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Flat evacuated glazing consists of two plane sheets of glass separated by a narrow evacuated 
space. These structures must incorporate an array of support pillars in order to maintain the 
separation of the glass plates under the influence of atmospheric pressure forces. A design 
procedure is outlined for determining the dimensions of this pillar array. Two important 
constraints in the design process are the mechanical tensile stress on the outside of the glass 
plates near the pillar, and the thermal conductance through the array of support pillars. 
A third constraint arises because of stress concentration near the pillars on the inside of 
the window. Evacuated windows having usefully low values of thermal conductance through 
the pillar array and tolerably small levels of exterior tensile stress can only be produced if 
large stresses exist on the inside of the structure in the region of the glass plates near the 
support pillars. The implications of these stresses are discussed. It is concluded that it is 
possible to design a pillar array for which the localised tensile stresses and overall thermal 
conductance have usefully small values. 

1. Introduction 

The requirement for transparent thermally insulating glazing is well recognised 
in low energy building design. Heat transport through windows constitutes a 
significant part of the thermal load for buildings and is particularly serious 
in severe climates. The traditional approach for the reduction of this heat 
flow is to use double, or multiple glazings. Heat flow through such glazings 
is determined by the thermal conductance of the internal gas space, and by 
radiation between the plates. The separation of the glass plates is limited by 
the requirement that significant convective heat transport through the internal 
gas space should not occur. Substantial performance improvements can be 
achieved in principle if the space between the two glass sheets is evacuated. 
There are substantial technological difficulties in achieving this. 

The practical possibility of producing flat evacuated windows has recently 
been demonstrated (Robinson and Collins 1989; Collins and Robinson 1991). 
Such windows consist of two sheets of glass enclosing an evacuated space. 
It is necessary to produce a hermetic (leak-tight) seal around the periphery, 
to evacuate the structure to pressures below about 10-3 Torr (=0 ·133 Pa), and 
to allow for the effects of the atmospheric pressure forces on the exterior of 
the glass sheets. 
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In order to prevent a flat evacuated window from collapsing under atmospheric 
pressure forces, it is necessary to include within the structure an array of 
support pillars. Collins and Robinson demonstrated a design using fused glass 
support pillars which enables windows to be constructed which survive the 
stresses associated with atmospheric pressure forces. The pillars are made 
from solder glass-a low melting point lead borate glass that has a coefficient 
of expansion which quite closely matches that of the soda-lime glass sheets. 
The pillars are melted and fused to the surface of the glass sheets during the 
same process for making the hermetic edge seal. 

The design of the pillar array is critical to the success of evacuated window 
technology. Such a design requires consideration of two competing constraints. 
First, the pillars cause regions of stress concentration within the window, 
which can result in fracture of the glass. Second, the pillars consititute thermal 
contacts between the two glass sheets increasing the heat transport through 
the window. This heat flow must be kept below specified levels. Collins and 
Robinson have proposed a thermal conductance value for the pillar array of 
o . 3 W m-2 K-I for which windows of useful insulating properties can be built. 
In combination with internal low emittance coating, a window containing such 
an array would have insulating properties at least twice as good as the best 
available double glazing. 

Collins and Robinson developed a design approach for evacuated windows 
based on a trade-off between the maximum tensile stress on the inside of 
the glass adjacent to the pillars, and the maximum tolerable heat transport 
through the pillar array. This previous analysis draws heavily on earlier work 
by Benson et al. (1990). This approach defines the range of values of pillar 
separation and pillar radius for which these two constraints are satisfied. In 
order to minimise stresses elsewhere in the window, specifically on the outside 
of the glass sheets above the pillars, individual pillars in the window should 
be spaced as close together as possible. This design process therefore leads 
to a specification of one pillar separation and a corresponding pillar size. 

The present paper further develops the design procedure for pillar arrays in 
evacuated windows. The current analysiS uses as its primary design constraint 
the tensile stresses which exist in the glass plates on the outside near the 
pillars. Recent experimental work in our laboratory has demonstrated that 
such stresses dominate the failure mechanisms in the structures. The reason 
for this is that the exterior surfaces of the window are not protected. The 
glass can therefore be damaged by handling, causing the formation of surface 
flaws which result in concentration of the tensile stress. In addition, water 
vapour exists in significant quantities on the outside of the window and this 
results in the reduction of the surface energy of the glass and increases the 
probability of a fracture developing from the surface flaws. The approach 
outlined in this paper indicates that there is substantially more flexibility in 
the design of a pillar array than was suggested by Collins and Robinson. 

