 

f3 2 -:.2,/,.(1) 
"q n(2) = ,/,.(2) + 11 + V (,/,.(1»2 _ _ u _'1-'_ 

~ ex ex 'I-' 2(11 + vf3)2 'I-' a ~2 ' 
(17) 
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where L represents the geometry of the plasma: for the planar L = 0, the 
cylindrical L = ~, while for spherical geometry L = l. 

Following the usual procedure (Das et al. 1989a, 1989b) and using the first 
order results, the relations (15)-(17) yield the desired K-dV equation in the 
general form: 

o cp(l) cp<1l 0 cp<ll 03 cp<ll 
--+L- +AICP(l)-- + ~--=O 

OT T o~ 0~3 • 
(18) 

where 

Al = 2~ 4 (3 ~ qoc p~ n~) - A 4(p + vf32)/(p + Vf3)2). (19) 

In order to obtain the steady state solution of the K-dV equation (18) we 
introduce a new parameter 1> = Al cpO) which transforms the K-dV equation to 
the simplified form 

04> 4> - 04> I 03 4> - +L- +cp- + ~-=O. 
OT T o~ 0~3 

(20) 

The usual procedure Ueffrey and Kakutani 1972) gives the soliton solution of 
(20) in the form 

1> = 1>O(TO/T)L sech2 [- 1. (21) 

where 1>0 is the amplitude of the corresponding planar soliton and the 
expression within the square brackets is connected with dispersiveness and 
the geometry varies from model to model. The solution of (2) for the planar 
case (L = 0) is 

4> = 4>0 sech2[(~ - UT)/c5l. (22) 

where c5 [= (2/U)I/2] is the width of the planar soliton and U is the velocity 
of the frame of the transformed coordinate. The corresponding cylindrical 
(L= ~)and spherical (L= 1) soliton solutions (Maxon and Viecelli 1974a, 1974b) 
are 

[ 
- 1/2 

4> = 4>0(TO/T)l/2 sech2 (~O (TO/T)I/2 ) 

X (~-~O + 2to 1 ToII/2 (I TI 1/2 -I TO 11/2»)). (23) 

[ 
- 1/2 

1> = 1>O(TO/T) sech2 (~O (TO/T») 

x (~- ~o - j-To 1>0 log (T/TO») l (24) 

From the solutions (22)-(24) it is obvious that the soliton amplitude plays 
a vital role in exhibiting ion-acoustic solitary waves in the plasma and it 
depends functionally on the variation of the nonlinear coefficient Al which, in 
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fact, depends on the plasma parameters. The observations first noted by Das 
(1975) and later extensively observed by others (Nakamura and Tsukabayashi 
1985; Das. et al. 1986; Hase et al. 1985; Verheest 1988) concluded that the 
nonlinear coefficient Al can be positive, zero or negative and this variation 
of Al arises generally due to the multiple electron temperatures and negative 
ionic species. The critical density of negative ion concentrations, at which 
the nonlinear term in the K-dV equation disappears, shows that the amplitude 
variation has the singularity and forms a precursor therein. However, from 
earlier knowledge it has been concluded that, whatever the plasma constituents, 
the positive particles always introduce barriers from which the ion-acoustic 
waves are reflected. The possibility of large amplitude waves does not arise 
and, as a result, the reductive perturbation technique is capable of yielding 
finite amplitude K-dV solitons from the basic equations. In the present plasma 
model, apart from the case Al = 0, there are always two types of K-dV solitons, 
either the compressive soliton when Al > 0 or the rarefactive one when Al < O. 
However, with the addition of heavier negative ions in the plasma, the range 
of the compressive soliton becomes wider. The solution of the K-dV equation 
shows that in cylindrical geometry the amplitude increases faster than rl/2 

and the width decreases faster than Tl/4, as compared with the planar soliton, 
whereas in spherical geometry the amplitude changes faster than r 1 while 
the width decreases with the order of Tl/2. Thus, in both geometries, the 
amplitude increases and the width decreases as the soliton moves inwards 
with an increasing propagation speed, and thereby the solitons in a bounded 
plasma travel faster than the planar soliton. However, the presence of multiple 
electron temperatures or negative ions changes the characteristic properties 
of the soliton. The negatively charged particles introduce a critical density 
dividing the range of the concentration variation into two regions where the 
compressive and rarefactive solitons, similar to the case of planar solitons, 
are also observed in the bounded plasma. 

The expression for Al = 0 shows that the critical density occurs at the point 
where the Al variation crosses the axis of concentration of negative ions. 
Now, the variation of Al plotted against negative ion concentration exhibits 
a unique critical density, whereas Al = 0 shows that there will be two roots 
in JJ indicating the existence of two critical densities of electrons. When 
the temperature ratio is f3 ~ 1, the later critical density disappears. Thus, 
when the plasma contains multiple electron temperatures along with multiple 
ionic speCies of both kinds, there is the possibility of having mUltiple critical 
densities due to which the exhibition of multi-layer solitary waves is possible. 
The analysis then becomes more complicated and one has to be careful tackling 
such problems in laboratory plasmas. 