2. Design Criteria 

The three principal factors to be considered in the design for a pillar array 
in an evacuated window are: the thermal conductance of the pillar array; the 
mechanical tensile stresses within the interior of the window near the pillars; 
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Fig. 1. Diagram of the pillar array in an evacuated window. Enlarged 
views are shown of a cylindrical pillar, and of an hourglass-shaped 
pillar which is formed from solder glass in practical evacuated 
windows. 
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and the mechanical tensile stresses on the exterior surfaces of the window 
near the pillars. We consider a window design consisting of two plane sheets 
of glass of thickness t separated by a periodic array of pillars on a square 
grid of separation A (Fig. 1). Other array geometries (for example hexagonal) 
are possible, but this does not affect the general principles developed here. 
The pillars are initially assumed to be cylindrical with radius a and height h. 
However, in practical realisations of this window design, the pillars have an 
hourglass shape of the form shown in Fig. 1 due to the wetting of the glass 
plates by the solder glass during the high temperature fusion process. It turns 
out that, for pillars of this shape the mechanical stresses in, and near the 
pillars, are substantially less than for cylindrical pillars, as discussed below. 

(a) Thermal Conductance of the Pillars 

In a previous paper (Collins et al. 1991) an analysis was presented of the 
thermal conductance of pillars of cylindrical geometry. Briefly it was shown 
that, for very short pillars (h« a), the thermal conductance of an individual 
pillar between two essentially infinite glass plates is 2Ka, where K is the thermal 
conductivity of the glass (Holm 1979). The heat transport is determined by 
the 'spreading resistance' from the small diameter pillar into the bulk of the 
glass. Fig. 2a shows the isotherms within a window which clearly illustrate 
this effect. These data were obtained using a finite element calculation. 
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Fig. 2. Isotherms within an evacuated window in the region near a single cylindrical support 
pillar. Shown are data for (a) a very short pillar and (b) a pillar with height equal to its 
radius. The temperature difference from the outside surface to the mid-plane of the window 
is normalised to unity. The glass sheets are 4 mm thick. The isotherms are calculated using 
the thermal conductivity appropriate for soda-lime glass (0·78 W m- I K- I ). The emittance of 
the interior surface is taken to be O· 1. Thermal conductance of gas in the internal space is 
assumed to be negligible. Note the increased resistance for the case of a pillar with nonzero 
height. Parts (e) and (d) show some of the isotherms for windows with pillar height equal 
to the radius in which the emittance of the inner surface is 0·84 and 0·10 respectively. 
Despite the qualitative difference of the large-value isotherms, the thermal conductance of 
the pillar is essentially identical in each case. 
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For pillars of increasing height, the thermal conductance decreases due to 
the finite resistance of the pillar material itself. Fig. 2b shows the isotherms 
for a cylindrical pillar with height equal to the radius. Collins et al. (1991) 
presented data for thermal conductance of a pillar showing the effect of height 
over a restricted range. We have performed a finite element analysis of the 
heat flow through such pillars over an extended range of heights. The results 
are shown in Fig. 3, for pillars of different fixed height h = 0, 0·05, 0·1 and 
o . 3 mm,and glass sheets 4 mm thick. 
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Fig. 3. Thermal conductance of individual cylindrical pillars 
separating two sheets of 4 mm thick soda-lime glass as determined 
by finite element modelling. Results are shown (full curves) for 
pillars of different fixed heights. The thermal conductivity of the 
pillar material is assumed to be the same as that of the bulk glass 
(0· 78 W m-1 K-l). The dashed curves show the result obtained for 
series addition of the spreading resistance and the pillar resistance, 
assuming plane parallel heat flow in the pillar (see equation 1). 
Note the effect of a finite plate thickness at large radii in the finite 
element results, resulting in the curves departing from the classical 
analytical solution which assumes semi-infinite plate thickness. 

As would be expected, the thermal impedance of an individual pillar of finite 
height is not too different from that which would be calculated from the simple 
addition of the spreading resistance in the glass plates and the resistance of 
the pillar itself, assuming plane parallel heat flow. In this approximation, we 
can write: 

Cpillar ~ 2Ka/(l + 2h/rra). (1) 
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For comparison with the finite element result, this simple empirical relation 
is also shown in Fig. 3 by the dashed curves. 

In the practical windows of interest, the pillar height can be controlled 
independently of radius. We can write the height in terms of the radius: 

h=~a. (2) 

Equation (1) can then be rewritten as 

Cpillar ~ 2Ka/(l + 2~/7T). (3) 

In the samples constructed to date, the pillar height is approximately equal to 
the pillar radius (~= 1). We therefore use this geometry in our design process 
described below. We emphasise, however, that any desired aspect ratio may 
be selected and more complex pillar shapes can also be considered simply by 
determining the thermal conductance of the appropriate geometry. 

(b) Internal Mechanical Stresses 

The small total contact area of the pillars relative to the overall window size 
results in substantial concentration of stresses in the vicinity of the pillars. 
The internal stresses in the glass, immediately adjacent to the pillars, have 
been extensively studied in the context of Hertzian fracture experiments. In 
a classic work, Hertz (l881) calculated the stress distribution in glass sheets 
close to the area of contact of a spherical indenter. This geometry now forms 
the basis of a standard test procedure for determining surface energy of brittle 
materials, as it results in a well-controlled conical stress fracture near the 
indenter. The stress fields beneath such an indenter are complex (Lawn and 
Wilshaw 1975a, 1975b). Broadly speaking, however, the three prinCipal stresses 
are compressive immediately beneath the indenter. Just outside the indenter, 
the surface of the indented material contains a radial tensile stress and a 
compressive hoop stress. It is the radial tensile stress which is responsible for 
the formation of the conical fracture. In addition, the third principal stress is 
compressive and orthogonal to the other two stresses. This stress is directed 
normally to the surface at the exterior surface, with a value of zero at the 
surface, and develops into a set of conical surfaces sweeping away from the 
indenter at an angle of approximately 68° to the normal. Fully developed 
fractures closely follow the geometry of this third principal stress. 

The conditions under which a spherical indenter results in fracture in the 
indented material have been very extensively examined. It is now generally 
agreed (Frank and Lawn 1967; Langitan and Lawn 1969; Mouginot and Maugis 
1985) that the fracture, when it occurs, initiates from a surface flaw in the 
brittle indented material close the region of maximum radial tensile stress 
on the surface, just outside the contact area. Two distinct modes of fracture 
exist. For surface flaws above a certain size, a very small ring crack first 
forms in the indented material, just outside the contact area of the indenter. 
This can occur at quite small applied forces. The location of the ring crack is 
determined by the size of the flaws, being closer to the indenter for smaller 
flaws (Mouginot and Maugis 1985). This crack is usually extremely difficult 
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to see and is generally only observable using etching techniques. The ring 
crack is stable and remains quite small as the load on the indenter increases. 
Above a certain load, however, and depending on its radius, the ring crack 
grows unstably into a cone crack at a well-defined angle (approximately 68° to 
the normal) and to a well-defined depth. Because the magnitude of the stress 
fields falls off very rapidly with distance from the indenter, this cone crack 
is stable and does not result in catastrophic failure of the solid as a whole. 

If there is no pre-existing flaw above a critical size in the vicinity of the 
indenter, the ring crack may not form until a very large force is applied. 
In this case its formation may occur simultaneously with that of the cone 
crack and the cone crack will then grow immediately to a well-defined size, 
determined by the force at the instant of fracture. The size of the cone 
crack is also affected by the surface energy of the glass. Indeed, the classical 
model for crack propagation in brittle materials developed by Griffith (1920) 
is based on the relative energies involved in the elastic deformation of the 
material, and the formation of additional surface area as the crack extends. 
The growth under constant load of conical Hertzian crack, subsequent to 
its initial formation, is therefore dependent on whether the surface energy 
remains constant. It is well known, however, that the presence of corrosive 
environments can lower the surface energy leading to further crack growth. 
The most important practical contaminant in this context is water vapour, 
which can result in a halving of surface energy. The affinity of water molecules 
for a very clean, freshly fractured glass surface is very large. Colloquially, we 
can say that the water molecules migrate to the tip of the crack and wedge 
the glass surfaces apart. 

The stress corrosion effect has been extensively studied and is often the 
mechanism responsible for spontaneous fracture of glass in the field. In the 
context of the conical Hertzian fracture, the presence of water vapour results in 
the growth of the crack over a period of time. It is important to note, however, 
that with the geometry discussed here, crack growth eventually stops, because 
of the spatial distribution of the stress fields in the vicinity of the indenter. 

An early development from Hertzian fracture experiments on glass was 
the observation that the force on the spherical indenter necessary to form a 
cone crack is proportional to the radius of the indenter over a wide range of 
conditions. This observation, made by Auerbach (1891), is one of the classical 
relationships in the study of the fracture of brittle materials. Auerbach's law 
was initially observed for spherical indenters. However, if the relationship 
is re-written in terms of the radius of the contact circle, it is found, within 
experimental error, that the same fracture criterion also applies for flat ended 
cylindrical indenters (Mouginot and Maugis 1985). 