A numerical estimation of the soliton characteristics in planar geometry 
has been done experimentally with the ionic species (ArT, F-) and (Ar+, SF6) by 
Nakamura and Tsukabayashi (1985) and Nakamura (1987). Such observable 
features of solitons have also been theoretically discussed in plasmas involving 
multiple-electron temperatures (Singh and Das 1989). However, due to the 
appearance of the singularity it seems that the K-dV equation cannot describe 
the ion-acoustic waves for all the plasma parameters. This happens because of 
negative ions in the plasmas. Furthermore, experimental evidence shows that 
an appreciable fraction of negative ions can be found in other plasmas, such as 
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in the Thermonuclear Fusion and Q-machine device in which the ion-acoustic 
waves are not explored at all. From earlier investigations we conclude that 
the characteristic role of ion-acoustic waves could be exhibited in laboratory 
alkaline plasmas. However, experimental verification in the case of cylindirical 
and spherical geometries could be obtained with the ionic species (Art, F-), 
(Art, SF6) and with suitable beams, so that our theoretical results may be of 
interest in laboratory plasmas. 

The K-dY equation, so far, analyses compressive and rarefactive solitons 
in plasma and predicts the formation of a precursor at the critical density 
of negative ions. However, the characteristics of the waves at this critical 
density have not yet been discussed, which may be a new area for studying 
solitary waves in generalised multi component plasmas. In order to examine the 
behaviour of ion-acoustic solitary waves at this critical density, we consider the 
higher order nonlinearities together with the modified stretched coordinates 
~ and T defined by 

~ = €(r- At), T=€3At. (25) 

Using the expansion of parameters given by (9) and (10) along with the 
newly defined coordinates (25) in the basic equations and then the equating 
of the lowest order terms in € yields the same expression for the phase 
velocity A. The changes occurred when the next higher order in € is taken 
into consideration, giving the following relations: 

(0) 2 (0) 
n(2) = 3nor Por ('/"(1»2 + qor nor Por ,/..(2) 

or 2A 4 'f' A 2 'f" 
(26) 

2 
v(2) = Por ('/"(1»2 + qor Por ,/..(2) 

or 2A 3 'f' A 'f' , 
(27) 

L. qor n<i) = 4>(2) + P + vf32 (4)(1))2. 
or 2(p + vf3)2 

(28) 

The elimination of n<i) from (26) and (28) gives 

(:2 ~Por n~) - 1 )4>(2) 

+~ (:4 ~ qor p~ n~) - (p + vf32)/(p + Vf3)2 )<4>(1»2 = 0, (29) 

which shows that the Poisson equation remains valid even when the nonlinear 
coefficient Al vanishes. Based on these results, the next higher order terms 
in € give 

(1) (3) (3) 
A a nor A a nor (0) OVor a ( (1) (2» a ( (2) (1» 
aT - ar + nor ar + o~ nor Vor + o~ nor Vor 

(1) (0) 
_ 2LA~ onor + 2Lnor ~(~v~» = 0 (30) 

T o~ T o~ , 
OV~) OV~) a (1) (2) 04>(3) 

A aT-A ar + o~(Vor Vor ) + qorPor ar = 0, (31) 
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2. qlX n~) = </P) + /1 + vf32 (</>(l)</P» 
IX (/1 + vf3)2 

+ J1 + vf33 (</>(1»3 _ 02</>0) 
6(J1 + vf3)3 a ~2 ' 

(32) 

which Yield, using the first and second order results in E, the mK-dY equation 
as 

0</>0) </>(1) 0</>(1) 03</>0) 
-- + L - + A2(</>(l»2_- + ~ -- = 0 aT T o~ 0~3 ' 

(33) 

where 

A2 = 4~ 6 ( 15 ~>~ n~) - A.6(J1 + vf33)/(J1 + vf3)3 ). (34) 

The solution of the mK-dY equation (33), based on the usual procedure, is 
of the soliton 'sech' type given by 

( 2)1/2( 2) </>(1) = ±</>o sech ~o ~ + ~o T (35) 

for the planar soliton (L = 0). The corresponding solutions for the bounded 
plasmas are Similarly obtainable. In the case of the ion-beam plasma with 
negative ions, the nonlinear coefficient A2 is positive at the critical density for 
which Al = 0 and for all the plasma models irrespective of the constituents of the 
ionic species. The compressive and rarefactive solitons occur simultaneously 
arising due to the ± sign of the soliton amplitude. Similar salient features have 
been observed experimentally (Nakamura and Tsukabayashi 1985) confirming 
the theoretical results. But in the case of multiple electron temperatures, the 
variation of the nonlinear coefficient in the mK-dY equation with electron density 
exhibits two critical densities, each differing from the critical density derived 
for the K-dY equation, similar to the case of negative ions. The observations 
indicate that the critical density occurs when the plasma involves multiple 
electron temperatures as well as negative ions in isolation, and correspondingly 
exhibits the compressive and rarefactive solitons in the plasmas. However, the 
case of a plasma involving only multiple positive ions and electrons exhibits 
only the compressive solitons. 