A considerable amount of work has been done aimed at explaining 
Auerbach's law. In one approach, it is assumed that the brittle material fails at 
a predetermined tensile stress. The magnitude of this stress at any point close 
to the indenter is determined by the macroscopic stress field, concentrated by 
pre-existing flaws in this region. However, in order to explain Auerbach's law 
in this way it is necessary to assume a quite specific statistical distribution of 
flaw sizes on the surface of the brittle material. The generality of Auerbach's 
law makes this explanation seem quite improbable. 
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An alternative fracture mechanics approach, pioneered by Frank and Lawn 
(1967) and further developed by Mouginot and Maugis (1985), explains Auerbach's 
law in terms of regions of stability and instability in the growth of the crack. This 
explanation was convincingly demonstrated to be correct by Langitan and Lawn 
(1969) in a series of classic experiments, in which a high density of surface flaws 
was introduced into the region which was subsequently stressed. They found that 
Auerbach's law held, independent of the size of the flaws, and explained these 
results in terms of the formation of the seminal ring crack; the existence of flaws 
results in the formation of the ring crack at quite low loads. The subsequent prop
agation of this ring crack into a cone crack is then independent of the pre-existing 
flaws and is determined only by the stability of the crack growth in the stress 
field. In the subsequent analysis we use the results of Langitan and Lawn and the 
explanations of Frank and Lawn (1967) and Mouginot and Maugis (1985) to develop 
design criteria relating to the formation of conical cracks in evacuated windows. 

(c) External Mechanical Stresses 

In addition to the high levels of radial tensile stress on the inside of an 
evacuated window near the pilla,rs, the region close to the pillars on the outside 
of the glass sheets also experiences tensile stress. Calculations have shown 
(Timoshenko and Woinowsky-Krieger 1959) that this exterior tensile stress is 
much smaller than the interior stresses, typically by an order of magnitude or 
more. However, abrasion of the exterior surface of a window can result in the 
introduction of flaws which, when large enough, may develop into a fracture. 

Further, it is well known that the presence of water vapour significantly 
reduces the fracture toughness of glass by lowering its surface energy and 
reacting chemically with the highly stressed bonds at the tip of a crack or 
flaw. A scratch which is below the critical flaw size for unstable fracture may 
extend slowly over a period of days or even years, finally reaching the critical 
size. Since the exterior of the evacuated window is not protected from water 
vapour, dust and abrasion, then an appopriate design constraint must include 
an allowance for sub-critical crack growth with reference to an acceptable 
expected lifetime. 

In conventional glass installations, the maximum level of macroscopic 
tensile stress in glass, for which a negligible probability of fracture exists 
in service, is 8 MPa (H. W. McKenzie, personal communication, 1990). Here, 
as a conservative estimate, we take half this figure as a basis for a design 
constraint by examining the sub-critical crack growth behaviour of flaws for 
glass immersed in water. Such an analysis, following a procedure outlined by 
Davidge (1979), shows that for a constant applied stress of 4 MPa, and for a 
lifetime of 100 years, flaws less than 0·35 mm deep would be required. 

Clearly this is an extremely conservative approach since it must be recognised 
that the high level of tensile stress only occurs in a very small area directly 
above each pillar, and it is unlikely that a window will be continually wet 
for this period. The conservative nature of this estimate is further reinforced 
when it is realised that the analysis is based on the existence of a very sharp 
flaw, and that the occurrence of suitably sharp flaws in the region of stress 
can only be described in probabilistic terms. Finally, sharp flaws 0·35 mm 
deep are exceedingly severe and unlikely to occur in normal service. 
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In the analysis presented below, we take 4 MPa as a conservative upper 
limit to the exterior tensile stress. This leaves some room for other induced 
stresses which are likely to occur in service, such as wind loads and thermal 
expansion. 

There is a further region of tensile stress within the window which exists 
because of the bending of the glass plates between the pillars due to atmospheric 
pressure forces. This region is on the interior surfaces of the plates, in-between 
the pillars. However, it turns out (Timoshenko and Woinowsky-Krieger 1959) 
that the levels of stress in this region are about an order of magnitude 
less than those on the outside of the glass near the pillars. In any case, 
this interior surface is protected from damage and is in a water-free vacuum 
environment. These interior tensile stresses therefore do not constitute a 
significant constraint on the design of a pillar array and are not considered 
further here. Similarly, it is readily shown that bending deflections of the glass 
plates between the pillars are very small for the pillar separations discussed 
here, and do not impose a significant constraint on the design of evacuated 
windows. 

3. Design Approach for a Pillar Array 

The preceding discussion leads to a design procedure for determining 
the dimensions of a pillar array. Firstly, the separation of the pillars A is 
determined so as to keep the external tensile stresses in the glass plates near 
the pillars below some predetermined design value. For small pillars, this 
stress is virtually independent of the pillar radius a, but such a dependence 
could be easily accommodated by iteration if necessary. Secondly, this value 
of A, when combined with the design constraint of a maximum thermal 
conductance for the pillar array, defines the dimensions of individual pillars. 
There is some flexibility in the choice of a if pillars of significant height can 
be used. As noted, in our analysis we choose the pillar height h to be equal 
to a. Thirdly, the values of A and a are used to determine whether a conical 
stress fracture is likely to occur through application of Auerbach's law. As will 
be shown, the likelihood of the occurrence of conical stress fracture is greatly 
reduced for the hourglass-shaped pillars used in our windows, compared with 
the case of cylindrical pillars. The fracture criterion based on Auerbach's law 
therefore significantly overestimates the possibility of such a fracture. Finally, 
the implications of a conical fracture are assessed in terms of visual impact, 
or catastrophic failure of the window. These steps are now discussed in detail. 

(a) Maximum Tensile Stress above the Pillars 

Timoshenko and Woinowsky-Krieger (1959) discussed the problem of a thin 
flat plate of thickness t under uniform load, supported by a square array of 
circular pillars of radius a and separation A. From this analysis, we can derive 
a result for the maximum tensile stress in the plates on the loaded side: 

3qA2(l + Jl) [In(A!a) _ 0.811], Bmax = __ ., (4) 
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where q is the loading pressure on the plate and J.l is Poisson's ratio. The 
maximum deflection of the plates between the pillars is given by 

..1Ymax = 0·0697 q},2(1- J.l2)/Et3 , (5) 

where E is Young's modulus for the material. 
Unfortunately, the thin plate result (4) does not give a particularly accurate 

estimate of maximum tensile stress in the glass plates because, in an evacuated 
Window, the thickness of the plate is in general much greater than the pillar 
diameter. A comprehensive review of the literature has failed to find any 
calculation for the stresses in a periodically supported thick plate. However, 
a very good estimate of such stresses can be obtained by considering the 
cylindrically symmetric problem of a uniformly loaded thick disc with an 
opposing, localised force acting at the centre. Such a case differs from a unit 
cell of the periodically supported plate only at points far from the centre; it 
should therefore quite accurately reproduce the stresses near the pillars at 
the centre of our windows. 

We first quote a relevant result from Timoshenko and Woinowsky-Krieger 
(1959), who gave an analytic solution for the central tensile stresses in a thick, 

Axis of 
symmetry 
of 
pillar 

Uniform pressure 

Centre plane of structure 

Built 
-in 
edge 

Fig. 4. Geometry of a circular section from an evacuated window structure used for finite 
element modelling of the stresses in the glass plates. The drawing is not to scale. The axial 
dimensions are greatly expanded, and the radius and height of the pillar are much larger 
than in a practical device, in order to illustrate the deflections and boundary conditions. 
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simply supported disc of thickness t and diameter A, with a localised force 
rrqA2/4 at the centre: 

Bmax = rrqA2[(l +Jl){0·485In(A/2t) +0· 52} +0 . 48]/4t2 • (6) 

They also showed how to convert this case to a disc with built-in edges: 

Bmax = rrqA2(l + Jl){O· 485In(A/2t) + O· 52}/4t2 • (7) 

This latter situation more accurately reproduces the edge boundary conditions 
of a unit cell of the periodically supported plate, but does not include the 
uniform loading inherent in the window structure. 