In the planar plasma with negative ions the nonlinearity of an ion-acoustic 
wave can be controlled, while in the bounded (cylindrical and spherical) 
system the energy of a wave depends on the position of the wave due to the 
geometrical effect. However, a geometrical concentration of the wave energy 
is expected to depend sensitively on the nonlinearity and consequently on the 
amplitude. 

From the present analysis it is obvious that neither the K-dY equation nor 
the mK-dY equation is sufficient to describe fully the essential features of 
ion-acoustic solitary waves. For this reason we examine the further mK-dY 
(fmK-dY) equation involving higher order nonlinearities near the critical density. 
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In this case, the nonlinear coefficient Al of the K-dY equation is not zero but 
is of O(€), and the Poisson equation of O(€2) yields the relation: 

ejP) + 11 + vp2 (<p(1)2_ 2: qOl. n~) 
2(11 +vp)2 01. 

_ ( 3 2 (0) 11 + vp2 ) (<p(1)2 
- ,\4 ~qOl.I101.nOl. - (l1+vP)2 -2-' (36) 

where the coefficient of (<P(1»2/2 is not zero but of O(€). Then the charge 
density in (36) is of O(€3) and must be included in the Poisson equation of 
O(€3). Thus an evolution equation of the mK-dY equation (33) near the critical 
density of negative ions (Das and Singh 1990) is obtained as 

0,1,.(1) ,1,.(1) 0,1,.(1) 0 3 ,1,.(1) 
_'t'_ + L _'t'_ + (AI <p(1) + A2(<P(1»2)_'t'- + i _'t'_ = 0 (37) 
aT T o~ 0~3 ' 

which is the fmK-dY equation consisting of the nonlinear terms of the K-dY 
(18) and mK-dY (33) equations. Thus, the fmK-dY (37) can be studied for 
the particular cases of the planar (or cylindrical or spherical) K-dY or mK-dY 
equations and serves especially as the transitive link between the various K-dY 
equations. 

3. Amplitude Variation of K-dV and mK-dV Soliton Solutions 

We investigate the change of the wave amplitude due to the geometrical 
effect by means of the K-dY and mK-dY equations. To examine the amplitude 
variation we first consider the case of cylindrical geometry by taking simple 
K-dY and mK-dY equations corresponding to (18) and (33). For this we assume 
the simple cylindrical K-dY equation 

o<p <p o<p 03<p 
~+-2 +<P-;;'+-3 =0, 
ut t uX ox 

(38) 

and a planar K-dY solution 

( <P )112 
<P(x, to) = <Po sech2 1 ~ (x - xo) (39) 

is used as an initial wave at t = to (where <Po denotes the initial wave amplitude 
and Xo is the initial position). 

Employing (39) in equation (38) the orders of magnitude (Watanabe and 
Yajima 1984) of the second, third and fourth terms of (38) are 

<p ex: <Po 
2t T' 

,1,.,1,. _,I,. 5/2 
't''t'x - 't'xxx ex: <Po , 

where T is the time interval considered. When the geometrical effect is much 
stronger than the nonlinear and dispersive effects, we obtain 

Ij.,/<po » <Po T, (40) 
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showing that the width of the initial wave is much larger than the propagation 
distance during time T. This implies that the initial wave amplitude cf>o is 
small or the time interval is short and thereby we can neglect the third and 
fourth terms in (38). Then we have 

which immediately gives 

ocf> + cf> = 0, 
at 2t 

cf>(t) = cf>o(tolt)1/2 . 

Thus, the solution of (38) under the initial solution (39) reads as 

1/2 
cf>(x, t) = 1 tolt 11/2 cf>o sech2 ( f~ ) (x - xo), 

(41) 

(42) 

(43) 

showing that the position and width do not change, but the amplitude increases 
as t -+ O. Again, if the geometrical effect is much weaker than the nonlinear 
and dispersive effects, the propagation distance is greater than the initial 
soliton width and then the solution of (38) is modified to (Kako and Yajima 
1982; Hase et al. 1985) 

( ) 2/3 {t 213 }1/2{ t (t )2/3 } 
cf>(x, t) = t~ cf>o sech2 (~) f~ x - Xo - ! Lo cf>o ~ dt. (44) 

In this case we obtain a growing soliton as the amplitude and velocity increase, 
with the width decreasing as t -+ 0, and hence it corresponds to a large initial 
amplitude cf>o (or for a long time interval D. 