We have utilised a finite element approach to model the stresses in the plate 
for each of these cases and obtained results for the stresses and deflection 
which are in good agreement with the analytic treatments. We can therefore, 
with confidence, apply the finite element approach to a situation which quite 
closely approximates a unit cell of the periodically supported plate. The system 
is shown in Fig. 4. Two circular discs, each with built-in edges, are separated 
by a single axial pillar, and compressed by a uniform external pressure acting 
over the surface of each disc. Fig. 5 shows values, calculated from this model, 
of the maximum tensile stress on the outside pressurised surfaces of the 
discs, as a function of the thickness of the disc, for various values of pillar 

100 
Bmax (MPa) 

10 
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2S 

Pillar separation 20mm 

Thickness (0101) 
1+1----------~----~----~~--~~~~~ 

1 10 

Fig. 5. Values of maximum external tensile stress close to the support pillar obtained by 
finite element analysis of the structure in Fig. 4. The localised force is taken to be that 
which acts on each unit cell of the evacuated window. 
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separation, chosen to be equal to the disc diameter. The external uniform 
pressure used in these calculations is scaled up from the atmospheric pressure 
value by a factor 4/rr, so that the force on the axial pillar is equal to that 
which would act on a pillar in the square array of separation A. The calculated 
values of maximum tensile stress are found to be not too strongly dependent 
on the diameter of the disc, for constant central force. For example, for 
a 25 mm diameter, 4 mm thick disc, changing the diameter of the disc by 
10% gives a variation of maximum tensile stress of about 6%, for constant 
axial force. This confirms our expectation that the stress obtained for the 
cylindrically symmetric case modelled here should be a good approximation 
to that in the periodically supported plate. As a point of interest, the values 
of stress calculated from the finite element approach are approximately one 
half those obtained from the thin plate formula (4). 

60, Pillar 
separation (mm) 

50 
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Pillar radius (mill) 
0+1----~----~----~-----.----~----~ 

o 0.1 0.2 0.3 

Fig. 6. Data for maximum external tensile stress close to a support pillar 
plotted on a graph of pillar separation A versus pillar radius a. This graph 
serves to define regions of the (A, a) plane for which the external tensile 
stress is below any specified value. 

The results of Fig. 5 can be re-plotted on a graph of A versus a, as shown 
in Fig. 6, with the maximum external stress as the variable. (In this graph a 
has practically no effect on the levels of stress in the plate on the opposite 
face.) In order to maintain the external tensile stress below some specified 
value, it is necessary to choose values for A and a which lie below the line 
corresponding to this value of stress. This is the first design constraint for 
the dimensions of the pillar array. 
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Fig. 7. Thermal conductance of a pillar array plotted on a 
graph of pillar separation i\ versus pillar radius a. The data 
are obtained by a series addition of spreading resistance and 
pillar resistance of the heat flow through individual cylindrical 
pillars. Results are presented for pillars of zero height (~ = 0). 
In order to satisfy the specification for thermal conductance 
of the pillar array, the (i\, a) point must lie above the relevant 
curve. 

(b) Thermal Conductance of the Pillar Array 

557 

The thermal conductance of an individual pillar, Cpillar, may be used to 
calculate the thermal conductance of the entire array of pillars, Carray. For a 
square array of pillars of separation i\, there are l/i\2 pillars per unit area, 
so we can write 

Carray = Cpillar/i\2. (8) 

Writing the conductance of an individual pillar in the approximate analytic 
form (3), we can derive 

i\ 2 = 2Kal(l + 2~/1T)Carray . (9) 

A similar non-analytic relationship can be calculated if we use the more 
accurate finite element result for the pillar conductance. In addition, other 
array geometries (e.g. hexagonal) result in minor modifications. The important 
conclusion to be drawn, however, is that a second relationship exists between 
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A and a. This relationship is shown in Fig. 7 for cylindrical pillars of zero 
height (~= 0), and in Fig. 8 for cylindrical pillars with height equal to the 
radius (~= I). In order to satisfy the specification for thermal conductance, the 
(A, a) design point must lie above the relevant curve. The thermal conductance 
specification therefore defines a second region of the (A, a) plane in which 
values of these two quantities may be chosen. 

60 Pillar 
separation (mm) 

50 

0.1 

40 

30 

20 

Carray = 0·5 Wm-2 K-l 
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o , 

o 0.1 0.2 0.3 

Fig. 8. As for Fig. 7, but for cylindrical pillars with height equal to radius (~= 1). 

(c) Occurrence of Cone Fracture 

Auerbach's law is an empirical relationship which describes the observed 
proportionality between the applied force Pc necessary to produce a conical 
fracture and the radius R of a spherical indenter: 

Pc =AR. (10) 

The constant A is experimentally determined. Hertz (1881) calculated the 
radius a of the contact area of a spherical indenter on a surface: 

a3 = 4kPR/3E I (11) 

where P is the applied force, while k is a dimensionless constant involving 
Young's modulus E and Poisson's ratio Jl: 

k = 9/16[(1 - Jl~) + (1- JlI)EzlEd. (12) 
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The subscripts 1 and 2 represent the indenter and the indented material 
respectively. For similar materials with J.I "'" 0·33, we get a value k"'" 1. 

Combining (10) and (11), we can derive 

Pc = (3AE/4k)1/2a3/ 2 , (13) 

which is an alternative statement of Auerbach's law. It is now known that 
the linear dependence in this law on the radius of a spherical indenter is 
of no fundamental significance in itself. Equation (13) contains the essential 
functional dependences which can be related to the stress fields within the 
material. Moreover, the 3/2 power dependence of the fracture force on contact 
radius expressed in (13) is experimentally observed for both spherical and flat 
indenters over a wide range (the 'Auerbach range'). 

In this discussion we utilise previously measured values of the fracture 
force to predict the likelihood of formation of a conical stress fracture beneath 
a support pillar in an evacuated window. These data are for both spherical 
indenters (Langitan and Lawn 1969) and flat indenters (Mouginot and Maugis 
1985). Langitan and Lawn performed measurements on abraded soda-lime glass, 
and Mouginot and Maugis used abraded borosilicate glass. Both investigations 
involved static loading, and Langitan and Lawn also studied fractures formed 
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Fig. 9. Auerbach's law plotted on a graph of pillar separation i\ versus pillar radius a. The 
curve is derived from data on spherical and flat indenters. If the (i\, a) point is chosen to 
lie below the curve, it is unlikely that a conical stress fracture will occur. 
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under impact loading. To the accuracy of the data (±10%), both static tests 
yield the result 

Pc = 2400a3/ 2 , (14) 

where Pc is in Newtons and a in millimetres. For impact loading, the force 
necessary to initiate cone fracture was found to be nearly twice as large, 
reflecting the larger surface energy for crack formation in the absence of water 
vapour. 

We can write the force on each pillar Pc in terms of the atmospheric pressure 
q and the pillar separation A. For a square array we have 

PC=qA2. (15) 

Combining (14) and (15) gives 

A=155a3/4 , (16) 

where A and a are in mm. This third relationship between A and a is shown 
in Fig. 9. For the stress levels in the vicinity of the pillar to be less than 
those leading to fracture according to Auerbach's law, the (A, a) design point 
must lie below the curve. 

As noted, the data used to derive (16) are for fractures on abraded glass. In 
such a case, it is virtually certain that the seminal ring crack exists at quite low 
applied forces and the fracture force values are those required to overcome 
the instability criterion in order that the cone fracture may develop. These 
values for force, therefore, represent a lower limit for the formation of the 
cone fracture. For surfaces which have a very low density of flaws, it is quite 
possible to achieve much higher values of force before the conical fracture 
occurs, because the ring crack may not be initiated. This is the situation which 
is expected to exist within evacuated window structures produced according 
to the methods described by Collins and Robinson (1991). In these structures, 
the pillars are made from solder glass which is melted and solidified during the 
process for formation of the edge seal. The surface of such freshly solidified 
glass is expected to be flaw-free. Moreover, because of the wetting of the glass 
plates by the solder glass during the high temperature process, the surface of 
the glass plates surrounding the pillar is also expected to be flaw-free. Finally, 
these surfaces are completely inaccessible, being on the interior, evacuated 
part of the window and are therefore not subject to mechanical damage. It is 
quite possible, therefore, that ring and cone fractures may never occur in the 
glass under the support pillars in windows made using these methods, even 
at force levels substantially greater than those given by Auerbach's law (16). 
The situation is not unlike that now routinely achieved in the manufacture of 
optical fibres; the pristine surface of the glass fibre is protected from damage 
immediately after its formation, preventing the occurrence of surface flaws, 
and thus resulting in a negligible probability of fracture over the entire service 
life, even to stresses well above values normally regarded as intolerable in 
glass structures. Finally, we have used the (conservative) result from static 
tests in which water vapour is known to encourage the formation of cracks. 
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The interior of evacuated windows should be essentially free of water vapour 
and it is probable that higher forces than those inferred from the static tests 
would be tolerable in this environment. We conclude, therefore, that the 
Auerbach criterion is a quite conservative predictor of the possibility of cone 
crack formation in evacuated windows. 