Now, similar to the mK-dV (33), we consider the mK-dV equation 

ocf> cf> cf>2 ocf> o3cf> - 0 
at + 2t + ox + ox3 - , 

(45) 

which under the initial wave at t = to given by 

( 
2 )1/2 

cf>(x, to) = ±cf>o sech ~o (x - xo) (46) 

yields, when the geometrical effect is much stronger than the nonlinear and 
dispersive effects, the solution (Hase et al. 1985) 

( 2 )112 
cf>(x, t) = ± 1 tolt 11/2 cf>o sech ~o (x - xo) . (47) 

Again this has the same time dependence of the amplitude as in (43). When 
the propagation distance is larger than the initial soliton width, the solution 
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of (45) is obtained as 

cf>(x, t) = ± I toft I cf>o sech {e~ r ~6 f/2 {x - Xo - t J:o (t~ r cf>6 dt}, (48) 

showing that the time dependence of the amplitude is different from that 
given by solution (44). Thus, we conclude that the solutions of the cylindrical 
K-dY or mK-dY equation have different time ranges. When the propagation 
distance is smaller than the initial soliton width, the wave grows as (TO/T)I/2, 

but after the distance becomes much larger than the soliton width, the wave 
grows as (TO/T)2/3 for the K-dY equation and as TO/T for the mK-dY equation. 
In view of the solutions of the K-dY and mK-dY equations, we can further 
conclude that the solution of the cylindrical fmK-dY (37) has three time ranges 
(TO/T)I/2, (TO/T)2/3 and TO/T. 

The amplitude variations of the spherical K-dY and mK-dY equations can be 
derived more conveniently by writing L = 1 and considering the similar simple 
spherical K-dY and mK-dY equations as in the cylindrical case. As in the 
cylindrical K-dY equation, the spherical K-dY equation (20), where L = 1, also 
has two time ranges. The wave grows as TO/T when the amplitude is small, 
but when the amplitude is large the wave increases in proportion to (TO/T)4/3. 

Furthermore, the spherical mK-dY equation also has two time ranges: the wave 
grows as TofT when the amplitude is small, but when the amplitude becomes 
large, the wave increases as (TO/T)2. Thus the solution of the spherical fmK-dY 
(37) has the three time ranges TO/T, (TO/T)4/3 and (TO/T)2. 

4. Conclusions 

We have derived the generalised K-dY, mK-dY and fmK-dY equations for three 
different geometrical plasmas (L = 0, ~,1). As in the planar case, cylindrical 
and spherical solitons have similar characteristics in the form of compressive 
and rarefactive solitons, depending on the sign of the nonlinear coefficient AI. 
As the negative ion concentration increases, Al decreases and consequently 
the amplitude increases remarkably. With a higher concentration of negative 
ions, the soliton amplitude tends to be very large and the charge separation 
providing the dispersive effect will not be sufficient to prevent steepening 
of the ion-acoustic wave and also breaking up of the soliton into multiple 
solitons. However, the wave gets reflected from barriers introduced by positive 
ions and ion beams before the wave can attain very large amplitude. At the 
critical concentration of negative ions the ion-acoustic wave is described by 
the mK-dY equation which exhibits both compressive and rarefactive solitons 
simultaneously. Furthermore, near this critical density the transformation of 
the three (planar and bounded) geometrical K-dY and mK-dY equations is given 
by the fmK-dY equation (37). However, near the critical density neither the 
K-dY nor the mK-dY equation in isolation can describe fully the ion-acoustic 
waves in the generalised mUlticomponent plasma. 

In considering two limiting cases, the amplitude variations of the (cylindrical 
and spherical) K-dY and mK-dY equations have been discussed. For the 
cylindrical [spherical] K-dY soliton, the wave grows as (TO/T)l/2 [TO/T] when 
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the amplitude is small, but when the amplitude is large the wave increases as 
(TO/T)2/3 [(TO/T)4/3]. The cylindrical [spherical] mK-dY soliton solution also has 
two time ranges: the wave grows as (TO/T)1/2 [To/T] for the small amplitude, 
but for a large amplitude the growth of the wave changes as TO/T [(TO/T)2]. 

Thus, we conclude that the K-dY and mK-dY solutions show the existence of 
two time ranges depending on the two limiting cases of whether the amplitude 
is small or large. Furthermore, the presence of negative ions and ion beams 
along with multiple electron temperatures leads to a slower exhibition of the 
critical density of negative ions and, consequently, the later formation of 
rarefactive solitons in the plasma, as in the case of planar geometry. Moreover, 
we believe that the present results will be definitely applicable in laboratory 
plasmas, but one has to be careful about the choice of plasma parameters. 
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