Finite element calculations of the stress distributions in the vicinity of the 
hourglass-shaped pillars (Fig. 1) used in our windows show that the surface 
levels of radial tensile stress are very significantly reduced compared with the 
cases of spherical or flat indenters. It seems that the skirts of the shaped 
pillar act to reinforce the structure, spreading localised intense stress fields 
close to the circumference of the pillar, perhaps even 'steering' the axial 
compressive stress in the pillar into a radially outward direction in the glass 
plates. In addition, the mechanical bonding of the glass pillar to the glass 
plates appears to change qualitatively the shape of the stress fields in this 
region and also to reduce the levels of stress. These considerations further 
emphasise the conservative nature of the Auerbach criterion for formation of 
conical stress fracture. 

Finally, Langitan and Lawn (1969) and Mouginot and Maugis (1985) provided 
data on the size of the conical stress cracks for the size range of indenters of 
interest here. It was found that such cracks are very small, perhaps twice the 
diameter of the pillar indenter, and they only propagate to a depth of about 
one third the radius of the pillar. In our own experimental work, we have 
never seen conical cracks beneath pillars unless local forces are applied which 
are many times the value normally experienced in practical windows. When 
such crack have been induced, they do not result in loss of the vacuum in 
the window. We therefore conclude that conical fractures due to concentrated 
stress fields in the glass adjacent to support pillars are unlikely to be of 
concern in the design of evacuated windows. 

(d) Combination of Design Constraints 

The previous analysis serves to define constraints, due to three effects 
(external tensile stress above the pillar, thermal conductance of the pillar 
array, and internal crack formation adjacent to the pillar), on the choice of 
values of A and a in an evacuated window. These constraints are reproduced 
separately in Figs lOa, lOb and 10c showing the range of (A, a) for which each 
is satisfied. The graphs are combined in Fig. 10d to show the range of (A, a) 
which satisfy all these design constraints. We note that the allowed values of 
A and a depend on the actual design specifications. For example, Fig. 10 has 
been drawn for C = O· 3 W m-2 K-l, for a rectangular array of cylindrical pillars 
with height equal to radius, and for an external tensile stress of 4 MPa. The 
procedures described here permit any other design specifications to be used. 
The important conclusion to be drawn is that there is a range of (A, a) which 
satisfy all these design criteria. 

The choice of specific (A, a) values within the allowable range is very much 
determined by technological considerations, which will not be discussed in 
detail here. However, we note that factors which may influence the chosen 
design values include: the method of production of the pillars; the number 
of pillars that can be made economically; the minimum desirable gap in the 
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windows; the visibility of the pillars; and the minimum pillar size that can be 
conveniently produced. For example, if it is desired to minimise the number 
of pillars, because they are deposited individually, then an appropriate choice 
to satisfy the above design constraints would be A = 23 mm, a = 0 -17 mm. If, 
however, pillars are deposited collectively, by screen printing for example, 
other factors may lead to a choice of different values within the allowable 
range. 
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Fig. 10. Combination of the design constraints for a pillar 
array. Figs lOa, lOb and IOc are reproductions of Figs 6, 8 
and 9 and show respectively (A, a) and values which satisfy 
the following design constraints: external tensile stress is less 
than 4 MPa; thermal conductance of the pillar array is below 
0·3 Wm-2 K-i; and conical stress fracture is unlikely to occur. 
Fig. IOd combines these three relationships to show (A, a) 
values for which all three design constraints are satisfied. 
These results are for a square array of cylindrical pillars with 
height equal to radius. 

4. Conclusions 

The analysis presented here has considered several factors which restrict the 
dimensions of an array of support pillars in all-glass evacuated windows. It has 
been shown that a pillar array can be designed having very small conductive 
heat flow through the pillars «0· 3 W m-2 K-1), and for which fracture due to 
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mechanical stresses caused by atmospheric pressure is extremely unlikely. 
The analysis has been deliberately conservative; in several of the arguments 
presented a 'worst case' scenario has been used. There is substantial scope for 
refinement of the design process, particularly by developing a more complete 
analysis of the probability of fracture due to external stresses, and of the 
nature of stresses in the immediate vicinity of the shaped pillars. Both 
refinements are expected to increase the range of permissible design values 
for the pillar array. 

It is important to extend the analysis to include the influence of shear 
stresses and barrel distortion in the support pillars. Shear stresses will arise 
from non-uniform wind loading, and the existence of such stresses could be 
an important limitation on pillar dimensions. Preliminary modelling work has 
indicated that the magnitude of barrel stresses is quite dependent on the 
shape of the pillars, with quite low stresses existing in the hourglass-shaped 
pillars in our windows. The assessment of the importance of these two effects 
will also require a detailed study of the mechanical properties of the solder 
glass, about which very little appears to have been reported. 
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